Oswald Avery and His Coworkers (Avery, Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Oswald Avery and His Coworkers (Avery, Et Al 1984 marks the fortieth anniversary of the publica- tion of the classic work of Oswald Avery and his coworkers (Avery, et al. 1944) proving that DNA is the hereditary molecule. Few biological discoveries rival that of Avery's. He paved the way for the many molecular biologists who followed. Indeed, 1944 is often cited as the beginning of molecular Oswald Avery biology. Having been briefed on the experiments a year before their publication, Sir MacFarlane Burnet and DNA wrote home to his wife that Avery "has just made an extremely exciting discovery which, put rather crudely, is nothing less than the isolation of a pure Charles L. Vigue gene in the form of desoxyribonucleic acid" (Olby 1974). Recalling Avery's discovery, Ernst Mayr said "the impact of Avery's finding was electrifying. I Downloaded from http://online.ucpress.edu/abt/article-pdf/46/4/207/41261/4447817.pdf by guest on 23 September 2021 can confirm this on the basis of my own personal experience . My friends and I were all convinced that it was now conclusively demonstrated that DNA was the genetic material" (Mayr 1982). Scientific dogma is established in many ways. Dis- coveries such as that of the planet Uranus are quickly accepted because the evidence for them is so compel- ling. Some scientific pronouncements are immedi- ately accepted but later found to be erroneous. For example, it was widely accepted in the 1930s, 1940s, and early 1950s that humans had 48 chromosomes; in 1956 it was proven that we have only 46. Some find- ings are not accepted even though, in retrospect, the evidence was compelling. Such is the case with Avery's discovery. Although Avery convinced many, including Burnet, Mayr, and his friends, he did not convince the majority of scientists. Even fif- teen years after the discovery, some were still unwill- ing to accept DNA as the universal hereditary mole- cule. Avery was interested in the phenomenon of bac- terial transformation first described by Frederick Griffith in the 1920s. Griffith succeeded in transform- ing a nonvirulent, non-encapsulated, Type II variant of Streptococcus pneumoniae (formally Pneumococcus) into a virulent form with a Type III capsule. Since the capsule protects the bacterium from the pha- gocytic cells of the host's immune system, it cannot be easily destroyed. Thus, the encapsulated bacteria are virulent. Griffith found that if he injected the non-virulent Type II form into mice along with a large number of heat-killed, Type III, virulent bac- teria, the mice frequently succumbed to pneumonia. Upon autopsy the mice's blood revealed the pres- Charles L. Vigue is associate professor of biology at the University ence of living, encapsulated Type III bacteria. Thus, of New Haven, West Haven, CT 06516. He is also coordinator of the non-virulent, non-encapsulated form had been the Program in Environmental Science and chairman of the fac- ulty. He holds a B.A. and an M.S. in zoology from the University transformed into the Type III capsulated and there- of Maine and a Ph.D. in genetics from North Carolina State Uni- fore virulent form of Streptococcus. versity. He has published several articles on the functional and Avery and his coworkers, Colin MacLeod and evolutional significance of isoenzymes (in BiochemicalGenetics and GeneticalResearch) and articles in ABT, The Biologist, and The Jour- Maclyn McCarty, were interested in isolating the nal of College Science Teaching. transforming factor and characterizing it chemically. OSWALD AVERY 207 To this end, they partially purified the transforming claimed a role for protein (Olby 1974) are cases in principle from heat-killed Type III bacteria. DNA point. The large majority of the scientific commu- tests on the partially purified factor were positive. nity, however, was blind to Avery's discovery. RNA tests were only weakly positive. More impor- Severalreasons may be cited for this blindness. tantly, however, protein tests were negative. Avery, Humanity, and scientists are no exception, resists et al. (1944)concluded that "if the results of the pres- change. Scientists often resist new discoveries if they ent study on the chemical nature of the transform- do not conform to their preconceived notions. New ing principle are confirmed, then nucleic acids must ideas resulting from scientific discoveries that break be regardedas possessing biological specificity...." existing paradigms are difficult to establish. Pollock Thomas Kuhn said that "until the scientist has (1970)said that great discoveries are often "hated" learned to see nature in a new way-the new fact is because they require an "immense emotional (and not quite a scientific fact at all" (Brannigan1981). If therefore intellectual) effort of abandoning precon- Avery's work did convince scientists to look at ceived dogmata." Beadle and Stent believe that new Nature in a new way, it is not as obvious as many ideas will be accepted provided they can be fitted have said. Wyatt (1972)was quite accuratewhen he into established dogma without too much difficulty said that the history of the discovery and its subse- (Wyatt 1972). Scientists, often because of a healthy quent acceptance "has been mellowed by skepticism, will not accept new ideas until they can Downloaded from http://online.ucpress.edu/abt/article-pdf/46/4/207/41261/4447817.pdf by guest on 23 September 2021 hindsight." A survey of general genetics textbooks be proved beyond a reasonable doubt by repeated published from 1945to 1950clearly demonstrates that investigationin a variety of systems. Many scientists geneticistswere not particularlytaken by Avery's dis- were reluctantto accept DNA as the hereditarymol- covery. Laurence Snyder (1946) in The Principlesof ecule because its function had not yet been clearly Hereditaryand Sinnott, et al. (1950) in Principlesof described. Geneticsnever mention Avery's work. Snyder, with- Wyatt (1972) has demonstrated that the title of out saying that the hereditary material is protein, Avery's paper ("Studies on the Chemical Nature of says that "all estimates agree that the gene is of sub- the Substance Inducing Transformation of Pneu- microscopic volume, probably within the range of mococcal Types: Induction of Transformation by a size of large protein molecules." He also suggests that DesoxyribonucleicAcid FractionIsolated from Pneu- genes are large complex molecules and that nucleic mococcusType III") contained no key words (gene, acids are such complex molecules. Sinnott, et al. state for example) that would tip off the geneticist as to that "it is interesting that computations of sensitive the genetical implications of the work. Since geneti- values for various genes in Drosophilahave given cists were not trained as chemists, the biochemical dimensions of the order of magnitude of large pro- nature of Avery's work was foreign to most of them. tein molecules. Genes would have sizes within Transformationwas a phenomenon studied in bac- the range of smaller viruses and medium-to-large- teria, an organism not commonly studied by geneti- sized protein molecules." cists and whose status as "living" was questioned. At the 1946 Cold Spring Harbor Symposium on Experimentsdescribing the phenomenon were pub- Heredity and Variation in Microorganisms there lished in medical science journals (The Journal of were 27 papers presented. Only eight, one of which ExperimentalMedicine, for example) not normally was by Avery himself, made reference to the classic read by geneticists. World War II certainlyrestricted work. At the 1951 Cold Spring Harbor Symposium the dissemination and flow of scientific knowledge. on Genes and Mutations only three papers made ref- And, the paper itself did not make clear the work's erence to Avery. The Cold Spring Harbor Sym- genetical implications. Although Avery knew the posium on Viruses held in 1953 saw 42 papers pre- genetical implications, he was "unreasonably cau- sented. Only three mentioned Avery. One cannot tious and too modest in his conclusions" (Pollock escape the conclusions that Avery's work was viewed 1970).In a 1943letter to his brother, however, Avery with some skepticism by the general scientific com- was not as cautious: "Nucleic acids are not merely munity. structurally important but functionally active sub- Certainly,scientists such as RollinHotchkiss, Andre stances in determining biological activities and spe- Boivin, and Harriett Taylor, who were working in cific characteristics of cells . Sounds like a virus- the DNA field, accepted Avery's finding. McCarty's maybe a gene" (Olby 1974). statement that "the accumulatedevidence has estab- What were the preconceived ideas that afflicted lished beyond a reasonable doubt that the active sub- the scientific community with myopia? Although stance responsible for transformation is a specific FrederickMeishner, the discoverer of DNA in 1869, nucleic acid of the desoxyribose type" (Mayr 1982) and many others prior to Avery suggested that DNA and Boivin's assertion that the burden of proof no would be a good candidate for the hereditary mole- longer lay with those who believed that DNA was cule, most scientists rejected the hypothesis after it the hereditary molecule, but with those who was erroneously demonstrated that DNA was a 208 THE AMERICAN BIOLOGY TEACHER, VOLUME 46, NO. 4, APRIL 1984 small, simple, uniform molecule-too small, too sim- a letter from Hershey, who was denied a visa, said ple, and too uniform to be the hereditary molecule. "almost no one in the audience of over four hun- Thus, the role of the hereditary molecule fell to pro- dred microbiologists seemed interested as I read long tein, a large, complex, and variable molecule which sections of Hershey's letter" describing the experi- also is a component of the chromosomes. When the ments (Wyatt 1972). Among the DNA skeptics was experiments of Avery et al. and the many who fol- Hershey himself who said "my own guess is that lowed began to implicate DNA, it was contrary to DNA will not prove to be a unique determiner of established dogma.
