<<

JP9950127

®n m&?. mti HBA\ /j^¥ m**

f «ffe#«i^p^fe«j:y f^± (top-soii) frbzarm (sub-son) '\

i37 ,37 ®mmm(nmij\c£^ffi'Pi-& cs(DfrMim%¥mmmm7^mT\ ££>c cs tS Cs

Residence half-time of 137Cs in the top-soils of Japanese paddy and upland fields

Misako KOMAMURA, Akito TSUMURA*. Kiyoshi K0DA1RA** National Institute of Agro-Environmental Sciences, *ex-National Institute of Agro-Environmental Sciences, **Prof. Em. Ashikaga Institute of Technology

A series of top-soil samples of 14 paddy fields and 10 upland fields in , were annually collected during more than 30 years, to be examined in the contents of ,37Cs. The data, which were obtained by the use of a gamma spectrometric system, received some statistical treatments to distinguish the annual decline of 137Cs contents from deviations. Then the authors calculated "residence half-time of137Cs" within top-soil, and "eluviation rate of 137Cs" from top to the sub-layer of the soil. The following nationwide results were obtained irrespective of paddy or upland fields: (1) The "apparent residence half-time" was estimated as 16—-17 years. This one consists of both effects of eluviation and nuclear disintegration. (2) The "true residence half-time" was reported as 41~~42 years. This one depends on the eluviation speed of 137Cs exclusively, because the influence of nuclear disinte• gration has been compensated. (3) The eluviation rate of 137Cs from top-soil down to the sub-soil was 1.6—-1. 7% per year. (4) The ratio of distribution of 137Cs between top-soil and the sub-soil was estimated to be 6:4 as average at the date of 1996.

Keyword: 137Cs, paddy soil, upland soil, residence half-time, eluviation rate

-12- JAERI-Conf 99-001

1 . litau:

7Km^'\^^ l37cs^aosrK¥(Difrtt&mmzmmM^wi-zm£te±m(DMm^mjf$ «S&£K«fc»)JI&£26*\ ±kLX&mfre>%miilpn?lfo 20cm £X*

37 ao l) XtrnZtltz* - %ZM%\^ %0 Z(D£v &fttt£fl

*«£"CW\ ^n^(7)^iffi(7)^^7XE0ft±^=kC/'Jfflft±4'(7) 137Cs(7)^^^^aS^t$-

2 . W5S^;i

2. 1 ±SBsm

£ Fig. lH^Lfco 7jcff8&=kW *0JR«&K$®;*ft;fc>!fcffl • *H ftlWlXm^mVdMtel?* 2mm<7)

Aft&#Lfc0 JAPAN SEA 2. 2 fKfstt:S0)&S • ft^

Joetsu >'V)7 2kffl±«li Table 1 \Z m±m\t f l y KounosuftKumagaya,, ^WMit1 o , nFutaba-cho* '*t^LuMkaw a Table 2 KjSLfco p

2. 3 #^±ig+<7) 137Cs<7) PACIFIC OCEAN

H«lS!Ge*a»ft«aiS (Canberra atS GR1820, ffltt&$l. 8%, X* ;i/^-^D¥li2.0keV) Zffix.tzr Fig.1 Sampling sites in Japan

13- JAERI-Conf 99-001

Table 1 Soil properties of top-soils in paddy fields

Sampling sites Soi 1 group Soil Depth pH Sand(2-0.02mm) Clay(<2tfm) Humus CEC** texture' (cm) (HJO) contents(X) contents(X) contents(X) (meq/IOOg)

