Source Coding Matlab.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Source Coding Matlab.Pdf Source Coding Source Coding The Communications Toolbox includes some basic functions for source coding. Source coding, also known as quantization or signal formatting, includes the concepts of analog-to-digital conversion and data compression. Source coding divides into two basic procedures: source encoding and source decoding. Source encoding converts a source signal into a digital code using a quantization method. The source coded signal is represented by a set of integers {0, 1, 2, ..., N-1}, where N is finite. Source decoding recovers the original information signal sequence using the source coded signal. This toolbox includes two source coding quantization methods: scalar quantization and predictive quantization. A third source coding method, vector quantization, is not included in this toolbox. Scalar Quantization Scalar quantization is a process that assigns a single value to inputs that are within a specified range. Inputs that fall in a different range of values are assigned a different single value. An analog signal is in effect digitized by 3-13 3 Tutorial scalar quantization. For example, a sine wave, when quantized, will look like a rising and falling stair step: Quantized sine wave 1.5 1 0.5 0 Amplitude −0.5 −1 −1.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (sec) Scalar quantization requires the use of a mapping of N contiguous regions of the signal range into N discrete values. The N regions are defined by a partitioning that consists of N-1 distinction partition values within the signal range. The partition values are arranged in ascending order and assigned indices ranging from 1 to N-1. Each region has an index that is determined by this formula: ≤ () 0xpartition 1 indx() x =i partition()i <x≤partition()i1+ N1– partition()N1– <x For a signal value x, the index of the corresponding region is indx(x). To implement scalar quantization you must specify a length N-1 vector partition and a length N vector codebook. The vector partition, as its name 3-14 Source Coding implies, divides the signal input range into N regions using N-1 partition values. The partition values must be in strictly ascending order. The codebook is a vector that assigns a value, typically either an endpoint of the region or some average value of the interval, to each region defined in the partition. Since each region must have an assigned output value, the length of the codebook must equal the length of the partition. Another way to view this is that the codebook functions as a table lookup with each element assigned to a partition. The index value indx(x) is the output of the quantization encode function. The codebook contains the values that correspond to sample points. There is no function for quantization decoding, which is simply constructing the quantized signal using the stream of index values output by the quantizer. Construct the quantized signal by using the MATLAB command: y = codebook(indx+1); In general, a codebook has the following relation with the vector partition: codebook() 1 ≤≤≤≤partition() 1 codebook() 2 partition()2 … ...≤≤≤ codebook()N – 1 partition()N – 1 codebook()N The quality of the quantization, called the distortion, is the mean-square error between the original signal data sig and the quantized signal quan: M 1 distortion =----- ∑()sig() i –quan() i 2 M i=1 where M is the number of samples of the source signal sig. 3-15 3 Tutorial The computation procedure for the quantization source coding and decoding is shown in the figure below: > partition(1) > partition(2) sig indx + > partition(N-1) source encode quant codebook(indx) quantization decode + + - distor (.)2 + /M Memory distortion computation The dashed square at the top of this figure is the source encode algorithm, which assigns an index after deciding in which region the input signal value falls. The dashed square in the middle of the figure is the quantization decode algorithm, which maps the input index to whatever value the codebook assigns to that particular index. The dashed square at the bottom of the figure is the distortion computation, which calculates a cumulative average in which M is the total number of points used in the computation. The MATLAB function quantiz computes all three outputs shown in the above figure. The Simulink Scalar Quantizer block is available in the source code sublibrary. Training of Partition and Codebook Parameters The key functions in quantization are the assignment of the partition and codebook parameters. In large signal sets with a fine quantization scheme, the 3-16 Source Coding selection of all the correct parameters can be tedious. In the Communications Toolbox you can train these two parameters by using the MATLAB function lloyds. To train the parameters, you must prepare a training set, which typically represents function input data. The function lloyds finds the partition and codebook parameter vectors by minimizing the distortion using the provided training data. Here is an example of the data training for a sinusoidal signal: N = 2^3; % three bits transfer channel t = [0:1000]∗pi/50; sig = sin(t); % one complete period of sinusoidal signal [partition,codebook] = lloyds(sig,N); [indx,quant,distor] = quantiz(sig,partition,codebook); plot(t,sig,t,quant,'--'); In the above commands, sig is a sinusoidal signal to be quantized. The peak amplitude of the input signal must be one. The trained codebook and the partition can be used for sinusoidal signals of any frequency. The above code generates a figure that compares the original signal (the smooth curve) to the quantized signal (the digital curve): 1 0.5 0 −0.5 −1 0 10 20 30 40 50 60 70 The decoding procedure