Recommended publications
  • Martha Chase Dies
    PublisherInfo PublisherName : BioMed Central PublisherLocation : London PublisherImprintName : BioMed Central Martha Chase dies ArticleInfo ArticleID : 4830 ArticleDOI : 10.1186/gb-spotlight-20030820-01 ArticleCitationID : spotlight-20030820-01 ArticleSequenceNumber : 182 ArticleCategory : Research news ArticleFirstPage : 1 ArticleLastPage : 4 RegistrationDate : 2003–8–20 ArticleHistory : OnlineDate : 2003–8–20 ArticleCopyright : BioMed Central Ltd2003 ArticleGrants : ArticleContext : 130594411 Milly Dawson Email: [email protected] Martha Chase, renowned for her part in the pivotal "blender experiment," which firmly established DNA as the substance that transmits genetic information, died of pneumonia on August 8 in Lorain, Ohio. She was 75. In 1952, Chase participated in what came to be known as the Hershey-Chase experiment in her capacity as a laboratory assistant to Alfred D. Hershey. He won a Nobel Prize for his insights into the nature of viruses in 1969, along with Max Delbrück and Salvador Luria. Peter Sherwood, a spokesman for Cold Spring Harbor Laboratory, where the work took place, described the Hershey-Chase study as "one of the most simple and elegant experiments in the early days of the emerging field of molecular biology." "Her name would always be associated with that experiment, so she is some sort of monument," said her longtime friend Waclaw Szybalski, who met her when he joined Cold Spring Harbor Laboratory in 1951 and who is now a professor of oncology at the University of Wisconsin-Madison. Szybalski attended the first staff presentation of the Hershey-Chase experiment and was so impressed that he invited Chase for dinner and dancing the same evening. "I had an impression that she did not realize what an important piece of work that she did, but I think that I convinced her that evening," he said.
    [Show full text]
  • William Barry Wood, Jr
    NATIONAL ACADEMY OF SCIENCES W I L L I A M B ARRY WOOD, J R. 1910—1971 A Biographical Memoir by J AMES G. HIRSCH Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1980 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. WILLIAM BARRY WOOD, JR. May 4, 1910-March 9, 1971 BY JAMES G. HIRSCH ARRY WOOD was born May 4, 1910 in Milton, Massachu- B setts, of parents from established Boston families. His father was a Harvard graduate and a business man. Little information is available about Barry's early childhood, but it was apparently an enjoyable and uneventful one; he grew up along with a sister and a younger brother in a pleasant subur- ban environment. He was enrolled as a day student in the nearby Milton Academy, where one finds the first records of his exceptional talents as a star performer in several sports, a brilliant student, and a natural leader. Young Wood had no special interest in science or medicine. He took a science course as a part of the standard curriculum his senior year at Milton and somewhat to his surprise won a prize as the best student in the course. This event signaled the start of his interest in a career in science. In view of his family background and his prep school record it was a foregone conclusion that he would attend Harvard, but Barry was only seventeen years old when he graduated from Milton, and his parents decided he might profit from an opportunity to broaden his outlook and ma- ture further before entering college.
