Myocarditis, Pericarditis and Other Pericardial Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Myocarditis, Pericarditis and Other Pericardial Diseases Heart 2000;84:449–454 Diagnosis is easiest during epidemics of cox- GENERAL CARDIOLOGY sackie infections but diYcult in isolated cases. Heart: first published as 10.1136/heart.84.4.449 on 1 October 2000. Downloaded from These are not seen by cardiologists unless they develop arrhythmia, collapse or suVer chest Myocarditis, pericarditis and other pain, the majority being dealt with in the primary care system. pericardial diseases Acute onset of chest pain is usual and may mimic myocardial infarction or be associated 449 Celia M Oakley with pericarditis. Arrhythmias or conduction Imperial College School of Medicine, Hammersmith Hospital, disturbances may be life threatening despite London, UK only mild focal injury, whereas more wide- spread inflammation is necessary before car- diac dysfunction is suYcient to cause symp- his article discusses the diagnosis and toms. management of myocarditis and peri- Tcarditis (both acute and recurrent), as Investigations well as other pericardial diseases. The ECG may show sinus tachycardia, focal or generalised abnormality, ST segment eleva- tion, fascicular blocks or atrioventricular con- Myocarditis duction disturbances. Although the ECG abnormalities are non-specific, the ECG has Myocarditis is the term used to indicate acute the virtue of drawing attention to the heart and infective, toxic or autoimmune inflammation of leading to echocardiographic and other investi- the heart. Reversible toxic myocarditis occurs gations. Echocardiography may reveal segmen- in diphtheria and sometimes in infective endo- tal or generalised wall motion abnormalities or carditis when autoimmune mechanisms may a pericardial eVusion. Echocardiography allows also contribute. Persistent viral infection of the other causes of heart failure to be excluded but myocardium was first demonstrated a decade pronounced focal changes in wall motion may ago.1 Slow growing organisms such as chlamy- lead to confusion with myocardial infarction, especially if the ECG changes also suggest dia and trypanosomal infection in Chagas’ dis- 5 ease are causes of chronic myocarditis. Non- this. infective causes in sarcoidosis and the collagen The chest x ray may be normal, show cardiac vascular diseases need to be sought. enlargement, pulmonary venous congestion or Acute myocarditis and acute pericarditis are pleural eVusions. not always associated (likewise meningitis and Evidence of myocyte necrosis may be found encephalitis do not always occur together) and with an increase in creatine kinase or appear- the clinical emphasis is usually on one or the ance of troponin, indicating myocytolysis. The http://heart.bmj.com/ other. highest enzyme concentrations occur early and will probably have returned to normal by about Myocarditis can be caused by many diVerent 6 viruses and the microbial pathogenesis may be a week after onset. Cardiac autoantibodies can complex. Most cases of myocarditis with onset in be demonstrated only later in the disease proc- otherwise healthy people probably have an infec- ess. A viral origin of myocarditis can only be tious origin, although the pathogenesis is not yet proved if the virus is detected within an altered fully understood (such as the finding of a link myocardium. This has become possible between chlamydia and heart disease through on September 24, 2021 by guest. Protected copyright. through molecular analyses of necropsy, trans- antigenic mimicry). In western countries entero- plant, and endomyocardial biopsy specimens viruses, especially coxsackie B 1–6 serotypes, are using new techniques of viral gene amplifica- the most frequent, and the recent identification tion, which have shown persistence of viral of a common coxsackie virus B and adenovirus mRNA.1 The histological diagnosis of myocar- receptor has explained why these very diVerent ditis (fig 1) was clarified by the Dallas criteria,7 virus types both cause myocarditis.2–4 but these unfortunately did not include immu- nohistochemistry to demonstrate a T cell mediated immune response. Prevalence and clinical features The prevalence of acute myocarditis is un- known because most cases are not recognised on account of non-specific or no symptoms (but sudden death may occur). Myocarditis may develop as a complication of an upper