Myocarditis and Cardiomyopathy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cardiac Involvement in COVID-19 Patients: a Contemporary Review
Review Cardiac Involvement in COVID-19 Patients: A Contemporary Review Domenico Maria Carretta 1, Aline Maria Silva 2, Donato D’Agostino 2, Skender Topi 3, Roberto Lovero 4, Ioannis Alexandros Charitos 5,*, Angelika Elzbieta Wegierska 6, Monica Montagnani 7,† and Luigi Santacroce 6,*,† 1 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Coronary Unit and Electrophysiology/Pacing Unit, Cardio-Thoracic Department, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 2 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Cardiac Surgery, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] (A.M.S.); [email protected] (D.D.) 3 Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; [email protected] 4 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 5 Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy 6 Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy; [email protected] 7 Department of Biomedical Sciences and Human Oncology—Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124 Bari, Italy; [email protected] * Correspondence: [email protected] (I.A.C.); [email protected] (L.S.) † These authors equally contributed as co-last authors. Citation: Carretta, D.M.; Silva, A.M.; D’Agostino, D.; Topi, S.; Lovero, R.; Charitos, I.A.; Wegierska, A.E.; Abstract: Background: The widely variable clinical manifestations of SARS-CoV2 disease (COVID-19) Montagnani, M.; Santacroce, L. -
Ischemic Cardiomyopathy: Symptoms, Causes, & Treatment
Ischemic Cardiomyopathy Ischemic cardiomyopathy is a condition that occurs when the heart muscle is weakened due to insufficient blood flow to the heart's muscle. This inhibits the heart's ability to pump blood and can lead to heart failure. What Is Ischemic Cardiomyopathy? Ischemic cardiomyopathy (IC) is a condition that occurs when the heart muscle is weakened. In this condition, the left ventricle, which is the main heart muscle, is usually enlarged and dilated. This condition can be a result of a heart attack or coronary artery disease, a narrowing of the arteries. These narrowed arteries keep blood from reaching portions of your heart. The weakened heart muscle inhibits your heart’s ability to pump blood and can lead to heart failure. Symptoms of IC include shortness of breath, chest pain, and extreme fatigue. If you have IC symptoms, you should seek medical care immediately. Treatment depends on how much damage has been done to your heart. Medications and surgery are often required. You can improve your long-term outlook by making certain lifestyle changes, such as maintaining a healthy diet and avoiding high-risk behaviors, including smoking. Symptoms of Ischemic Cardiomyopathy You can have early-stage heart disease with no symptoms. As the arteries narrow further and blood flow becomes impaired, you may experience a variety of symptoms, including: shortness of breath extreme fatigue dizziness, lightheadedness, or fainting chest pain and pressure (angina) heart palpitations weight gain swelling in the legs and feet (edema) and abdomen difficulty sleeping cough or congestion caused by fluid in the lungs If you have these symptoms, seek emergency medical care or call 9-1-1. -
ICD-10-CM Documentation and Coding Best Practices
ICD-10-CM Documentation and Coding Best Practices Cardiomyopathy Cardiomyopathy refers to diseases of the heart muscle, which can become enlarged, thick or rigid. In rare cases, cardiac muscle tissue can be replaced with scar tissue. As the condition worsens, the heart becomes weaker and less able to pump blood through the body or to maintain a normal electrical rhythm. Causes Risk factors that can increase the possibility of developing cardiomyopathy include: coronary artery disease, a history of heart attack (s), viral infections that cause heart inflammation, long-term hypertension or alcoholism, obesity, and diabetes to name a few. However, in most cases the exact cause is usually unknown (called primary or idiopathic cardiomyopathy). Symptoms Some patients will never have symptoms; others will not develop them until