Japan Sea side . HOKKAIDO Wet Andosols LiC 0-10 6.22 41.3 26.7 3.89 28.9 . AK1TA Gley soiIs LiC 0-12 5.03 30.5 30.7 2.35 25.7 Joetsu. Gley soiIs LiC 0 12 5.59 26.0 39.5 4.13 30.8 Nonoichi, ISHIKAWA Gley Lowland soiIs CL 0-14 5.80 39.6 23.3 1.79 16.4 Totton, TOTTORI Gley Lowland soiIs LiC 0 14 5.57 35.4 29.1 2.88 19.2 Tsukushmo, Gley Lowland soiIs CL 0 10 S.56 61.9 17.0 2.18 16.4 Regional average 0 12 5.80 39.1 27.7 2.87 22.9 Pacific Ocean side Monoka, IWATE Net Andosols LiC 0 12 6.42 40.4 31.6 11.71 55.8 Naton, M1YAGI Gley Lowland soiIs HC 0 12 5.73 21.9 47.6 2.74 43.4 Mito, iBARAK 1 Andosols LiC 0 13 6.45 48.1 28.1 7.29 36.4 Kounosu, Gley Lowland soiIs LiC 0-12 5.70 39.4 27.1 0.82 17.3 Tachikawa. Brown Lowland soiIs LiC 0 IS 5.46 35.5 31.9 4.61 33.2 Futaba-cho, YAMANASH Gley Lowland soiIs SCL 0-12 5.66 71.6 15.1 0.95 10.3 Habikino. Gley Upland soiIs CL 0 10 6.40 55.0 21.5 2.93 17.9 Sanyo-cho. Gley soiIs CL 0-15 5.75 53.1 23.4 1.61 13.8 Regional average 0 13 5.95 45.6 28.3 4.08 28.5

Nationwide average 0 12 5.88 42.4 28.0 3.5S 26.1

* LiC:hght clay CLtclay loam HC: heavy clay SCL'-sandy clay loam *» cation exchange capacity

Table 2 Soil properties of top soils in upland fields

Sampling sites Soi1 group Soil Depth pH Sand(2-0.02mm) Clay(<2tfm) Humus CEC** texture* (cm) (H*0) contents(X) contents(X) contents(X) (meq/IOOg)

Japan Sea side Sapporo, HOKKAIDO Net Andosols LiC 0-15 5.52 36.1 32.8 8.53 48.0 Nagaoka, NIIGATA Gley soiIs HC 0 15 5.59 10.5 51.6 4.47 40.0 Anagi, FUKUOKA Gley Lowland soi Is LiC 0 15 6.56 42.9 26.2 6.53 34.9 Regional average 0-15 5.89 29 8 36.9 6.51 41.0 Pacific Ocean side Monoka, IRATE Net Andosols CL 0 15 6.02 47.1 20.2 10.71 45.0 Iwanuma, MIYAGI Gley Lowland soiIs HC 0 15 5.73 21.9 47.6 2.74 43.4 Mo, 1 BARAK I Andoso1s LiC 0 15 6.00 46.8 25.7 6.03 39.4 , SAITAMA Gley Lowland soiIs CL 0-15 5.00 48.4 20.6 0.99 16.3 Tachikawa, TOKYO Brown Lowland soiIs LiC 0 15 5.46 41.2 28.2 5.22 29.3 Futaba-cho. YAMANASH1 Gley Lowland soi Is SCL 0-15 5.66 63.4 18.8 1.11 14.6 Sanyo cho, OKAYAMA G1ey soi1s CL 0 15 7.05 53.0 22.6 1.80 13.2 Regional average 0-15 5.85 46.0 26.2 4.09 28.7

Nationwide average 0-15 5.86 41.3 29.4 4.81 32.4

* LiC:hght clay CL:day loam HC'.heavy clay SCL:sandy clay loam ** cation exchange capacity

-14- JAERI-Conf 99-001

'csotkMmmfezn-itzo

3.n&&m±m&

3. 1 *ffl-jaBft±0,3TCs£M0fr£Jf# *W4^Bfl*&^nfcl958^^t>1993^*t?(D35^raK:*Jlt-57KBa • *B!f¥±<7)£ 137Cs£fi<7)

l37 7m-Mi'¥±(D cs$m(D\s-2\mt&¥(Dm&xmttm£mm£fttz0 ztibam mt, i%4*-im*tm\*-\m*(Dmm£Mm\zftt>fttz±%mft±mm®%mm(Dm