res- piratory or gastrointestinal infection with general constitutional symptoms, particularly fever and skeletal myalgia, malaise, and ano- rexia. This systemic acute phase response Correspondence to: increases energy production but compromises Professor Celia performance. Since myocarditis may not de- Oakley, Hammersmith velop for several days or weeks after the symp- Hospital, Du Cane toms and after a return to normal work and lei- Road, London Figure 1. Acute myocarditis showing sheets of pale W12 0HS, UK sure activity, there is a risk of overexertion, staining myocytes. Lymphocytes are seen which were [email protected] which may be dangerous. identified as CD4 and CD8 cells on immunohistology. www.heartjnl.com Education in Heart Myocardial failure in myocarditis Endocardial fibroelastosis in infancy and Contributory causes of myocardial dysfunction childhood, which was associated with persist- Heart: first published as 10.1136/heart.84.4.449 on 1 October 2000. Downloaded from include: ent mumps virus infection, has been almost (1) a direct cytotoxic eVect of the agent, be it eradicated by vaccination and the development viral, bacterial, etc; of vaccines against the other common viruses (2) a secondary immune response, which can may help reduce the incidence of myocarditis be triggered by any one of many diVerent in childhood. 450 agents including non-infective ones; (3) cytokine expression in the myocardium, which plays a crucial role—for example, Prognosis tumour necrosis factor á (TNF á) and Recovery from acute myocarditis often sur- nitric oxide synthase.4 prises and delights after life threatening illness. (4) aberrant induction of apoptosis, which Some recover seemingly normal ventricular may also play a part, particularly in function, but some cardiovascular reserve must individuals who go on to develop a chronic have been lost because biopsies during the cardiomyopathy.4 The proportion of pa- acute phase show myocytolysis. It is also tients who do this is completely unknown, uncertain how many will progress to dilated but a genetic predisposition to ongoing cardiomyopathy.13 inflammation, and possibly also to viral In a recent study 147 cases of myocarditis persistence, would explain the recognition were followed up for an average of 5.6 years. of a 25–30% familial incidence of dilated Out of 15 cases classed as fulminant, 93% were cardiomyopathy.8 alive without transplant 11 years after biopsy Detection of a causal agent is uncommon compared with 45% of 132 less severe cases. during the early phase (or even later). Demon- Left ventricular dilatation was not as great in stration of a viral origin is dependent upon the fulminant cases, who were more likely to gaining serial antibody titres against specific recover, as in the clinically milder cases who viruses and on showing a gradual fall in titre had bigger ventricles.14 during convalescence. Even if endomyocardial biopsy is carried out, persisting viral mRNA will be found in only 25–50% of patients with Other causes of acute myocarditis biopsy proven acute myocarditis.9 Lyme disease caused by Borrelia burgdorferi,a tick borne organism carried by deer, may cause an acute myocarditis, typically with a long PR Management interval as occurs with acute rheumatic fever. The treatment of acute myocarditis is largely Left ventricular dysfunction is usually transient supportive. EVective antiviral agents are but the organism has been cultured from unavailable and usually inappropriate, but they endomyocardial biopsy material in a patient http://heart.bmj.com/ need to be more extensively investigated for with a dilated cardiomyopathy. clinical use. Immunosuppressive agents would Chagas’ disease, common in rural parts of be inappropriate if the myocarditis were caused Central and South America, results from infec- by the direct eVect of persisting virus but tion by Trypanosoma cruzi. Although best potentially useful to suppress an ongoing known as a cause of heart block and cardio- autoimmune inflammatory response. Discour- myopathy in the chronic phase, it can also aging results were obtained in a randomised cause a severe acute myocarditis and sudden controlled trial of the use of immunosuppres- death. During this phase, but not the chronic sive agents in the treatment of biopsy proven one, trypanosomes can be shown lying within on September 24, 2021 by guest. Protected copyright. acute myocarditis.10 The