later in the disease. Symptoms can include: • Fatigue • Shortness of b reath or trouble breathing (dyspnea) • Dizziness, lightheadedness or fainting • Swelling in the ankles, feet, legs, abdomen and neck veins Treatment Treatment depends on the type of cardiomyopathy, the severity of symptoms, and the patient’s age and overall health. • Lifestyle changes can help manage condition(s) that may be causing cardiomyopathy. Recommendations include: o Consuming a heart healthy diet, engaging in physical activity, losing excess weight, giving up smoking, avoiding alcohol and illegal drugs, getting enough sleep, and reducing stress • Medicines may be p rescribed to: o Lower blood pressure (ACE inhibitors, angiotensin II receptor blo ckers, beta blockers, calcium channel blockers ) o Slow the heart rate (beta blockers, calcium channel blockers, digoxin) o Prevent arrhythmias (antiarrhythmics) o Remove excess fluid and sodium (diuretics) o Prevent blood clots (anticoagulants) • Alcohol septal ablation • Surgery o Septal myectomy – option for severe cases of obstructive hypertrophic cardiomyopathy Surgically implanted devices o . -
Myocarditis, Pericarditis and Other Pericardial Diseases
Heart 2000;84:449–454 Diagnosis is easiest during epidemics of cox- GENERAL CARDIOLOGY sackie infections but diYcult in isolated cases. Heart: first published as 10.1136/heart.84.4.449 on 1 October 2000. Downloaded from These are not seen by cardiologists unless they develop arrhythmia, collapse or suVer chest Myocarditis, pericarditis and other pain, the majority being dealt with in the primary care system. pericardial diseases Acute onset of chest pain is usual and may mimic myocardial infarction or be associated 449 Celia M Oakley with pericarditis. Arrhythmias or conduction Imperial College School of Medicine, Hammersmith Hospital, disturbances may be life threatening despite London, UK only mild focal injury, whereas more wide- spread inflammation is necessary before car- diac dysfunction is suYcient to cause symp- his article discusses the diagnosis and toms. management of myocarditis and peri- Tcarditis (both acute and recurrent), as Investigations well as other pericardial diseases. The ECG may show sinus tachycardia, focal or generalised abnormality, ST segment eleva- tion, fascicular blocks or atrioventricular con- Myocarditis duction disturbances. Although the ECG abnormalities are non-specific, the ECG has Myocarditis is the term used to indicate acute the virtue of drawing attention to the heart and infective, toxic or autoimmune inflammation of leading to echocardiographic and other investi- the heart. Reversible toxic myocarditis occurs gations. Echocardiography may reveal segmen- in diphtheria and sometimes in infective endo- -
Myocarditis and Mrna Vaccines
Updated June 28, 2021 DOH 348-828 Information for Clinical Staff: Myocarditis and mRNA Vaccines This document helps clinicians understand myocarditis and its probable link to some COVID-19 vaccines. It provides talking points clinicians can use when discussing the benefits and risks of these vaccines with their patients and offers guidance on what to do if they have a patient who presents with myocarditis following vaccination. Myocarditis information What are myocarditis and pericarditis? • Myocarditis is an inflammation of the heart muscle. • Pericarditis is an inflammation of the heart muscle covering. • The body’s immune system can cause inflammation often in response to an infection. The body’s immune system can cause inflammation after other things as well. What is the connection to COVID-19 vaccination? • A CDC safety panel has determined there is a “probable association” between myocarditis and pericarditis and the mRNA COVID-19 vaccines, made by Moderna and Pfizer-BioNTech, in some vaccine recipients. • Reports of myocarditis and pericarditis after vaccination are rare. • Cases have mostly occurred in adolescents and young adults under the age of 30 years and mostly in males. • Most patients who developed myocarditis after vaccination responded well to rest and minimal treatment. Talking Points for Clinicians The risk of myocarditis is low, especially compared to the strong benefits of vaccination. • Hundreds of millions of vaccine doses have safely been given to people in the U.S. To request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, please call 711 (Washington Relay) or email [email protected]. -
