Neonauclea Glabra Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Neonauclea Glabra Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Neonauclea glabra Click on images to enlarge Family Rubiaceae Scientific Name Neonauclea glabra (Roxb.) Bakh.f. & Ridsdale Ridsdale, C.E. (1989) Blumea 34: 240. Common name Flowers. Copyright CSIRO Maple, Yellow; Yellow Maple; Moody Gum; Hard Leichhardt; Burr Tree; Yellow Hickory Stem Fresh blaze almost yellow but turning greenish brown on exposure. Leaves Stipules spathulate, broader and rounded towards the apex. Pairs of stipules enclosing the terminal bud. Leaf blades about 7-20 x 4.5-9 cm. Foveoles, if present, small and inconspicuous, opening in a narrow slit. Flowers Leaves and Flowers. Copyright CSIRO Flowers attached by their bases to a receptacle to form a perfectly spherical head of flowers. Corolla tube about 4-5 mm long, much longer than the lobes, corolla lobes about 1-1.5 mm long. Anthers shortly stalked, attached below the apex of the corolla tube, anthers not or only very slightly exserted. Ovules numerous on pendulous placentas. Fruit Fruits spherical, about 15 mm diam. Seeds numerous in each aggregate fruit. Seeds winged at each end, seed + wings about 3 x 0.5 mm. Embryo about 0.9-1 x 0.5 mm. Seedlings Scale bar 10mm. Copyright CSIRO Cotyledons elliptic, about 1-2 mm long, hairy on the upper surface. At the tenth leaf stage: leaf blade narrowly elliptic, apex acute, base cuneate, glabrous, midrib flush with the upper surface of the leaf blade; stipules narrowly triangular, apex acute. Seed germination time 12 to 242 days. Distribution and Ecology Occurs in CYP and NEQ. Altitudinal range from near sea level to 450 m. Grows in well developed lowland rain forest and gallery forest. Also occurs in Malesia. Natural History & Notes Produces a useful general purpose timber. Wood specific gravity 0.85 Cause et al. (1989). 10th leaf stage. Copyright CSIRO Tree X Synonyms Nauclea glabra Roxb., Fl. Ind. ed. 1 2: 121(1824), Type: Roxburgh s. n. (Malesia?). Nauclea gordoniana F.M.Bailey, Queensland Department of Agriculture and Stock. Botany Bulletin 10: 22(1895), Type: Barron River, E. Cowley. RFK Code 75 Cotyledon stage, epigeal germination. Copyright CSIRO CC-BY Australian Tropical Herbarium unless otherwise indicated in the images. .
Recommended publications
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology
    A JOURNAL ON TAXONOMIC BOTANY, LIPI PLANT SOCIOLOGY AND ECOLOGY 12(4) REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 12(4): 261 - 337, 31 March 2008 Editors ELIZABETH A. WIDJAJA, MIEN A. RIFAI, SOEDARSONO RISWAN, JOHANIS P. MOGEA Correspondece on The Reinwardtia journal and subscriptions should be addressed to HERBARIUM BOGORIENSE, BIDANG BOTANI, PUSAT PENELITIAN BIOLOGI - LIPI, BOGOR, INDONESIA REINWARDTIA Vol 12, Part 4, pp: 285 - 288 NOTES ON MALESIAN NAUCLEEAE Received September 26, 2007; accepted November 5, 2007. C.E.RIDSDALE Nationaal Herbarium Nederland, Universiteit Leiden Branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. E-mail: [email protected] ABSTRACT RIDSDALE, C.E. 2008. Notes on Malesian Neonaucleea. Reinwardtia 12(4): 285 – 288 — Neonauclea pseudoborneensis, Neonauclea subsessilis and Myrmeconauclea surianii are described as new species. Sarcocephalis fluviatilis Elmer is reinstated as a variety of Myrmeconauclea strigosa. The loss of a large number of type specimens formerly in L is reported. Keyword: Malesia, Neonauclea pseudoborneensis, Neonauclea subsessilis, Myrmeconauclea surianii, Sarcocephalis fluviatilis, Myrmeconauclea strigosa ABSTRAK RIDSDALE, C.E. 2008. Catatan pada Neonaucleea Malesia. Reinwardtia 12(4): 282 – 288 — Neonauclea pseudoborneensis, Neonauclea subsessilis dan Myrmeconauclea surianii diuraikan sebagai