    [Show full text]
  • DNA in the Courtroom: the 21St Century Begins
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Massachusetts, School of Law: Scholarship Repository DNA in the Courtroom: The 21st Century Begins JAMES T. GRIFFITH, PH.D., CLS (NCA) * SUSAN L. LECLAIR, PH.D., CLS (NCA) ** In 2004 at the 50th anniversary of the discovery of the structure of DNA, one of the speaKers at a “blacK-tie” gala at the Waldorf Astoria in New YorK City was Marvin Anderson. After having served 15 years of a 210-year sentence for a crime that he did not commit, he became one of only 99 people to have been proven innocent through the use of DNA technology 1. As he walKed off the stage, he embraced Dr. Alec Jeffreys, 2 the man who discovered forensic DNA analysis. 3 * James T. Griffith, Ph.D., CLS (NCA) is the Department Chair of the Department of Medical Laboratory Sciences at the University of Massachusetts Dartmouth. ** Susan L. Leclair, Ph.D., CLS (NCA) is the chancellor professor in the Department of Medical Laboratory Sciences at the University of Massachusetts Dartmouth. 1 Innocence Project, Marvin Anderson, http://www.innocenceproject.org/case/display_profile.php?id=99 (last visited (December 14, 2006). 2 Professor Sir Alec John Jeffreys, FRS, is a British geneticist, who developed techniques for DNA fingerprinting and DNA profiling. DNA fingerprinting uses variations in the genetic code to identify individuals. The technique has been applied in forensics for law enforcement, to resolve paternity and immigration disputes, and can be applied to non- human species, for example in wildlife population genetics studies.
    [Show full text]
  • Research Organizations and Major Discoveries in Twentieth-Century Science: a Case Study of Excellence in Biomedical Research
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Hollingsworth, Joseph Rogers Working Paper Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research WZB Discussion Paper, No. P 02-003 Provided in Cooperation with: WZB Berlin Social Science Center Suggested Citation: Hollingsworth, Joseph Rogers (2002) : Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research, WZB Discussion Paper, No. P 02-003, Wissenschaftszentrum Berlin für Sozialforschung (WZB), Berlin This Version is available at: http://hdl.handle.net/10419/50229 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu P 02 – 003 RESEARCH ORGANIZATIONS AND MAJOR DISCOVERIES IN TWENTIETH-CENTURY SCIENCE: A CASE STUDY OF EXCELLENCE IN BIOMEDICAL RESEARCH J.
    [Show full text]
  • Synthetic Biology in Fine Art Practice. Doctoral Thesis, Northumbria University
    Citation: Mackenzie, Louise (2017) Evolution of the Subject – Synthetic Biology in Fine Art Practice. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/38387/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html EVOLUTION OF THE SUBJECT SYNTHETIC BIOLOGY IN FINE ART PRACTICE LOUISE MACKENZIE PhD 2017 EVOLUTION OF THE SUBJECT SYNTHETIC BIOLOGY IN FINE ART PRACTICE LOUISE MACKENZIE A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaKen in the Faculty of Arts, Design & Social Sciences in collaboration with the Institute of Genetic Medicine at Newcastle University December 2017 ABSTRACT AcKnowledging a rise in the use of synthetic biology in art practice, this doctoral project draws from vital materialist discourse on biotechnology and biological materials in the worKs of Donna Haraway, Jane Bennett, Rosi Braidotti and Marietta Radomska to consider the liveliness of molecular biological material through art research and practice.
    [Show full text]
  • Human Genetics 1990–2009
    Portfolio Review Human Genetics 1990–2009 June 2010 Acknowledgements The Wellcome Trust would like to thank the many people who generously gave up their time to participate in this review. The project was led by Liz Allen, Michael Dunn and Claire Vaughan. Key input and support was provided by Dave Carr, Kevin Dolby, Audrey Duncanson, Katherine Littler, Suzi Morris, Annie Sanderson and Jo Scott (landscaping analysis), and Lois Reynolds and Tilli Tansey (Wellcome Trust Expert Group). We also would like to thank David Lynn for his ongoing support to the review. The views expressed in this report are those of the Wellcome Trust project team – drawing on the evidence compiled during the review. We are indebted to the independent Expert Group, who were pivotal in providing the assessments of the Wellcome Trust’s role in supporting human genetics and have informed ‘our’ speculations for the future. Finally, we would like to thank Professor Francis Collins, who provided valuable input to the development of the timelines. The Wellcome Trust is a charity registered in England and Wales, no. 210183. Contents Acknowledgements 2 Overview and key findings 4 Landmarks in human genetics 6 1. Introduction and background 8 2. Human genetics research: the global research landscape 9 2.1 Human genetics publication output: 1989–2008 10 3. Looking back: the Wellcome Trust and human genetics 14 3.1 Building research capacity and infrastructure 14 3.1.1 Wellcome Trust Sanger Institute (WTSI) 15 3.1.2 Wellcome Trust Centre for Human Genetics 15 3.1.3 Collaborations, consortia and partnerships 16 3.1.4 Research resources and data 16 3.2 Advancing knowledge and making discoveries 17 3.3 Advancing knowledge and making discoveries: within the field of human genetics 18 3.4 Advancing knowledge and making discoveries: beyond the field of human genetics – ‘ripple’ effects 19 Case studies 22 4.