is simple using the basic MATLAB computation format. Use the following command to obtain the decoded result: quant = codebook(indx+1) 3-17 3 Tutorial Companders The quantization discussed above is linear. In certain applications, you may need to quantize a signal based on the power level of the input signal. In this case, it is common to use a logarithm computation before the quantization operation. Since a simple logarithm computation can only handle a positive signal, some modification of the input signal is needed. The logarithm computation is known as a compressor. The reverse computation of a compressor is called an expander. The combination of a compressor and expander is called a compander (compress and expand). This toolbox supports two companders: the µ-law and A-law companders. The selection of either method is a matter of user preference. The MATLAB function compand is designed for compander computation. The Simulink block library includes four blocks for the µ-law and A-law compander computations: µ-Law Compressor, µ-Law Expander, A-Law Compressor, and A-Law Expander. µ-law Compander For a given signal x, the output y of the µ-law compressor is Vlog()1 +µ xV⁄ y = --------------------------------------------- sgn()x log()1 + µ where V is the peak value of signal x, which is also the peak value of y. µ is the µ-law parameter of the compander. The function log is the natural logarithm and sgn is the sign function. The µ-law expander is the inverse of the compressor: ()µ ⁄ V()y log 1 + V () x = ---µ- e + 1 sgn y The MATLAB function for µ-law companding is compand. The corresponding Simulink µ-Law Compressor and µ-Law Expander blocks also support µ-law companding. 3-18 Source Coding A-law Compander For a given signal x, the output y of the A-law compressor is Ax ---------------------- sgn()x 1+ logA for 0 ≤≤xAV⁄ y = V()1 + logAx⁄ V for AV⁄ <xV≤ ---------------------------------------------- sgn()x 1+ logA where V is the peak value of signal x, which is also the peak value of y. A is the A-law parameter of the compander. The function log is the natural logarithm and sgn is the sign function. The A-law expander is the inverse of the compressor: 1+ logA V y---------------------- sgn()y for 0 ≤≤y ---------------------- A 1 + logA x= y ()1 + logA ⁄V–1V V e ---- sgn()y for ---------------------- <yV≤ A 1 + logA The MATLAB function for A-law companding is compand. The corresponding Simulink Α-Law Compressor and Α-Law Expander blocks also support Α-law companding. Predictive Quantization The quantization introduced in the “Scalar Quantization” section is usually implemented when there is no a priori knowledge about the transmitted signal. In practice, a communications engineer often has some a priori information about the message signals. An engineer can use this information to predict the next signal to be transmitted based on past signal transmissions; i.e., he or she can use the past data set x={x(k-m),...,x(k-2), x(k-1)} to predict x(k) by using some function f(.). The most common way to implement predictive quantization is to use the differential pulse code modulation (DPCM) method. The Communications Toolbox provides the tools necessary to implement a DPCM predictive quantizer. 3-19 3 Tutorial Differential Pulse Code Modulation Using the past data set and predictor as described above, the predicted value is assumed to be xˆ ()k =fxk()()– m,,... xk()–2 ,xk()–1 where k is the computation step index. The function f(.) is called the predictor; the integer m is the predictive order. The predictive error ek()=xk()–xˆ()k is quantized by using the method discussed in the “Scalar Quantization” section. The structure of predictive quantization is: source encoded index indx(k) source input x(k) e(k) Quantization + + - Source encode quantized y(k) + ^x(k) Predictor This method is known as the differential pulse code modulation method (DPCM).
Recommended publications
  • DELTA MODULATION CODEC Meets Mil-Std-188-113 Features
    DATA BULLETIN DELTA MODULATION CODEC MX629 meets Mil-Std-188-113 Features Applications Meets Mil-Std-188-113 Military Communications Single Chip Full Duplex CVSD CODEC Multiplexers, Switches, & Phones On-chip Input and Output Filters Programmable Sampling Clocks 3- or 4-bit Companding Algorithm Powersave Capabilities Low Power, 5.0V Operation ➤ ➤ ➤ ➤➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤ ➤➤➤ ➤ The MX629 is a Continuously Variable Slope Delta Modulation (CVSD) Codec designed for use in military communications systems. This device is suitable for applications in military delta multiplexers, switches, and phones. The MX629 is designed to meet Mil-Std-188-113 specifications. Encoder input and decoder output filters are incorporated on-chip. Sampling clock rates can be programmed to 16, 32, or 64kbps from an internal clock generator or externally injected in the 8 to 64kbps range. The sampling clock frequency is output for the synchronization of external circuits. The encoder has an enable function for use in multiplexer applications. Encoder and Decoder forced idle capabilities are provided forcing 10101010…pattern in encode and a VDD/2 bias in decode. The companding circuit may be operated with an externally selectable 3- or 4-bit algorithm. The device may be placed in standby mode by selecting Powersave. A reference 1.024MHz oscillator uses an external clock or crystal. The MX629 operates with a supply voltage of 5.0V and is available in the following packages: 24-pin PLCC (MX629LH), 22-pin CERDIP (MX629J), and 22-pin PDIP (MX629P). 1998 MX-COM, Inc. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 20480190.001 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All Trademarks and service marks are held by their respective companies.