(Dmmmts frtfmtisttzyt-frTVh i37cs(Dm±^i:^m^mmm%4^xm^- >7\z]s.-3ux^z>t\<^%%.w3iTf\(Dm.^m3) i:(5(i-iLTi^„ \m&%-mzmwLLtzo &tz\m*\z*x.)\,j-?4 *)w^FM%mmz&

16

14 • Paddy fields ° Upland fields C 12 E cr CO ^5 10 o 8 *J 'E 8 o ID O ^ 6 8 ID CC ° * .s ...°s. • • •

■Ir -8°he§!BS88iBs8 =ieIeB!iSSSM

1960 1970 1980 1990 year

Fig.2 '"Cs contents of top-soils collected from 14 paddy fields and 10 upland f ieIds in Japan

3. 2 *ffl'flHfr±(Dl3TCs£;t(D«'>| F\g.2(DmMz^LtzM'o, 7jU 1964^r6£fe$i: LT*ftW&Ji#'>fcl*)£7SLT^£o -££T% rotr-^Kffl^^-S 1964^£ T^ip^J (base year) tfetb, CWttm&t ■fZ r$'>ffl*fj (decline curve) £$#, *ttK«k^TM©/!¥E

15 JAERI-Conf 99-001

D Paddy f ields

s.□ □ Decline curve A Y=5.0e-OO4,t D r=-0.967*** D a.. ti/2=16.9y 3-

Dr>-rD 2-\ —dB"-.jgD Base year n "'Oaj^j-]

1 i i i i i i i i i i i i i l I I I i i i i i i > i i i i i i i i ■ ■ i i i i I 1960 [1964] 1970 1980 1990 year 3 Decline curve A Comprehensive time course of the cumulative contents of ,37Cs in the top-soils of paddy fields Each mean value of 14 fields is plotted without revision ***:p<0.001

6- Paddy fields $ A Decline curve C 5- v„j><> Y=4.9e"0,7t V A X"'-A-A.„. A r=-0.853*** v^. /*'*—- ti/2=40.7y 4- ^t OA^'^V. A A v-^ a A" -A— -AAA A 3 O <►'$-.<> A A Decl ine curve B <> <*._ Y=4.9e-°-040t *'Z'*-S o 2 1 Base year r-0.968'" * *>-^fto I ti/2=17.3y 1 'll I lI lI I I I II I I I I I I I I I I I I I I I l I I I I I I I I l l I I l ll' 1960 [1964] 1970 1980 1990 year 4 Decl ine curve B Time course of the contents of ,37Cs which have been accumulated in the soils up to the base year 1964 Each of the amounts of 137Cs,newly-captured by soils after 1964,is subtracted from the corresponding point in the Curve A ***:p<0.001 Decline curve C Revised curve excluding radioactivity decay from the Curve B ***:p<0.001

16- JAERI-Conf 99-001

Upland fields

C° A D - □ Decl ine curve A JX 4 04,t CO X n Y=4.5e"- r=-0.964*** CO °X t,/2=17.0y a ° 0 4-> C

w 0- a-- Base year °D~"qJ3-ejp

* I I I I I I * I I I I I I I I I rTTTTTTTTT'Pr III I I I I1 lOTO 100a I960 [1964] 1970 1980 1990 year Fig 5 Decline curve A Comprehensive time course of the cumulative contents of ,37Cs in the top-soils of upland fields Each mean value of 14 fields is plotted without revision ***:p<0.001

Upland fields Decline curve C $>,

Decline curve B o ',<>-$. Y=4.4e"°-039t $'^--- ° Base year r=-0.956*** 00^ ti/z=17.6y 1 1 III 1 1I I 1 1 I I 1 1 I I I I I I I I I 1 I I I I I I I l 1 1 1 I 1 1 I 1960 [1964] 1970 1980 1990 year