    [Show full text]
  • René Dubos: Wooing the Earth, from Soil Microbes to Human Ecology
    René Dubos: Wooing the Earth, from Soil Microbes to Human Ecology Carol L. Moberg1 The Rockefeller University, New York, New York, United States Figure 1: René Dubos at home on the woodland property he restored after buying an abandoned farm, Garrison, New York. 7 April 1972 Source: Photograph © Lawrence R. Moberg. René Dubos was an ecologist from the beginning. He championed the philosophy that a living organism—whether a microbe, human being, society, or the Earth itself—could be understood only in its relationships with everything else (Moberg, 2005). Each stage in Dubos’s career broadened his exploration of this philosophy 1 Author contact: [email protected] 65 Human Ecology Review, Volume 23, Number 2, 2017 as he evolved during half a century from studies of soil microbes to promoting a “humanistic biology,” in other words, ecology as a humanistic science. Although unknown to Dubos, the term “humanistic science” was not new. In 1922, Ecology, the Ecological Society of America’s (ESA) journal, published an article by Stephen A. Forbes, “The Humanizing of Ecology,” arguing that economic and humanistic values, with applications of botany, bacteriology, zoology, entomology, and physiology, were all “related to the protection and restoration of health and hence to the prolongation of human life.” Of all the biological sciences, Forbes (1922) wrote, ecology is “the humanistic science par excellence” (pp. 90). For Dubos, the philosophical basis of ecology was health. During his final years, he focused on the human condition and how the world that humans inherit, alter, and leave behind would shape their own health.
    [Show full text]
  • Friend of the Good Earth: [Dr. Reneㄆ Dubos]
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Summer 1989 Friend of the Good Earth: [Dr. ReneÌ Dubos] Carol L. Moberg Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Moberg, Carol L., "Friend of the Good Earth: [Dr. ReneÌ Dubos]" (1989). Rockefeller University Research Profiles. Book 33. http://digitalcommons.rockefeller.edu/research_profiles/33 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH Gramicidin Crystals PROFILES SUMMER 1989 Friend ofthe Good Earth Fifty years ago, microbiologist Rene Dubos taught the world the principles offinding and producing antibiotics. His discovery of gramicidin in 1939, at The Rockefeller Institute for Medical Re­ search, represents the first systematic research and developmentof an antibiotic, from its isolation and purification to an analysis of how it cures disease. Gramicidin and its less pure fonn tyrothricin were the first antibiotics to be produced commercially and used clinically. They fonned the cornerstone in the antibiotic arsenal and remain in use today. This remarkable achievement was not Dubos's first, last, or even his most important contribution. To Rene Dubos, a living Rene Dubas (1901-1982) organism-microbe, man, society, or eanh--eould be under­ stood only in the context of the relationships it forms with everything else. This ecologic view led him from investigating problems ofsoil microbes to those ofspecific infectious diseases, to social aspects of disease, and, finally, to large environmental issues affecting the whole earth.
    [Show full text]
  • Oswald Avery and the Sugar-Coated Microbe: [Dr
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Spring 1988 Oswald Avery and the Sugar-Coated Microbe: [Dr. Oswald T. Avery] Fulvio Bardossi Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Bardossi, Fulvio, "Oswald Avery and the Sugar-Coated Microbe: [Dr. Oswald T. Avery]" (1988). Rockefeller University Research Profiles. Book 28. http://digitalcommons.rockefeller.edu/research_profiles/28 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH PROFILES SPRING 1988 Oswald Avery and the Sugar-coated Microbe When, in 1910, Director Rufus Cole and his small staff of It was a time when infectious diseases commanded major scientists at the newly opened hospital ofThe Rockefeller Insti­ medical attention, and microbiology grew in glamour as it tute for Medical Research picked their first targets for study, promised to track down and control the germs that caused the list included poliomyelitis, syphilis, heart disease, and them. The Rockefeller Institute was lobar pneumonia. Dr. Cole chose lobar pneumonia, the greatest established in 1901, and its hospital killer ofall, as his special problem. At the time, medicine had nine years later, to be the standard Oswald T Avery, 1877-1955 no specific weapon with which to fight this "captain of the bearers of medical science in men ofdeath," as it was called.