trial was weakened by the myocytes. failure to include immunohistochemical tech- Kawasaki disease (Japanese mucocutaneous niques in the biopsy criteria and by frequent lymph node syndrome) can cause a diVuse protocol violations. The use of steroids in an myocarditis in its first or second stages. Occlu- acutely ill patient therefore remains a sion of proximal coronary artery aneurysms is discretionary clinical option in addition to the the usual cause of death. Treatment with use of diuretics, angiotensin converting enzyme immunoglobulins during the early phases may (ACE) inhibitors, â adrenergic blocking help to prevent aneurysms from forming. The agents, and spironolactone. cause is still unknown but is probably It is recommended that whenever myocardi- infective. tis is suspected exercise should be avoided.11 Peripartum cardiomyopathy (PPCM) is a Interestingly, in
Recommended publications
  • Guidelines on the Diagnosis and Management of Pericardial
    European Heart Journal (2004) Ã, 1–28 ESC Guidelines Guidelines on the Diagnosis and Management of Pericardial Diseases Full Text The Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology Task Force members, Bernhard Maisch, Chairperson* (Germany), Petar M. Seferovic (Serbia and Montenegro), Arsen D. Ristic (Serbia and Montenegro), Raimund Erbel (Germany), Reiner Rienmuller€ (Austria), Yehuda Adler (Israel), Witold Z. Tomkowski (Poland), Gaetano Thiene (Italy), Magdi H. Yacoub (UK) ESC Committee for Practice Guidelines (CPG), Silvia G. Priori (Chairperson) (Italy), Maria Angeles Alonso Garcia (Spain), Jean-Jacques Blanc (France), Andrzej Budaj (Poland), Martin Cowie (UK), Veronica Dean (France), Jaap Deckers (The Netherlands), Enrique Fernandez Burgos (Spain), John Lekakis (Greece), Bertil Lindahl (Sweden), Gianfranco Mazzotta (Italy), Joa~o Morais (Portugal), Ali Oto (Turkey), Otto A. Smiseth (Norway) Document Reviewers, Gianfranco Mazzotta, CPG Review Coordinator (Italy), Jean Acar (France), Eloisa Arbustini (Italy), Anton E. Becker (The Netherlands), Giacomo Chiaranda (Italy), Yonathan Hasin (Israel), Rolf Jenni (Switzerland), Werner Klein (Austria), Irene Lang (Austria), Thomas F. Luscher€ (Switzerland), Fausto J. Pinto (Portugal), Ralph Shabetai (USA), Maarten L. Simoons (The Netherlands), Jordi Soler Soler (Spain), David H. Spodick (USA) Table of contents Constrictive pericarditis . 9 Pericardial cysts . 13 Preamble . 2 Specific forms of pericarditis . 13 Introduction. 2 Viral pericarditis . 13 Aetiology and classification of pericardial disease. 2 Bacterial pericarditis . 14 Pericardial syndromes . ..................... 2 Tuberculous pericarditis . 14 Congenital defects of the pericardium . 2 Pericarditis in renal failure . 16 Acute pericarditis . 2 Autoreactive pericarditis and pericardial Chronic pericarditis . 6 involvement in systemic autoimmune Recurrent pericarditis . 6 diseases . 16 Pericardial effusion and cardiac tamponade .
    [Show full text]
  • Cardiac Involvement in COVID-19 Patients: a Contemporary Review
    Review Cardiac Involvement in COVID-19 Patients: A Contemporary Review Domenico Maria Carretta 1, Aline Maria Silva 2, Donato D’Agostino 2, Skender Topi 3, Roberto Lovero 4, Ioannis Alexandros Charitos 5,*, Angelika Elzbieta Wegierska 6, Monica Montagnani 7,† and Luigi Santacroce 6,*,† 1 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Coronary Unit and Electrophysiology/Pacing Unit, Cardio-Thoracic Department, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 2 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Cardiac Surgery, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] (A.M.S.); [email protected] (D.D.) 3 Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; [email protected] 4 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 5 Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy 6 Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy; [email protected] 7 Department of Biomedical Sciences and Human Oncology—Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124 Bari, Italy; [email protected] * Correspondence: [email protected] (I.A.C.); [email protected] (L.S.) † These authors equally contributed as co-last authors. Citation: Carretta, D.M.; Silva, A.M.; D’Agostino, D.; Topi, S.; Lovero, R.; Charitos, I.A.; Wegierska, A.E.; Abstract: Background: The widely variable clinical manifestations of SARS-CoV2 disease (COVID-19) Montagnani, M.; Santacroce, L.