Fig.6 Decline curve B Time course of the contents of 137Cs which have been accumulated in the soils up to the base year 1964 Each of the amounts of 137Cs,newly-captured by soils after 1964,is subtracted from the corresponding point in the Curve A ***:p< 0.001 Decline curve C Revised curve excluding radioactivity decay from the Curve B ***:p<0.001

- 17 - JAERI-Conf 99-001 m*ztfytjin'pmm*nt2o ^(D-mtLx^m^^M^^m^±\t?\g.^^m^±\t?\g.^^^

Ltz: Y = Xe kl (ȣ 1) tztzlYte 137Cs-^ft Xlig^UfcltS 137Cs-^M

x&^r$\zM-fz>ffi>js&$i

^mmm\fmhLx\i.ntmmzx^x lnY = lnX-A t (ftj£2) (omtix, ^t(nmm£.**ihxx&&vx(nm*mtzo ■torn Y(D%mtixi37cs(ommzmfe}E(D£±nmz&^xm^z(Di)\ TKeaitiii Fig. 3, *Hft±liFig. 5ffl«|A-CS)So feJUttfrS^LT, ifflHSA(i^^grtb

So rli£fr ftit*0)fi,6£#:0)£ -5 ^^31IX& < o i-^*5*,«'>ffliiiAtzz>7kH • mft±*a i37cs(ommmco*E7km®zfot>ib-to t^^^l37cs\t-^x^±^^^m^^n, m^xa TM±tzfa\ixmBt$ti, ttzMtt&mmzx-oxmm-t&o *z\x&*&z:bM&t\z^m*E&(o l37csco&Tm(D3\gw.zft^tzo *ftf>ffl *8£B fc£f#^7Kfflft±liFig. 4KflBft±liFig. 6KStffco Lfc**o-C«'>ffllSIBtt, 137Cs<7)±^^<7)^;i6£fim&^3::£&<, M£$tf& m&t^j)2&mmmczmtzfi\ *n\ift±* 137cs(Dym±^(D;m^m^miZ7f^,b(Dtf£^tzo

3. 3 ffi%¥ffimmt%®im ±s5W«t-5 34^ffi-C*^Lfcfe**, 7Kfflft±fiTable 3(Cj[fflft±liTable 4fc^Lfc«, «'> M%Bfrt>WfeltzfrMi(Offi'g¥ffimr$ (RHT-B) Ji^S^^-CTKfflftili 17. 3^. *fflfF± Ji 17.6^fcftofc„ ;*££, «'>ffl«IC^f)*^Lfcll©«ff@^«I^P^ (RHT-C) (2£|!¥#J ■C7KBaflF±»i40. 7^-Cflllft±tt42. 4*£fc ft o fc„ ft±a*£*0)TB'\0)-5MSa^fc 0 <7)M* £*£Lfc*££, £gTOT*7Kfflf^±tel.7%WP±m.6%^frofco

«?e^«l^rP^ (RHT-B) • (RHT-C) fcitf&Bmi* *AP^i£^§3tf) £>ft*:0 f©!*©-

- 18 - Table 3 Residence half-tine in top-soil and eluviation rate froi top-soil to the subsoil of ,37Cs in the paddy field

Residence half-tiae (B) Residence half-tiae (C) and eluviation rate (RHT-B) (RHT-C) (ER) Sasp1ing sites n Regression Correlation RHT-B Regression Correlation RHT-C ER equation coefficient(r) (year) equation coefficient (r) (year) (X/year)

Japan Sea side Sapporo, HOKKAIDO 27 Y= 2.9e" oes' -0.879*** 10.6 Y= 2.9e ° 042t -0.767*** 16.3 4.24 Akita, AKITA 29 Y= 6.5e ° 0311 -0.958*** 22.2 Y= 6.5e "■ 008t -0.659*** 85.0 0.82 Joetsu, NIIGATA 26 Y=14.2e" 059t -0.936*** 11.8 Y=14.2e"° 036t -0.849*** 19.4 3.57 Nonoichi, ISHIKAWA 21 Y=10.2e~° 02S' 0.853*** 26.6 Y=10.2e °- 003t -0.182 Tottori, TOTTORI 20 Y= 6.6e" 0311 0.952*** 22.4 Y= 6.6e ° 0081 -0.618** 88.9 0.78 Tsukushino, FUKUOKA 15 Y= 4.2e ° 050t -0.859*** 13.7 Y= 4.2e° 027t -0.673" 25.3 2.73 Averages of Individual data 138 Y= 6.9e° °48' -0.496*** 14.6 Y= 6.9e ° °25' -0.283** 28.3 2.45 Year 1 y data 29 Y= 7.0e ° °43' -0.972*** 16.0 Y= 7.0e° 02°' -0.889*** 34.3 2.02