jenis baru. Sarcocephalis fluviatilis Elmer direklasifikasi sebagai varietas Myrmeconauclea strigosa. Hilangnya sejumlah tipe specimen yang semula ada di L juga dilaporkan. Kata kunci: Malesia, Neonauclea pseudoborneensis, Neonauclea subsessilis, Myrmeconauclea surianii, Sarco- cephalis fluviatilis, Myrmeconauclea strigosa NEONAUCLEA conicis ochraceis papillatis. Corolla infundibularis 11- 14 mm longa, glabra, lobis ovatis. Stylus per 8-12 mm Since the published revisions of Naucleeae exsertus. Capitula fructifera 30-35 mm diam., fructibus 8 (Ridsdale 1978) and Neonauclea (Ridsdale 1989) mm longis.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Dictionary of the Plant Names of the Philippine Islands," by Elmer D
    4r^ ^\1 J- 1903.—No. 8. DEPARTMEl^T OF THE IE"TEIlIOIi BUREAU OF GOVERNMENT LABORATORIES. A DICTIONARY OF THE PLAIT NAMES PHILIPPINE ISLANDS. By ELMER D, MERRILL, BOTANIST. MANILA: BUREAU OP rUKLIC I'RIN'TING. 8966 1903. 1903.—No. 8. DEPARTMEE^T OF THE USTTERIOR. BUREAU OF GOVEENMENT LABOEATOEIES. r.RARV QaRDON A DICTIONARY OF THE PLANT PHILIPPINE ISLANDS. By ELMER D. MERRILL, BOTANIST. MANILA: BUREAU OF PUBLIC PRINTING. 1903. LETTEE OF TEANSMITTAL. Department of the Interior, Bureau of Government Laboratories, Office of the Superintendent of Laboratories, Manila, P. I. , September 22, 1903. Sir: I have the honor to submit herewith manuscript of a paper entitled "A dictionary of the plant names of the Philippine Islands," by Elmer D. Merrill, Botanist. I am, very respectfully. Paul C. Freer, Superintendent of Government Laboratories. Hon. James F. Smith, Acting Secretary of the Interior, Manila, P. I. 3 A DICTIONARY OF THE NATIVE PUNT NAMES OF THE PHILIPPINE ISLANDS. By Elmer D. ^Ikkrii.i., Botanist. INTRODUCTIOX. The preparation of the present work was undertaken at the request of Capt. G. P. Ahern, Chief of the Forestry Bureau, the objeet being to facihtate the work of the various employees of that Bureau in identifying the tree species of economic importance found in the Arcliipelago. For the interests of the Forestry Bureau the names of the va- rious tree species only are of importance, but in compiling this list all plant names avaliable have been included in order to make the present Avork more generally useful to those Americans resident in the Archipelago who are interested in the vegetation about them.
    [Show full text]
  • Botanical Inventory of the Proposed Ta'u Unit of the National Park of American Samoa
    Cooperative Natiad Park Resou~cesStudies Unit University of Hawaii at Manoa Department of Botany 3 190 Made Way Honolulu, Hawaii 96822 (808) 956-8218 Technical Report 83 BOTANICAL INVENTORY OF THE PROPOSED TA'U UNIT OF THE NATIONAL PARK OF AMERICAN SAMOA Dr. W. Arthur Whistler University of Hawai'i , and National Tropical Botanical Garden Lawai, Kaua'i, Hawai'i NatidPark Swice Honolulu, Hawai'i CA8034-2-1 February 1992 ACKNOWLEDGMENTS The author would like to thank Tim Motley. Clyde Imada, RdyWalker. Wi. Char. Patti Welton and Gail Murakami for their help during the field research catried out in December of 1990 and January of 1991. He would also like to thank Bi Sykes of the D.S.I.R. in Chtistchurch, New Zealand. fur reviewing parts of the manuscript, and Rick Davis and Tala Fautanu fur their help with the logistics during the field work. This research was supported under a coopemtive agreement (CA8034-2-0001) between the University of Hawaii at Man08 and the National Park !&mice . TABLE OF CONTENTS I . INTRODUCTION (1) The Geography ...........................................................................................................1 (2) The Climate .................................................................................................................1 (3) The Geology............................................................................................................... 1 (4) Floristic Studies on Ta'u .............................................................................................2 (5) Vegetation