    [Show full text]
  • Myocarditis and Cardiomyopathy
    CE: Tripti; HCO/330310; Total nos of Pages: 6; HCO 330310 REVIEW CURRENT OPINION Myocarditis and cardiomyopathy Jonathan Buggey and Chantal A. ElAmm Purpose of review The aim of this study is to summarize the literature describing the pathogenesis, diagnosis and management of cardiomyopathy related to myocarditis. Recent findings Myocarditis has a variety of causes and a heterogeneous clinical presentation with potentially life- threatening complications. About one-third of patients will develop a dilated cardiomyopathy and the pathogenesis is a multiphase, mutlicompartment process that involves immune activation, including innate immune system triggered proinflammatory cytokines and autoantibodies. In recent years, diagnosis has been aided by advancements in cardiac MRI, and in particular T1 and T2 mapping sequences. In certain clinical situations, endomyocardial biopsy (EMB) should be performed, with consideration of left ventricular sampling, for an accurate diagnosis that may aid treatment and prognostication. Summary Although overall myocarditis accounts for a minority of cardiomyopathy and heart failure presentations, the clinical presentation is variable and the pathophysiology of myocardial damage is unique. Cardiac MRI has significantly improved diagnostic abilities, but endomyocardial biopsy remains the gold standard. However, current treatment strategies are still focused on routine heart failure pharmacotherapies and supportive care or cardiac transplantation/mechanical support for those with end-stage heart failure. Keywords cardiac MRI, cardiomyopathy, endomyocardial biopsy, myocarditis INTRODUCTION prevalence seen in children and young adults aged Myocarditis refers to inflammation of the myocar- 20–30 years [1]. dium and may be caused by infectious agents, systemic diseases, drugs and toxins, with viral infec- CAUSE tions remaining the most common cause in the developed countries [1].
    [Show full text]
  • Myocarditis and Mrna Vaccines
    Updated June 28, 2021 DOH 348-828 Information for Clinical Staff: Myocarditis and mRNA Vaccines This document helps clinicians understand myocarditis and its probable link to some COVID-19 vaccines. It provides talking points clinicians can use when discussing the benefits and risks of these vaccines with their patients and offers guidance on what to do if they have a patient who presents with myocarditis following vaccination. Myocarditis information What are myocarditis and pericarditis? • Myocarditis is an inflammation of the heart muscle. • Pericarditis is an inflammation of the heart muscle covering. • The body’s immune system can cause inflammation often in response to an infection. The body’s immune system can cause inflammation after other things as well. What is the connection to COVID-19 vaccination? • A CDC safety panel has determined there is a “probable association” between myocarditis and pericarditis and the mRNA COVID-19 vaccines, made by Moderna and Pfizer-BioNTech, in some vaccine recipients. • Reports of myocarditis and pericarditis after vaccination are rare. • Cases have mostly occurred in adolescents and young adults under the age of 30 years and mostly in males. • Most patients who developed myocarditis after vaccination responded well to rest and minimal treatment. Talking Points for Clinicians The risk of myocarditis is low, especially compared to the strong benefits of vaccination. • Hundreds of millions of vaccine doses have safely been given to people in the U.S. To request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, please call 711 (Washington Relay) or email [email protected].
    [Show full text]
  • Constrictive Pericarditis Causing Ventricular Tachycardia.Pdf
    EP CASE REPORT ....................................................................................................................................................... A visually striking calcific band causing monomorphic ventricular tachycardia as a first presentation of constrictive pericarditis Kian Sabzevari 1*, Eva Sammut2, and Palash Barman1 1Bristol Heart Institute, UH Bristol NHS Trust UK, UK; and 2Bristol Heart Institute, UH Bristol NHS Trust UK & University of Bristol, UK * Corresponding author. Tel: 447794900287; fax: 441173425926. E-mail address: [email protected] Introduction Constrictive pericarditis (CP) is a rare condition caused by thickening and stiffening of the pericar- dium manifesting in dia- stolic dysfunction and enhanced interventricu- lar dependence. In the developed world, most cases are idiopathic or are associated with pre- vious cardiac surgery or irradiation. Tuberculosis remains a leading cause in developing areas.1 Most commonly, CP presents with symptoms of heart failure and chest discomfort. Atrial arrhythmias have been described as a rare pre- sentation, but arrhyth- mias of ventricular origin have not been reported. Figure 1 (A) The 12 lead electrocardiogram during sustained ventricular tachycardia is shown; (B and C) Case report Different projections of three-dimensional reconstructions of cardiac computed tomography demonstrating a A 49-year-old man with a striking band of calcification around the annulus; (D) Carto 3DVR mapping—the left hand panel (i) demonstrates a background of diabetes, sinus beat with late potentials at the point of ablation in the coronary sinus, the right hand panel (iii) shows the hypertension, and hyper- pacemap with a 89% match to the clinical tachycardia [matching the morphology seen on 12 lead ECG (A)], and cholesterolaemia and a the middle panel (ii) displays the three-dimensional voltage map.
