High-Calcium Pyroxene As an Indicator of Igneous Differentiation in Asteroids and Meteorites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteroid Family Ages. 2015. Icarus 257, 275-289
Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved. -
(704) Interamnia from Its Occultations and Lightcurves
International Journal of Astronomy and Astrophysics, 2014, 4, 91-118 Published Online March 2014 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2014.41010 A 3-D Shape Model of (704) Interamnia from Its Occultations and Lightcurves Isao Satō1*, Marc Buie2, Paul D. Maley3, Hiromi Hamanowa4, Akira Tsuchikawa5, David W. Dunham6 1Astronomical Society of Japan, Yamagata, Japan 2Southwest Research Institute, Boulder, USA 3International Occultation Timing Association, Houston, USA 4Hamanowa Astronomical Observatory, Fukushima, Japan 5Yanagida Astronomical Observatory, Ishikawa, Japan 6International Occultation Timing Association, Greenbelt, USA Email: *[email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Received 9 November 2013; revised 9 December 2013; accepted 17 December 2013 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 De- cember 17 observed from 13 sites in the USA. An elliptical cross section of (344.6 ± 9.6 km) × (306.2 ± 9.1 km), for position angle P = 73.4 ± 12.5˚ was fitted. The lightcurve around the occulta- tion shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just be- fore the minimum. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
3D Shape of Asteroid (6) Hebe from VLT/SPHERE Imaging: Implications for the Origin of Ordinary H Chondrites?
A&A 604, A64 (2017) Astronomy DOI: 10.1051/0004-6361/201731021 & c ESO 2017 Astrophysics 3D shape of asteroid (6) Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites? M. Marsset1, B. Carry2; 3, C. Dumas4, J. Hanuš5, M. Viikinkoski6, P. Vernazza7, T. G. Müller8, M. Delbo2, E. Jehin9, M. Gillon9, J. Grice2; 10, B. Yang11, T. Fusco7; 12, J. Berthier3, S. Sonnett13, F. Kugel14, J. Caron14, and R. Behrend14 1 Astrophysics Research Centre, Queen’s University Belfast, BT7 1NN, UK e-mail: [email protected] 2 Université Côte d’Azur, Observatoire de la Côte d’Azur, 06304 Lagrange, CNRS, France 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ. Lille, France 4 TMT Observatory, 100 W. Walnut Street, Suite 300, Pasadena, CA 91124, USA 5 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague, Czech Republic 6 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 7 Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13013 Marseille, France 8 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany 9 Space sciences, Technologies and Astrophysics Research Institute, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium 10 Open University, School of Physical Sciences, The Open University, MK7 6AA, UK 11 European Southern Observatory (ESO), Alonso de Córdova 3107, 1900 Casilla Vitacura, Santiago, Chile 12 ONERA – the French Aerospace Lab, 92322 Châtillon, France 13 Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA 14 CdR & CdL Group: Lightcurves of Minor Planets and Variable Stars, Observatoire de Genève, 1290 Sauverny, Switzerland Received 22 April 2017 / Accepted 19 May 2017 ABSTRACT Context. -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
Machine Learning Classification of New Asteroid Families Members