    [Show full text]
  • Microclimate Fluctuation Correlated with Beta Diversity of Epiphyllous Bryophyte Communities
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Adaptive Traits and Community Assembly of Epiphyllous Bryophytes Permalink https://escholarship.org/uc/item/02t0k1qh Author Kraichak, Ekaphan Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Adaptive Traits and Community Assembly of Epiphyllous Bryophytes By Ekaphan Kraichak A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Brent D. Mishler, Chair Professor David D. Ackerly Professor Katherine N. Suding Spring 2013 Abstract Adaptive Traits and Community Assembly of Epiphyllous Bryophytes By Ekaphan Kraichak Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Brent D. Mishler, Chair Leaf surfaces of tropical vascular plants provide homes for diverse groups of organisms, including epiphyllous (leaf-colonizing) bryophytes. Each leaf harbors a temporally and spatially discrete community of organisms, providing an excellent system for answering some of the most fundamental questions in ecology and evolution. In this dissertation, I investigated two main aspects of epiphyllous bryophyte biology: 1) adaptive traits of bryophytes to living on the leaf surface, and 2) community assembly of epiphyllous bryophytes in space (between-hosts) and time (succession). For the first part, I used published trait data and phylogeny of liverworts in family Lejeuneaceae to demonstrate that only the production of asexual propagules appeared to evolve in response to living on the leaf surface, while other hypothesized traits did not have correlated evolution with epiphylly. The second portion dealt with the assembly of communities among different host types.
    [Show full text]
  • Globaltreesearch Database Sources
    GlobalTreeSearch database sources Abbott, J. R. (2009). Phylogeny of the Poligalaceae and a Revision of Badiera. Doctoral dissertation, University of Florida, FL. Acevedo-Rodríguez, P. (2011). Allophylastrum: a new genus of Sapindaceae from northern South America. PhytoKeys, 5, 39-43. Acevedo-Rodríguez, P. & Strong, M. T. (2007). Catalogue of the seed plants of the West Indies. Retreived September 01, 2014, from http://botany.si.edu/Antilles/WestIndies/. Acevedo-Rodríguez, P. & Strong, M. T. (2012). Catalogue of Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98, 1-92. Acevedo-Rodríguez, P. & Brewer, S. W. (2016). Spathelia belizensis, a new species and first record for the genus in Central America (tribe Spathelieae, Rutaceae). PhytoKeys, 75, 145- 151. Adema, F. & van der Ham, R. W. J. M. (1993). Cnesmocarpon (Gen. Nov.), Jagera and Trigonachras (Sapindaceae-Cupanieae): Phylogeny and Systematics. Blumea, 38, 73-215. Agostini, G. & Fariñas, M. (1963). Holotype of Maytenus agostinii Steyerm. (Celastraceae). Caracas: Fundación Instituto Botánico de Venezuela. Akopian, S. S. (2007). On the Pyrus L. (Rosaceae) species in Armenia. Flora, Vegetation and Plant Resources of Armenia, 16, 15-26. Alejandro, G. J. D. & Meve, U. (2016). Rubovietnamia coronula sp. nov. (Rubiaceae: Gardenieae) from the Philippines. Nordic Journal of Botany. 34 (2), 385–389. Alemayehu, G., Asfaw, Z. & Kelbessa, E. (2016) Cordia africana (Boraginaceae) in Ethiopia: A review on its taxonomy, distribution, ethnobotany and conservation status. International Journal of Botany Studies. 1 (2), 38-46. Alfarhan, A. H., Al-Turki, T. A. & Basahy, A. Y. (2005). Flora of Jizan Region. Final Report Supported by King Abdulaziz City for Science and Technology.