    [Show full text]
  • DNA Scientists Use Chapter 12, Section 1 and the Internet for Further Information
    DNA Scientists Use Chapter 12, section 1 and the Internet for further information Johann Miescher, Late 1800’s Discovered nucleic acids (the 4th biological molecule, proteins, lipids, carbs and nucleic acids) using white blood cells from bandages. Why did he used white blood cells? Because Red blood cells do not have a nuclei He treated the WBC with an enzyme to kill the proteins and therefore found nucleic acids. Walter Sutton, 1902 Discovered the chromosome theory of heredity Studied numerous organisms to find chromosome but ultimately had the most success with Grasshopper sperm cells. He expanded on Mendel’s work and found that there are chromosomes that carry heredity information are found in a pair and 1 set is given to offspring from each parent Thomas Hunt Morgan, 1910 Studies genetics using fruit flies Established the theory of Chromosome patterns and gene linkage meaning that on a single strand of DNA some genes are so close on the strand that they are linked and therefore passed on to future generations together. For example if a fruit fly has red eyes it is likely to have long wings because those genes are closely located on the DNA however if it has white eyes then it is likely to have short wings. Frederick Griffith, 1928 Studied how people become ill using mice and pneumonia bacteria Discovered the theory of transformation Used a deadly (virulent) strand of bacteria and a non-deadly (non-virulent) strand of bacteria. Found that if the virulent strand and the non-virulent strand were put together then the non-virulent strand became deadly therefore “something” was transferring from the virulent strand to the non-virulent strand.
    [Show full text]
  • Dr. Simon Flexner] M
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Summer 1987 Dr. Flexner's Experiment: [Dr. Simon Flexner] M. S. Kaplan Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Kaplan, M. S., "Dr. Flexner's Experiment: [Dr. Simon Flexner]" (1987). Rockefeller University Research Profiles. Book 30. http://digitalcommons.rockefeller.edu/research_profiles/30 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY What is now proved RESEARCH was once only imagin'd -WILLIAM BLAKE PROFILES SUMMER 1987 Dr. Flexner's Experiment Simon Plexner, 1863-1946 When Simon Flexner retired in 1935 as the first director of The Rockefeller Institute for Medical Research, his colleagues wanted to organize a testimonial in his honor. But Flexner, in keeping with his characteristic reserve, politely declined. He had been director for thirty-three years, during which time the Institute had grown from a handful of scientists working in rented quarters to a world-renowned research center. As he passed through its gates for rhe last time,· he left behind, on its library shelves, the most durable and eloquent tribute to his career: one hundred
    [Show full text]
  • Max Planck Institute for the History of Science Making Mutations
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2010 PREPRINT 393 Luis Campos and Alexander von Schwerin (eds.) Making Mutations: Objects, Practices, Contexts Table of Contents The Making of “Making Mutations”.........................................................................................3 Alexander von Schwerin & Luis Campos Identifying Mutation Women in Mutation Studies: The Role of Gender in the Methods, Practices, and Results of Early Twentieth-Century Genetics ......................................................................................11 Marsha L. Richmond Mutant Sexuality: The Private Life of a Plant.........................................................................49 Luis Campos Generating Plants and Women: Intersecting Conceptions of Biological and Social Mutations in Susan Glaspell's “The Verge” (1921)................................................................71 Jörg Thomas Richter Non-Evolutionary Mutants? A Note on the Castorrex Rabbit ................................................85 Thierry Hoquet Organisms Tracing the Totsuzen in Tanaka's Silkworms: An Exploration of the Establishment of Bombyx Mori Mutant Stocks................................................................................................ 109 Lisa A. Onaga Supporting the Balance View: Dobzhansky’s Construction of Drosophila pseudoobscura ...................................................................................................................... 119 Matt Dunn The First
    [Show full text]