Hypertrophic Cardiomyopathy Guide
Hypertrophic Cardiomyopathy Guide HYPERTROPHIC CARDIOMYOPATHY GUIDE What is hypertrophic cardiomyopathy? Hypertrophic cardiomyopathy (HCM) is a complex type of heart disease that affects the heart muscle. It causes thickening of the heart muscle (especially the ventricles, or lower heart chambers), left ventricular stiffness, mitral valve changes and cellular changes. Thickening of the heart muscle (myocardium) occurs most commonly at the septum. The septum is the muscular wall that separates the left and right side of aortic valve narrowed the heart. Problems occur outflow tract when the septum between outflow tract the heart’s lower chambers, leaky mitral mitral valve or ventricles, is thickened. valve septum The thickened septum may thickened cause a narrowing that can septum block or reduce the blood flow from the left ventricle Normal Heart Hypertrophic to the aorta - a condition Cardiomyopathy called “outflow tract obstruction.” The ventricles must pump harder to overcome the narrowing or blockage. This type of hypertrophic cardiomyopathy may be called hypertrophic obstructive cardiomyopathy (HOCM). HCM also may cause thickening in other parts of the heart muscle, such as the bottom of the heart called the apex, right ventricle, or throughout the entire left ventricle. Stiffness in the left ventricle occurs as a result of cellular changes that occur in the heart muscle when it thickens. The left ventricle is unable to relax normally and fill with blood. Since there is less blood at the end of filling, there is less oxygen-rich blood pumped to the organs and muscles. The stiffness in the left ventricle causes pressure to increase inside the heart and may lead to the symptoms described below. -
An Uncommon Clinical Presentation of Relapsing Dilated Cardiomyopathy with Identification of Sequence Variations in MYNPC3, KCNH2 and Mitochondrial Trna Cysteine M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by George Washington University: Health Sciences Research Commons (HSRC) Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Pediatrics Faculty Publications Pediatrics 6-2015 An uncommon clinical presentation of relapsing dilated cardiomyopathy with identification of sequence variations in MYNPC3, KCNH2 and mitochondrial tRNA cysteine M. J. Guillen Sacoto Kimberly A. Chapman George Washington University D. Heath M. B. Seprish Dina Zand George Washington University Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_peds_facpubs Part of the Pediatrics Commons Recommended Citation Guillen Sacoto, M.J., Chapman, K.A., Heath, D., Seprish, M.B., Zand, D.J. (2015). An uncommon clinical presentation of relapsing dilated cardiomyopathy with identification of sequence variations in MYNPC3, KCNH2 and mitochondrial tRNA cysteine. Molecular Genetics and Metabolism Reports, 3, 47-54. doi:10.1016/j.ymgmr.2015.03.007 This Journal Article is brought to you for free and open access by the Pediatrics at Health Sciences Research Commons. It has been accepted for inclusion in Pediatrics Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Molecular Genetics and Metabolism Reports 3 (2015) 47–54 Contents lists available at ScienceDirect Molecular Genetics and Metabolism Reports journal homepage: http://www.journals.elsevier.com/molecular-genetics-and- metabolism-reports/ Case Report An uncommon clinical presentation of relapsing dilated cardiomyopathy with identification of sequence variations in MYNPC3, KCNH2 and mitochondrial tRNA cysteine Maria J. Guillen Sacoto a,1, Kimberly A. -
Currentstateofknowledgeonaetiol