MNRAS 496, 540–549 (2020) doi:10.1093/mnras/staa1463 Advance Access publication 2020 May 28 Machine learning classification of new asteroid families members 1‹ 2 3 1 1 V. Carruba , S. Aljbaae, R. C. Domingos, A. Lucchini and P. Furlaneto Downloaded from https://academic.oup.com/mnras/article-abstract/496/1/540/5848208 by Instituto Nacional de Pesquisas Espaciais user on 04 August 2020 1School of Natural Sciences and Engineering, Sao˜ Paulo State University (UNESP), Guaratingueta,´ SP 12516-410, Brazil 2National Space Research Institute (INPE), Division of Space Mechanics and Control, C.P. 515, Sao˜ Jose´ dos Campos, SP 12227-310, Brazil 3Sao˜ Paulo State University (UNESP), Sao Joao˜ da Boa Vista, SP 13874-149, Brazil Accepted 2020 May 21. Received 2020 May 19; in original form 2020 March 20 ABSTRACT Asteroid families are groups of asteroids that are the product of collisions or of the rotational fission of a parent object. These groups are mainly identified in proper elements or frequencies domains. Because of robotic telescope surveys, the number of known asteroids has increased from 10 000 in the early 1990s to more than 750 000 nowadays. Traditional approaches for identifying new members of asteroid families, like the hierarchical clustering method (HCM), may struggle to keep up with the growing rate of new discoveries. Here we used machine learning classification algorithms to identify new family members based on the orbital distribution in proper (a, e,sin(i)) of previously known family constituents. We compared the outcome of nine classification algorithms from stand-alone and ensemble approaches. The extremely randomized trees (ExtraTree) method had the highest precision, enabling to retrieve up to 97 per cent of family members identified with standard HCM. -
Für Astronomie Nr
für Astronomie Nr. 26 Zeitschrift der Vereinigung der Sternfreunde e.V. / VdS Einsteigerastronomie und Jugendarbeit Astrofotografie ISSN 1615 - 0880 www.vds-astro.de II/ 2008 JOGP!BTUSPTIPQDPNtXXXBTUSPTIPQDPN 5FMt'BY &JõFTUSt)BNCVSH "TUSPBSU "TUSPOPNJL)BMQIB$$% "UMBTEFS.FTTJFS0CKFLUF %JF BLUVFMMTUF 7FSTJPO &JOF 4POEFSFOUXJDLMVOH GàS EJF $$%"TUSP &JOFHFMVOHFOF.JTDIVOHBVT#FPCBDIUVOHT EFTCFLBOOUFO#JMECF OPNJF%BT'JMUFS XFMDIFTBVTTDIMJFMJDIGàSEFO IJMGFVOE#JMECBOE%BTHSP[àHJHF'PSNBUVOE BSCFJUVOHTQSPHSBN OÊDIUMJDIFO&JOTBU[LPO[JOÊDIUMJDIFO&JOTBU[LPO[J EJF BVGXÊOEJHF PQUJTDIF (FTUBMUVOH NBDIFO NFT HJCU FT KFU[U NJU QJFSU JTU WFSGàHU àCFS EJF-FLUàSF[VFJOFNFDIUFO(FOVTT JOUFSFTTBOUFO OFVFO FJOF5SBOTNJTTJPO &JOF EFSBSUJH VNGBOHSFJDIF VOE WPMMTUÊOEJHF 'VOLUJPOFO .PEFS WPO CJT [V %BSTUFMMVOH [V EFO OF %BUFJGPSNBUF XJF EJF NJU .FTTJFS.FTTJFS0CKFLUFO0CKFLUFO IBU FT CJTIFS JO %4-33"8 XFSEFO TDINBMCBOEJ EFVUTDIFS 4QSBDIF VOUFSTUàU[U #JMEFS HFSFO 'JMUFSO OPDI OJDIU HFHF LÚOOFOEVSDIBVUP OJDIU [V CFO %JF #FTDISFJ#FTDISFJ NBUJTDIF 4UFSOGFM FSSF J D I F O CVOH [V EFO EFSLFOOVOH EJSFLU JTU %JF )BMC 0CKFLUFO HMJFEFSO ÃCFSMBHFSU XFSEFO XBT EJF #JMEGFMESPUBUJPO XFSUTCSFJUF TJDI JO EJF WFSOBDIMÊTTJHCBSNBDIU"VDIEJF#FBSCFJUVOH JTU BVG EFO "CTDIOJUUF )JTUP)JTUP WPO 'BSCCJMEFSO XVSEF FSXFJUFSU #FTPOEFSFT %VOLFMTUSPN WPO HÊOHJHFO $$%,BNFSBT SJF "TUSPQIZTJL "VHFONFSL MJFHU BVG EFS &SLFOOVOH VOE BCHFTUJNNU%JFIPIF5SBOTNJTTJPOCFJ)BMQIB VOE ##FPCBDIFPCBDI #FIBOEMVOH WPO 1JYFMGFIMFSO EFS "VGOBINF LPNCJOJFSU NJU EFS #MPDLVOH CJT JOT *OGSBSPU UVOH (MFJDIHàMUJH PC EBT *OUFSFTTF -
Asteroid Taxonomic Signatures from Photometric Phase Curves
Asteroid taxonomic signatures from photometric phase curves D. A. Oszkiewicz1;2;3, E. Bowell2, L. H. Wasserman2, K. Muinonen1;4, A. Penttil¨a1, T. Pieniluoma1, D. E. Trilling3, C. A. Thomas3 1 Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland. 2 Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, U.S.A. 3 Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011, U.S.A. 4 Finnish Geodetic Institute, P.O. Box 15, FI-02431 Masala, Finland. Abstract We explore the correlation between an asteroid's taxonomy and photometric phase curve using the H;G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X com- plex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaning- ful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families arXiv:1202.2270v1 [astro-ph.EP] 10 Feb 2012 given the distribution of G12 in each family. For certain asteroid families, the probabilistic prediction of taxonomic complex preponderance can clearly be made. -