Pacific Ocean side . IWATE 28 Y= 4.0e" 03" -0.865*** 22.1 Y= 4.0e ° 008t -0.415* 83.4 0.83 Natori, NIYAGI 20 Y= 4.8e-°' °32' -0.917*** 21.8 Y= 4.8e"° 009< -0.533* 79.6 0.87 Mito, IBARAKI 22 Y= 3.0e° 053t -0.837*** 13.1 Y= 3.0e ° 030< -0.648** 23.2 2.99 Kounosu, SAITAMA 17 Y= 3.7e" °40' -0.791*** 17.3 Y= 3.7e" 0,7t -0.480* 40.8 1.70 Tachikawa, TOKYO 19 Y= 4.2e °- 027t -0.875*** 25.3 Y= 4.2e"° 004t -0.275 67 Futaba-cho.YAMANASHI 22 Y= 3.3e ° ° ' -0.945*** 10.3 Y= 3.3e"° 044t -0.885*** 15.6 4.44 3 Habikino, OSAKA 28 Y= 1.5e" ° *' -0.825*** 20.2 Y= 1.5e ° 0,,t -0.431* 61.7 1.12 25 Sanyo-cho, OKAYAMA 18 Y= 2.9e ° ° ' -0.737*** 27.4 Y= 2.9e° °02' -0.094 Averages of Individual data 174 Y= 2.9e° 033t -0.498*** 21.3 Y= 2.9e ° 009t -0.165* 73.2 0.95 Yearly data 29 Y= 3.1e"' °34' -0.937*** 20.3 Y= 3.1e" °'1' -0.658*** 62.4 1.11

Nation wide averages of Al 1 of the data 312 Y= 4.4e-°' °42' -0.466*** 16.5 Y= 4.4e"° 0,,t -0.231*** 36.7 1.89 Yearly data 29 Y= 4.9e"°- °40' -0.968*** 17.3 Y= 4.9e"0' 0,7t -0.853*** 40.7 1.70

***: p< 0.001 **: p< 0.01 *: p<0.05 n: Nuaber of saaples analyzed Y: 137Cs contents in paddy top-soil at the t year after 1964(kBq/i2) Table 4 Residence half-time in top-soil and eluviation rate froa top-soil to the sub-soil of 137Cs in the upland field

Residence half-time (B) Residence half-time (C) and eluviation rate (RHT-B) (RHT-C) (ER) Sampling si tes n Regression Correlation RHT-B Regression Correlation RHT-C ER equation coeff icient (r) (year) equation coefficient (r) (year) (X/year)

Japan Sea side Sapporo, HOKKAIDO 27 Y= 3.7e ° 042t -0.924*** 16.5 Y= 3.7e ° °"" 0.736'** 3B.B 1.89 Nagaoka, NIIGATA 28 Y= 8.9e ° 037t -0.956*** 18.6 Y= 8.9e" 0,4t -0.780*** 48.7 1.42 Amagi, FUKUOKA 15 Y= 3.1e ° 029t -0.886** 24.0 Y= 3.1e" ooet -0.363 Averages of Individual data 70 Y= 4.Be" 032t -0.475*** 22.0 Y= 4.6e" 009t 0.145 80.9 0.86 Yearly data 29 Y= 5.1e ° 031t -0.831*** 22.7 Y= 5.1e" 008t -0.347 91.9 0.75