    [Show full text]
  • Currentstateofknowledgeonaetiol
    European Heart Journal (2013) 34, 2636–2648 ESC REPORT doi:10.1093/eurheartj/eht210 Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases Downloaded from Alida L. P. Caforio1†*, Sabine Pankuweit2†, Eloisa Arbustini3, Cristina Basso4, Juan Gimeno-Blanes5,StephanB.Felix6,MichaelFu7,TiinaHelio¨ 8, Stephane Heymans9, http://eurheartj.oxfordjournals.org/ Roland Jahns10,KarinKlingel11, Ales Linhart12, Bernhard Maisch2, William McKenna13, Jens Mogensen14, Yigal M. Pinto15,ArsenRistic16, Heinz-Peter Schultheiss17, Hubert Seggewiss18, Luigi Tavazzi19,GaetanoThiene4,AliYilmaz20, Philippe Charron21,andPerryM.Elliott13 1Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 2Universita¨tsklinikum Gießen und Marburg GmbH, Standort Marburg, Klinik fu¨r Kardiologie, Marburg, Germany; 3Academic Hospital IRCCS Foundation Policlinico, San Matteo, Pavia, Italy; 4Cardiovascular Pathology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 5Servicio de Cardiologia, Hospital U. Virgen de Arrixaca Ctra. Murcia-Cartagena s/n, El Palmar, Spain; 6Medizinische Klinik B, University of Greifswald, Greifswald, Germany; 7Department of Medicine, Heart Failure Unit, Sahlgrenska Hospital, University of Go¨teborg, Go¨teborg, Sweden; 8Division of Cardiology, Helsinki University Central Hospital, Heart & Lung Centre,
    [Show full text]
  • Neuropsychiatric Manifestations of Infective Endocarditis: a Study of 95 Patients at Ibadan, Nigeria
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.4.325 on 1 April 1976. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1976, 39, 325-329 Neuropsychiatric manifestations of infective endocarditis: a study of 95 patients at Ibadan, Nigeria 0. BADEMOSI,1 A. 0. FALASE, F. JAIYESIMI, AND A. BADEMOSI From the Departments of Medicine and Paediatrics, University College Hospital, Ibadan, Nigeria SYNOPSIS Thirty-eight percent of patients with infective endocarditis (36 of 95) had neuropsychi- atric manifestations. In 750 (27 of 36), these features were the major presenting picture. Fifteen patients (42%) presented with cerebrovascular lesions and seven (19%) with meningitis. Toxic encephalopathy (12.5%) was not uncommon. Other neurological syndromes seen included psychosis and spinal cord lesions. The mortality was high especially when the infective endocarditis was acute in onset. It is essential to search diligently for an underlying cardiac cause in patients who present with neuropsychiatric symptoms because treatment of the underlying pathology improves prognosis. Although the clinical features of infective endo- criteria: (1) repeated positive blood cultures during a Protected by copyright. carditis are well established, significant changes febrile illness in a patient with known previous have taken place in the pattern of the disease in valvular or congenital heart disease; (2) evidence of the developed countries over the last 20 years peripheral manifestations of infective endocarditis; 1951; Pankey, (3) development of a significant cardiac murmur (Horder, 1909; Cates and Christie, with features of cardiac failure in any patient 1961, 1962; Thompson, 1964; Cooper et al., admitted for an unexplained febrile illness while 1966; British Medical Journal, 1973).