Smartstar Solar 60 GOTO Telescope Instruction Manual
SmartStar® Solar 60 GOTO Telescope Instruction Manual For Products #8506, #8507, #8806 & #8807 1 Table of Content Table of Content ............................................................................................................................. 2 1. SmarStar® Solar 60TM Overview ................................................................................................ 4 1.1. SmartStar® Solar 60TM Features .......................................................................................... 4 1.2. SmartStar® Solar 60TM Assembly Terms ............................................................................. 6 2. Telescope Assembly ................................................................................................................... 7 3. GoToNova® 8405 Hand Controller ............................................................................................ 9 3.1. Key Description ................................................................................................................... 9 3.2. The LCD Screen .................................................................................................................. 9 4. Getting Started .......................................................................................................................... 11 4.1. Getting Familiar with Telescope ........................................................................................ 11 4.1.1. Using the telescope .................................................................................................... -
Drummond-Christou.Icarus.2008.Pdf
Icarus 197 (2008) 480–496 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres ∗ Jack Drummond a, , Julian Christou b,1 a Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776, USA b Division of Astronomical Sciences, National Science Foundation, Arlington, VA 22203, USA article info abstract Article history: Seven main belt asteroids, 2 Pallas, 3 Juno, 4 Vesta, 16 Psyche, 87 Sylvia, 324 Bamberga, and 707 Received 7 September 2007 Interamnia, were imaged with the adaptive optics system on the 3 m Shane telescope at Lick Observatory Revised 6 May 2008 in the near infrared, and their triaxial ellipsoid dimensions and rotational poles have been determined Availableonline3June2008 with parametric blind deconvolution. In addition, the dimensions and pole for 1 Ceres are derived from resolved images at multiple epochs, even though it is an oblate spheroid. Keywords: Asteroids Published by Elsevier Inc. Adaptive optics 1. Introduction axial dimensions and pole was first derived by Drummond et al. (1985) and applied to speckle interferometry observations of As- We reintroduce a method to find an asteroid’s triaxial ellipsoid teroid 433 Eros. The full prescription was again given later by dimensions and rotational pole from resolved images in just one or Drummond (2000). In this paper, however, we only describe the two nights, and then apply the method to seven asteroids observed method qualitatively in order to illustrate the principles. Under the in 2004 and 2006 with adaptive optics (AO) using the natural basic assumption that an asteroid can be modeled as a smooth fea- guide star system on Lick Observatory’s 3 m telescope.