Pacific Ocean side Morioka. IWATE 27 Y= 3.8e ° 0304 -0.887*** 23.1 Y= 3.8e ° 007t -0.411* 98.4 0.70 Iwanuma, MIYAGI 11 Y= 5.2e ° 063t -0.878*** 11.1 Y= 5.2e" 040t 0.758** 17.5 3.95 Mito. IBARAKI 21 Y= 3.4e ° 066t -0.887*** 10.5 Y= 3.4e" 043t -0.782*** 1B.1 4.32 Kumagaya, SAITAMA 27 Y= 5.7e" 075t -0.953*** 9.2 Y= 5.7e" 054' -0.914*** 12.9 5.37 Tachikawa. TOKYO 21 Y= 4.1e" °351 -0.801*'* 19.9 Y= 4.1e" °12' -0.41B 58.2 1.19 Futaba-cho.YAMANASHI 15 Y= 3.0e" 037t -0.908*** 18.9 Y= 3.0e" 014t -0.628* 50.8 1.37 Sanyo-cho. OKAYAMA 24 Y= 2.8e ° 024t -0.821*** 28.5 Y= 2.8e ° 00" -0.074 Averages of Individual data 146 Y= 3.7e" 043t -0.741*** 1B.3 Y= 3.7e ° 0204 -0.454*** 35.3 1.96 Yearly data 29 Y= 3.8e ° 041t -0.952*** 16.9 Y= 3.8e" 018t -0.808*** 38.5 1.86

Nation wide averages of Al1 of the data 216 Y= 4.1e ° 04M -0.631*** 1B.8 Y= 4.1e ° 018t 0.340*** 37.7 1.84 Yearly data 29 Y= 4.4e" 039t -0.956*** 17.6 Y= 4.4e" oiet -0.805*** 42.4 1.63

***: p< 0.001 **: p< 0.01 *: p<0.05 n: Number of samples analyzed Y: 137Cs contents in uplund top-soil at the t year after 1964(kBq/m2) JAERI-Conf 99-001 o£±»<0l4K0)iiv^#£f,ft6j&*, *W&xm^tz±mtlt£fr'Dt:o AlW K l37cs*±m\zmni&m£ftTx*(D®Mm*miitzmmxte, &±f:mv>^±®± * (i^eai*) (i^±^*(7)^^^^ii±*cto ,37cs(7)^^^^^<^B«^n^<^chv^

137cs©»@*«i^p^fc^»i^fc©B8^{i^^©«wgiija-c«t)So ttz. mmm\zB^mmt *¥#ffil"CJtl8 (Table 3, 4) Lfcch-5, 7kBaft±"CJiir*©^^*«J: 0 kJs^flfft^fS

^xb<*t>\zmi*maiZ><&mtf$>Zo *w%.xnhtitiffi®¥Wiiiffi (RHT-B) ttonz\h™tf&wxmmfcix&tem8¥im P*l (Jgffi5-10cmT*#jl5^) fcttR-tfttf, lu^(D^^^^=t 0 ^b^ ^ ^^ffi|6]^'^^n^o & e) tz, ffi^mmffl (RHT-B) ICO^T, *wfttm£7mft± (tkm) *m^tnh*t> n? yA- y*yy^T')\/frhnhfttz 137cs<7)fii {&Mi(n%iWftm*t>m%) fctt«Lfci:- 5*^©^^^^^^^?^, ~ft^(DMmvfftk^n-^;i/7*-;i/77 hx l37 &Ti£M^mzm$itzm(Dmx&z>0*x.)i;yj i)&M(D cs*tt% \z, nyWikt-hm^mzwy^m\z^\i^m^^^(Di^m^^tzm^T)\zx^t, ®tm m*. o.2-o.3c*/ht&m§&n&&myu-JVIV *-)iry hxmhntzmo.4-1.ocm/yct0 £L<¥v^ £**«£.*ftT^60 ±^^f>is*T-ts ia7cs\zjtyiki±m\z*&M£hz>mtfmni, $h£.m$m&*mts z\t£&*)ztibo-Rimfcztix^wti, mwA&'p%<%zt%z.t>tiz>o hu—v- mWiX±m\zma£ntz,37cs,\mmoo%n$h, *^IM-#B*7>^-^ Attorns n& a-tntf, ±mm%.mizmti, ^mcii^u^nu ) 137 \,^fef£Mi&cmttzm&tf&o hu-v&m cs, f-x ;l/7 7WJ>i^fe^137Cs^J;ai^n-y^l/7t-;i/7^ h&iT37CsP^Ti3:±^Kilffi£ft/i m(Dit^mmtmt£^>t^^hfihtz^^W)m^^mmirhm^\z\t, l37cs