    [Show full text]
  • Cadamba: a Miraculous Tree Having Enormous Pharmacological Implications
    PHCOG REV. REVIEW ARTICLE Cadamba: A miraculous tree having enormous pharmacological implications Alka Dwevedi, Kuldeep Sharma1, Yogesh K Sharma2 Sri Aurobindo College, University of Delhi, South Campus, 1Department of Botany, University of Delhi, North Campus, 2Department of Chemistry, Swami Shraddhanand College, University of Delhi, North Campus, New Delhi, India Submitted: 22-07-2014 Revised: 15-09-2014 Published: 04-08-2015 ABSTRACT The Cadamba is one of the important medicinal plants belonging to the Rubiaceae family. It is crucially significant as it has the largest number of phytochemicals and secondary metabolites (viz., cadambagenic acid, cadamine, quinovic acid, β-sitosterol, cadambine, etc.) having pharmacological and biological properties. It can be used as an alternative to various synthetic chemical compounds in the prevention as well as the treatment of several incurable diseases. More than 100 years of research has been done to discover various phytochemicals and their implications. Very few of them, i.e. ≤2% have been commercialized due to the lack of a suitable model system as well as various associated controversial issues. The solubility of phytochemicals is another major concern: Further response that will be generated due to the solvent used is also unpredictable. Moreover, the Cadamba is one of the ornamental plants with religious significance. Here we have made an effort to summarize all the phytochemicals and their significance to render the interest that would help in their commercialization. Key words: Anticancer, antioxidant, Cadamba, pharmacology, phytochemical INTRODUCTION of plants is used for medicinal treatments; either whole or in specific part/s (bark, root, leaves, fruit, flowers, seeds), in There is a number of flora in use for medicinal purposes over the dried state.
    [Show full text]
  • PROFILE of Nauclea Diderrichii LEAF EXTRACTS
    Bajopas Volume 10 Number 1 June, 2017 http://dx.doi.org/10.4314/bajopas.v10i1.42 Bayero Journal of Pure and Applied Sciences, 10(1): 281 - 284 Received: May, 2016 Accepted: October, 2016 ISSN 2006 – 6996 PHYTOCHEMICAL SCREENING AND THIN LAYER CHROMATOGRAPHIC PROFILE OF Nauclea diderrichii LEAF EXTRACTS *Isa, H., Katsayal, U. A., Agunu, A., Nuhu, A. and Abdulhamid, Z. Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences Ahmadu Bello University, Zaria, - Nigeria. *Corresponding author (+2348032845569; [email protected] ) ABSTRACT The present study investigates the phytochemicals and thin layer chromatographic profile of Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various solvent systems of varying polarity on these extracts. Preliminary phytochemical screening revealed the presence of alkaloids, glycosides, saponins, phenolic compounds, tannins, phytosterols, carbohydrates, flavonoids and terpenoids. Further screening using thin layer chromatographic technique on the N. diderrichii leaf extracts also revealed different phytochemical compounds with different R f values. The results obtained in present study indicated that Nauclea diderrichii leaf is a rich source of phytochemicals. This could justifies the use of plant species in traditional medicine for treatment of various diseases. Keywords: Nauclea diderrichii, Rubiaceae Leaf extracts, Phytochemicals, Retention factor, TLC. INTRODUCTION Due to the reputation of N. diderrichii in folk Medicinal plants are of great importance to the health medicine, especially the leaf being use to cure of individuals and communities in general. The numerous ailments, this study was carried out to medicinal value of such medicinal plants lies in the identify the bioactive compounds responsible for these chemical substances present in the plants that activities.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • High Frequency Regeneration of Plants Via Callus-Mediated Organogenesis
    www.nature.com/scientificreports OPEN High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba) Hao Huang1, Ying Wei1, Yongjin Zhai1, Kunxi Ouyang2, Xiaoyang Chen2* & Longhua Bai1* In this works, a simple, efcient and repeatable protocol was developed for in vitro regeneration via callus-mediated organogenesis of Neolamarkia Cadamba using cotyledonary petioles and hypocotyls. Efects of basal medium, plant growth regulators, the types and age of explant on the formation of adventitious buds/shoots were studied. Meanwhile, histological analysis for early ontogenic stages and genetic stability assessment by fow cytometry were investigated. Our investigation demonstrated that, compared with 6-benzyladenine (BA), N6-(2-isopentenyl) adenine (2-ip), Thidiazuron (TDZ) was the optimal cytokinin for buds/shoots induction on cotyledon and hypocotyl explants. Douglas-fr and sugar pine medium (DCR) supplemented with 22.7 μM TDZ and 0.27 μM α-naphthalene acetic acid (NAA) was most efective on bud induction, with the highest bud-induction rate and numbers of buds on cotyledon and hypocotyl explants. The available shoot per explant hit 35.2 when the induced callus sub-cultured to a medium without TDZ. It was found that TDZ could promote induction of the callus and the buds, however, continuous exposure beyond 4 weeks of supplemented high concentration (exceed 11.35 μM), TDZ was harmful to the proliferation and growth of buds/shoots. DCR appeared more efciency than Murashige and Skoog medium (MS), Woody Plant medium (WPM), anther culture of cereal crops medium (N6) on bud induction. Age of cotyledon and hypocotyl explants in 20-day to 25- day was most benefcial to adventitious buds/shoots formation.