    [Show full text]
  • Pericardial Disease and Other Acquired Heart Diseases
    Royal Brompton & Harefield NHS Foundation Trust Pericardial disease and other acquired heart diseases Sylvia Krupickova Exam oriented Echocardiography course, 4th November 2016 Normal Pericardium: 2 layers – fibrous - serous – visceral and parietal layer 2 pericardial sinuses – (not continuous with one another): • Transverse sinus – between in front aorta and pulmonary artery and posterior vena cava superior • Oblique sinus - posterior to the heart, with the vena cava inferior on the right side and left pulmonary veins on the left side Normal pericardium is not seen usually on normal echocardiogram, neither the pericardial fluid Acute Pericarditis: • How big is the effusion? (always measure in diastole) • Where is it? (appears first behind the LV) • Is it causing haemodynamic compromise? Small effusion – <10mm, black space posterior to the heart in parasternal short and long axis views, seen only in systole Moderate – 10-20 mm, more than 25 ml in adult, echo free space is all around the heart throughout the cardiac cycle Large – >20 mm, swinging motion of the heart in the pericardial cavity Pericardiocentesis Constrictive pericarditis Constriction of LV filling by pericardium Restriction versus Constriction: Restrictive cardiomyopathy Impaired relaxation of LV Constriction versus Restriction Both have affected left ventricular filling Constriction E´ velocity is normal as there is no impediment to relaxation of the left ventricle. Restriction E´ velocity is low (less than 5 cm/s) due to impaired filling of the ventricle (impaired relaxation)
    [Show full text]
  • Case Report: Cytarabine-Induced Pericarditis and Pericardial Effusion Rino Sato, MD and Robert Park, MD
    HEMATOLOGY & ONCOLOGY Case Report: Cytarabine-Induced Pericarditis and Pericardial Effusion Rino Sato, MD and Robert Park, MD INTRODUCTION for inpatient chemotherapy, and demonstrated mild global left ventricular dysfunction with ejection fraction Cytarabine (cytosine arabinoside, Ara-C) is an antime- of 40%. The cardiomyopathy was attributed to his tabolite analogue of cytidine that is used as a chemo- underlying hypertension or sleep apnea, and not therapeutic agent for the treatment of acute myelogenous coronary artery disease based on a normal coronary leukemia and lymphocytic leukemias1 . The most computed tomography (CT) angiogram. The patient common side effects of this therapy include myelosup- was started on induction therapy with high-dose pression, pancytopenia, hepatotoxicity, gastrointestinal cytarabine therapy at 3g/m2 every twelve hours without ulceration with bleeding, and pulmonary infiltrates2. an anthracycline agent such as doxorubicin. Cardio-pulmonary complications of cytarabine therapy are uncommon, but include supraventricular and On day 5 of cytarabine therapy, the patient developed ventricular arrhythmias, sinus bradycardia, and recurrent non-radiating sharp chest pain that worsened with heart failure2, 3. Occasionally, patients may develop inspiration and palpation. He had no cough or sputum pericarditis leading to pericardial tamponade, which can production. His cardiac exam revealed a tri-phasic, be fatal. We report a case of cytarabine-induced high-pitched friction rub best heard over the left lower pericarditis and pericardial effusion to increase awareness sternal border. He was normotensive, did not have pulsus about this serious side effect of cytarabine and review paradoxus, and had minimally distended jugular veins. the current literature. An electrocardiogram revealed widespread concave ST-elevation and PR-depression in the limb leads (I, II, III, CASE PRESENTATION avF) and precordial leads (V5-V6) concerning for acute pericarditis (Figure 1).
    [Show full text]
  • Severe Acute Mitral Valve Regurgitation in a COVID-19-Infected Patient
    Case report BMJ Case Rep: first published as 10.1136/bcr-2020-239782 on 18 January 2021. Downloaded from Severe acute mitral valve regurgitation in a COVID- 19- infected patient Ayesha Khanduri, Usha Anand, Maged Doss, Louis Lovett Graduate Medical Education, SUMMARY damage leading to pulmonary oedema and respira- WellStar Health System, The ongoing SARS- CoV-2 (COVID-19) pandemic has tory failure secondary to congestive heart failure. In Marietta, Georgia, USA presented many difficult and unique challenges to the these patients, a broader differential for pulmonary medical community. We describe a case of a middle- aged oedema and respiratory failure must be considered Correspondence to to ensure timely and appropriate treatment. Dr Ayesha Khanduri; COVID-19- positive man who presented with pulmonary ayesha. khanduri@ wellstar. org oedema and acute respiratory failure. He was initially diagnosed with acute respiratory distress syndrome. CASE PRESENTATION Accepted 3 December 2020 Later in the hospital course, his pulmonary oedema and A middle-aged man presented to the emergency respiratory failure worsened as result of severe acute department with progressively worsening short- mitral valve regurgitation secondary to direct valvular ness of breath, a non-productive cough and hypox- damage from COVID-19 infection. The patient underwent emia. His medical history was significant for atrial emergent surgical mitral valve replacement. Pathological flutter status post ablation in 2017. The patient evaluation of the damaged valve was confirmed to be is a lifelong non- smoker who bikes 2 miles daily. secondary to COVID-19 infection. The histopathological At that time in 2017, an echocardiogram revealed findings were consistent with prior cardiopulmonary mild mitral valve regurgitation with a normal left autopsy sections of patients with COVID-19 described ventricular ejection fraction (LVEF >55%).