Fig.4,6©«'>ffl«lCK:fe^T, 137Cs(7)$'>i!)-a-£, 1964^t>1979^£Tfc 1980^£ im*?txt*im'tti\*, w%mtot>ti2>o -t?£&*>. Z.ffi*Hi, I964*pj&*t>l979^£f0) I37Cst7)^*|i*T«!H*JltSP*T««)ftai^P4l«)JSV^ 137 7 (3!Sto^n-g>7K(Dg^^^^^§^(3^ii-t-g, csiii^^a98o^m #(7) ,37CSM

- 21 - JAERI-Conf 99-001

3. 4 i37cs<7)7jcffl -mft±k*

l3r / LXt$ Cs^mmm^ nd±XMWX$)^a «'>ffl!BC

mtttmbmpwm (5%*) £Fig.7 \z^Lti0 M#©#*«fl£{i±*K«fc9*,*fc£^j&* sft?>*ifc. &tz, fcrnhmtZtiM-tzk, \k^(D^t^^^±\z^ni*M*thfc 6 (fg±) :4 (TJB±) fcfc»3, ft±JBK£<#£*S£fcri**c*ttfco

100 r top-soil

sub-soil 100 -

Fig.7 Estimated distrbution rate of 137Cs in top-soil and the sub-soil of 10 fields at 1996 +: Paddy field *: Upland field 4. £

7kM'>\^mkixit± (top-soii) *(Dl37cs*mi-tz>o 7km -mft±*

(D®Mm*#tbtza wm(D7km • mft±* ia7cs CsX*i£im±mt t> 6 : 4 k t£ i tzo

%±(D®$kBZ^tztz^tzo z.^izmnzmit'to <**>£, MM^^i^w^-r

- 22- JAERl-Conf 99-001

(i) mmm&wftm^m&mwmm, mim-mzm (1959-1995), n^&mjr (2) Y)i^~yA¥mfc&n!,miz£z)tfy-?i&^>7huj MJ-, nMmmyZisv-z. n ¥&ffifr (1990) (3) WtiJit*, JE»»E, S+JgaJtA, £H # : ^*W3E0f8M^ &36-f\ ^#!ffi3E0f (1996) (4) #ttHSA, ISJ+t^feT-. ^#%m : ±m&&V±m-mtio%fc#tfZ>fttt&Zhuy*t; Mst-ki/yMsOmmz.M'tZWfa IifiW5£0liS, B36.57-113 (1984) (5) Bunzel.K., Kofuji,H., Schimmack, M. : Residence time of global weapons testing fallout 237Np in a grassland soil compared to 239,240Pu, Z41Am and 137Cs, Health physics, 68,89-93 (6) Yamamoto, M. ,Sha, L., Kofuji, H., Tsumura, A., Komamura, M., Yuita, K. and Yamasaki, S. : Distribution and behavior of transuranium elements in paddy surface soil, Improvement of Environmental Transfer Models and Parameters, Proceedings of Nuclear Cross-Over Research, 198-206, Promotion Committee on Nuclear Cross-Over Reseach, Japan (1996) (7) Schimmack, W., Bunzl.K. and Zelles, L. :Initial rates of migration of radionuclides from the Chernobyl fallout in undisturbed soils, Geoderma, 44, 211-218 (1989)

-23-