    [Show full text]
  • Sarcocephalus Latifolius (J.E
    Sarcocephalus latifolius (J.E. Smith) E.A. Bruce Rubiaceae opepe LOCAL NAMES English (Sierra Leone peach,pin cushion tree,Guinea peach,African peach); French (liane à fraises); Igbo (ubuluinu); Trade name (opepe) BOTANIC DESCRIPTION Sarcocephalus latifolius is a multi-stemmed tree or shrub up to 12 m. It has an open canopy. Flowers with terminal spherical head-like cymes of small whitish flowers. In Nauclea, the flowers are joined by their calyces. Sarcocephalus latifolius foliage (Joris de Wolf, Patrick Van Damme, Diego Van The fruit is a syncarp. Meersschaut) The tribe Naucleae to which S. latifolius belongs shows similarities to the family Combretaceae. Some authors have seperated the tribe into a new family Naucleceae. The generic name is derived from the Greek words sarco (fleshy) and cephalus (headed) in reference to the flowers. The specific epithet is derived from the Latin words lati (broad) and folius (leaved). BIOLOGY A hermaphroditic tree flowering from April-June. Fruits ripen from July- Sarcocephalus latifolius foliage (Joris de Wolf, Patrick Van Damme, Diego Van September. The grey baboon (Papio anubis) disperses its seeds. Meersschaut) Sarcocephalus latifolius slash (Joris de Wolf, Patrick Van Damme, Diego Van Meersschaut) Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Sarcocephalus latifolius (J.E. Smith) E.A. Bruce Rubiaceae opepe ECOLOGY S. latifolius is a savanna shrub sometimes found in undisturbed fringing forest and closed savanna woodland. Three other closely related species, N. pobeguinii, N.diderichii and N. vanderguchtii are forest trees. BIOPHYSICAL LIMITS Altitude: 0-200 m Mean annual temperature: 27 deg C Mean annual rainfall: 2700 mm DOCUMENTED SPECIES DISTRIBUTION Native: Benin, Burkina Faso, Cameroon, Democratic Republic of Congo, Gambia, Ghana, Nigeria Exotic: Native range Exotic range The map above shows countries where the species has been planted.
    [Show full text]
  • The Family Rubiaceae in Southern Assam with Special Reference to Endemic and Rediscovered Plant Taxa
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 April 2014 | 6(4): 5649–5659 The family Rubiaceae in southern Assam with special reference to endemic and rediscovered plant taxa 1 2 3 4 ISSN H.A. Barbhuiya , B.K. Dutta , A.K. Das & A.K. Baishya Communication Short Online 0974–7907 Print 0974–7893 1 Botanical Survey of India, Eastern Regional Centre, Shillong, Meghalaya 793003, India 2,3 Department of Ecology and Environmental Science, Assam University, Silchar, Assam 788011, India OPEN ACCESS 4 Laban, East Khasi Hills, Shillong, Meghalaya 793009, India 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected], 4 [email protected] Abstract: Analysis of diversity, distribution and endemism of the family Southern Assam (Barak Valley) is located between Rubiaceae for southern Assam has been made. The analyses are based 24008’–25008’N and 92012’–93015’E. The valley covers on field observations in the three districts, viz., Cachar, Hailakandi and 2 Karimganj, as well as data from existing collections and literature. an area of 6,922km and is surrounded by Dima Hasao The present study records 90 taxa recorded from southern Assam, District and Jaintia Hill in the north, the Manipur Hills in four of which are endemic. Chassalia curviflora (Wall.) Thwaites var. ellipsoides Hook. f. and Mussaenda keenanii Hook.f. are rediscovered the east and the Mizoram Hills in the south. To the west after a gap of 140 years. Mussaenda corymbosa Roxb. is reported the plains merge with the Sylhet plains of Bangladesh and for the first time from northeastern India, while Chassalia staintonii the Indian state of Tripura.
    [Show full text]