    [Show full text]
  • COVID 19 Vaccine for Adolescents. Concern About Myocarditis and Pericarditis
    Opinion COVID 19 Vaccine for Adolescents. Concern about Myocarditis and Pericarditis Giuseppe Calcaterra 1, Jawahar Lal Mehta 2 , Cesare de Gregorio 3 , Gianfranco Butera 4, Paola Neroni 5, Vassilios Fanos 5 and Pier Paolo Bassareo 6,* 1 Department of Cardiology, Postgraduate Medical School of Cardiology, University of Palermo, 90127 Palermo, Italy; [email protected] 2 Department of Medicine, University of Arkansas for Medical Sciences and the Veterans Affairs Medical Center, Little Rock, AR 72205, USA; [email protected] 3 Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; [email protected] 4 Cardiology, Cardiac Surgery, and Heart Lung Transplantation Department, ERN, GUAR HEART, Bambino Gesu’ Hospital and Research Institute, IRCCS Rome, 00165 Rome, Italy; [email protected] 5 Neonatal Intensive Care Unit, Department of Surgical Sciences, Policlinico Universitario di Monserrato, University of Cagliari, 09042 Monserrato, Italy; [email protected] (P.N.); [email protected] (V.F.) 6 Department of Cardiology, Mater Misericordiae University Hospital and Our Lady’s Children’s Hospital Crumlin, University College of Dublin, School of Medicine, D07R2WY Dublin, Ireland * Correspondence: [email protected]; Tel.: +353-1409-6083 Abstract: The alarming onset of some cases of myocarditis and pericarditis following the adminis- tration of Pfizer–BioNTech and Moderna COVID-19 mRNA-based vaccines in adolescent males has recently been highlighted. All occurred after the second dose of the vaccine. Fortunately, none of Citation: Calcaterra, G.; Mehta, J.L.; patients were critically ill and each was discharged home. Owing to the possible link between these de Gregorio, C.; Butera, G.; Neroni, P.; cases and vaccine administration, the US and European health regulators decided to continue to Fanos, V.; Bassareo, P.P.
    [Show full text]
  • Lyme Carditis and Sudden Cardiac Death
    Health Update August 6, 2018 TO: Health Care Providers FROM: Mark Levine, MD, Commissioner of Health Lyme Carditis and Sudden CardiaC Death – Please Distribute as Appropriate – Laboratory results from the Centers for Disease Control and Prevention (CDC) have confirmed that the recent death of a Franklin County resident was a result of Lyme carditis, a rare complication of Lyme disease. This is the first reported death due to Lyme carditis in Vermont. Between 1985 and 2014 there were nine deaths related to Lyme carditis reported worldwide. The Health Department issued a Health Advisory on December 13, 2013 following a CDC report about sudden cardiac death associated with Lyme carditis. Symptomatic infection of the heart is rare in recognized Lyme disease cases. Approximately 1 percent of reported cases have Lyme carditis, which is usually present with other features of Lyme disease but can be observed independently. It is more common among males than would be expected based on the gender distribution of patients with clinical manifestations of Lyme disease. • Vermont Health Advisory: http://www.healthvermont.gov/dec2013_healthadvisory • CDC report: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6249a1.htm?s_cid=mm6249a1_w The most common cardiac manifestation is atrioventricular block (first, second, or third degree). Symptoms of atrioventricular block include lightheadedness, palpitations, shortness of breath, chest pain and syncope. Some cases might require temporary pacing, although prognosis is excellent with appropriate antibiotic therapy. Lyme disease is endemic in Vermont. Place carditis symptoms in context during the spring, summer and fall seasons. Actions Requested: • If you suspect Lyme disease, treat with antibiotics according to current treatment guidelines: https://www.cdc.gov/lyme/treatment/index.html • Ask all patients with suspected Lyme disease about cardiac symptoms.
    [Show full text]