European Heart Journal (2013) 34, 2636–2648 ESC REPORT doi:10.1093/eurheartj/eht210 Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases Downloaded from Alida L. P. Caforio1†*, Sabine Pankuweit2†, Eloisa Arbustini3, Cristina Basso4, Juan Gimeno-Blanes5,StephanB.Felix6,MichaelFu7,TiinaHelio¨ 8, Stephane Heymans9, http://eurheartj.oxfordjournals.org/ Roland Jahns10,KarinKlingel11, Ales Linhart12, Bernhard Maisch2, William McKenna13, Jens Mogensen14, Yigal M. Pinto15,ArsenRistic16, Heinz-Peter Schultheiss17, Hubert Seggewiss18, Luigi Tavazzi19,GaetanoThiene4,AliYilmaz20, Philippe Charron21,andPerryM.Elliott13 1Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 2Universita¨tsklinikum Gießen und Marburg GmbH, Standort Marburg, Klinik fu¨r Kardiologie, Marburg, Germany; 3Academic Hospital IRCCS Foundation Policlinico, San Matteo, Pavia, Italy; 4Cardiovascular Pathology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 5Servicio de Cardiologia, Hospital U. Virgen de Arrixaca Ctra. Murcia-Cartagena s/n, El Palmar, Spain; 6Medizinische Klinik B, University of Greifswald, Greifswald, Germany; 7Department of Medicine, Heart Failure Unit, Sahlgrenska Hospital, University of Go¨teborg, Go¨teborg, Sweden; 8Division of Cardiology, Helsinki University Central Hospital, Heart & Lung Centre, -
Neuropsychiatric Manifestations of Infective Endocarditis: a Study of 95 Patients at Ibadan, Nigeria
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.4.325 on 1 April 1976. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1976, 39, 325-329 Neuropsychiatric manifestations of infective endocarditis: a study of 95 patients at Ibadan, Nigeria 0. BADEMOSI,1 A. 0. FALASE, F. JAIYESIMI, AND A. BADEMOSI From the Departments of Medicine and Paediatrics, University College Hospital, Ibadan, Nigeria SYNOPSIS Thirty-eight percent of patients with infective endocarditis (36 of 95) had neuropsychi- atric manifestations. In 750 (27 of 36), these features were the major presenting picture. Fifteen patients (42%) presented with cerebrovascular lesions and seven (19%) with meningitis. Toxic encephalopathy (12.5%) was not uncommon. Other neurological syndromes seen included psychosis and spinal cord lesions. The mortality was high especially when the infective endocarditis was acute in onset. It is essential to search diligently for an underlying cardiac cause in patients who present with neuropsychiatric symptoms because treatment of the underlying pathology improves prognosis. Although the clinical features of infective endo- criteria: (1) repeated positive blood cultures during a Protected by copyright. carditis are well established, significant changes febrile illness in a patient with known previous have taken place in the pattern of the disease in valvular or congenital heart disease; (2) evidence of the developed countries over the last 20 years peripheral manifestations of infective endocarditis; 1951; Pankey, (3) development of a significant cardiac murmur (Horder, 1909; Cates and Christie, with features of cardiac failure in any patient 1961, 1962; Thompson, 1964; Cooper et al., admitted for an unexplained febrile illness while 1966; British Medical Journal, 1973). -
Atrial Fibrillation in Hypertrophic Cardiomyopathy: Prevalence, Clinical Impact, and Management
Heart Failure Reviews (2019) 24:189–197 https://doi.org/10.1007/s10741-018-9752-6 Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management Lohit Garg 1 & Manasvi Gupta2 & Syed Rafay Ali Sabzwari1 & Sahil Agrawal3 & Manyoo Agarwal4 & Talha Nazir1 & Jeffrey Gordon1 & Babak Bozorgnia1 & Matthew W. Martinez1 Published online: 19 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy characterized by left ventricular hyper- trophy and spectrum of clinical manifestation. Atrial fibrillation (AF) is a common sustained arrhythmia in HCM patients and is primarily related to left atrial dilatation and remodeling. There are several clinical, electrocardiographic (ECG), and echocardio- graphic (ECHO) features that have been associated with development of AF in HCM patients; strongest predictors are left atrial size, age, and heart failure class. AF can lead to progressive functional decline, worsening heart failure and increased risk for systemic thromboembolism. The management of AF in HCM patient focuses on symptom alleviation (managed with rate and/or rhythm control methods) and prevention of complications such as thromboembolism (prevented with anticoagulation). Finally, recent evidence suggests that early rhythm control strategy may result in more favorable short- and long-term outcomes. Keywords Atrial fibrillation . Hypertrophic cardiomyopathy . Treatment . Antiarrhythmic agents Introduction amyloidosis) [3–5]. The clinical presentation of HCM is het- erogeneous and includes an asymptomatic state, heart failure Hypertrophic cardiomyopathy (HCM) is the most common syndrome due to diastolic dysfunction or left ventricular out- inherited cardiomyopathy due to mutation in one of the sev- flow (LVOT) obstruction, arrhythmias (atrial fibrillation and eral sarcomere genes and transmitted in autosomal dominant embolism), and sudden cardiac death [1, 6]. -
Coronary Microvascular Dysfunction
Journal of Clinical Medicine Review Coronary Microvascular Dysfunction Federico Vancheri 1,*, Giovanni Longo 2, Sergio Vancheri 3 and Michael Henein 4,5,6 1 Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy 2 Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy; [email protected] 3 Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy; [email protected] 4 Institute of Public Health and Clinical Medicine, Umea University, SE-90187 Umea, Sweden; [email protected] 5 Department of Fluid Mechanics, Brunel University, Middlesex, London UB8 3PH, UK 6 Molecular and Nuclear Research Institute, St George’s University, London SW17 0RE, UK * Correspondence: [email protected] Received: 10 August 2020; Accepted: 2 September 2020; Published: 6 September 2020 Abstract: Many patients with chest pain undergoing coronary angiography do not show significant obstructive coronary lesions. A substantial proportion of these patients have abnormalities in the function and structure of coronary microcirculation due to endothelial and smooth muscle cell dysfunction. The coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac oxygen requirements. Impairment of this mechanism, defined as coronary microvascular dysfunction (CMD), carries an increased risk of adverse cardiovascular clinical outcomes. Coronary endothelial dysfunction accounts for approximately two-thirds of clinical conditions presenting with symptoms and signs of myocardial ischemia without obstructive coronary disease, termed “ischemia with non-obstructive coronary artery disease” (INOCA) and for a small proportion of “myocardial infarction with non-obstructive coronary artery disease” (MINOCA). More frequently, the clinical presentation of INOCA is microvascular angina due to CMD, while some patients present vasospastic angina due to epicardial spasm, and mixed epicardial and microvascular forms. -
Hypertrophic Cardiomyopathy
HYPERTROPHIC CARDIOMYOPATHY Most often diagnosed during infancy or adolescence, hypertrophic cardiomyopathy (HCM) is the second most common form of heart muscle disease, is usually genetically transmitted, and comprises about 35–40% of cardiomyopathies in children. A diagram and echocardiogram comparing a normal heart and a heart with HCM are shown in figures 2a and 2b. Figure 2a- A normal Figure 2b- Multiple heart is shown on echocardiographic the left compared views of a normal to a heart with a heart on the left hypertrophic and a heart with cardiomyopathy on hypertrophic the right. Note the cardiomyopathy increased thickness on the right. Note of the walls of the the increased left ventricle. thickness of the walls of the left ventricle (LV). HCM affects up to 500,000 people in the United States. with children under age 12 accounting for less than 10% of all cases. According to the Pediatric Cardiomyopathy Registry, HCM occurs at a rate of five per 1 million children. “Hypertrophic” refers to an abnormal growth of muscle fibers in the heart. In HCM, the thick heart muscle is stiff, making it difficult for the heart to relax and for blood to fill the heart chambers. While the heart squeezes normally, the limited filling prevents the heart from pumping enough blood, especially during exercise. Although HCM can involve both lower chambers, it usually affects the main pumping chamber (left ventricle) with thickening of the septum (wall separating the pumping chambers), posterior wall or both. With hypertrophic obstructive cardiomyopathy (HOCM), the muscle thickening restricts the flow of blood out of the heart.