    [Show full text]
  • The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No
    - 1 - Ex-59/2012 The Mizoram Gazette EXTRA ORDINARY Published by Authority RNI No. 27009/1973 Postal Regn. No. NE-313(MZ) 2006-2008 Re. 1/- per page VOL - XLI Aizawl, Thursday 9.2.2012 Magha 20, S.E. 1933, Issue No. 59 NOTIFICATION No.A.45011/1/2010-P&AR(GSW), the 3rd February, 20122012. In exercise of the powers conferred by the proviso to Article 309 of the Constitution of India, the Governor of Mizoram is pleased to make the following Regulations relating to the Mizoram Civil Services (Combined Competitive) Examinations, namely:- 1. SHORT TITLE AND COMMENCEMENT: (i) These Regulations may be called the Mizoram Civil Services (Combined Competitive Examination) Regulations, 2011. (ii) They shall come into force from the date of their publication in the Mizoram Gazette. (iii) These Regulations shall cover recruitment examination to the Junior Grade of the Mizoram Civil Service (MCS), the Mizoram Police Service (MPS), the Mizoram Finance & Accounts Service (MF&AS) and the Mizoram Information Service (MIS). 2. DEFINITIONS: In these regulations, unless the context otherwise requires:- (i) ‘Constitution’ means the Constitution of India; (ii) ‘Commission’ means the Mizoram Public Service Commission; (iii) ‘Examination’ means a Combined Competitive Examination for recruitment to the Junior Grade of MCS, MPS, MFAS and MIS; (iv) ‘Government’ means the State Government of Mizoram; (v) ‘Governor’ means the Governor of Mizoram; (vi) ‘List’ means the list of successful candidates in the written examination and selected candidates prepared by the Commission
    [Show full text]
  • Digital Communications GATE Online Coaching Classes
    GATE Online Coaching Classes Digital Communications Online Class-4 By Dr.B.Leela Kumari Assistant Professor, Department of Electronics and Communications Engineering University college of Engineering Kakinada Jawaharlal Nehru Technological University Kakinada 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 1 Session -4 Baseband Transmission • Delta Modulation • advantages and Draw Backs • SNR of DM • Adaptive Delta Modulation • Comparisons • Objective Type questions and Illustrative Problems 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 2 Delta Modulation • By the DM technique an analog signal can be encoded in to bits .hence in one sense a DM is also PCM • IN DM difference signal is encoded into just a single bit ,hence in one sense a DM is also DPCM • A single bit produces just two possibilities that is used to increase or decrease the estimate 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 3 Block diagram of DM 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 4 The DM consists of Comparator Sample and Hold circuit Up-Down Counter D/A Converter 6/24/2020 Dr. B. Leela Kumari UCEK JNTUK Kakinada 5 Comparator makes a comparison between the input base band signal m(t) and its quantized approximation Δ(t) =V(H) =V(L) Up-Down counter increments or decrements its count by one at each active edge of the clock waveform The count direction(incrementing or decrementing ) is determined by the voltage levels t the “count direction command “ input to the counter When this binary input which is also transmitted output S0(t) ,is at level V(H),the counter counts up, When it is at level V(L),the counter counts down The counter serves as accumulator D/ Converter: The digital output of the converter is converted to the analog quantized approximation by the D/ Converter 6/24/2020 Dr.
    [Show full text]
  • The Scientist and Engineer's Guide to Digital Signal Processing
    Index 643 Index A-law companding, 362-364 Brackets, indicating discrete signals, 87 Accuracy, 32-34 Brightness in images, 387-391 Additivity, 89-91, 185-187 Butterfly calculation in FFT, 231-232 Algebraic reconstruction technique (ART), Butterworth filter. See under Filters 444-445 Aliasing C program, 67, 77, 520 frequency domain, 196-200, 212-214, Cascaded stages, 96, 133. See also under 220-222, 372 Filters- recursive in sampling, 39-45 Caruso, restoration of recordings by, 304-307 sinc function, equation for aliased, 212-214 CAT scanner. See Computed tomography time domain, 194-196, 300 Causal signals and systems, 130 Alternating current (AC), defined, 14 CCD. See Charge coupled device Amplitude modulation (AM), 204-206, Central limit theorem, 30, 135-136, 407 216-217, 370 Cepstrum, 371 Analysis equations. See under Fourier Charge coupled device (CCD), 381-385, transform 430-432 Antialias filter. See under filters- analog Charge sensitive amplifier, in CCD, 382-384 Arithmetic encoding, 486 Chebyshev filter. See under Filters Artificial neural net, 458. See also Neural Chirp signals and systems, 222-224 network Chrominance signal, in television, 386 Artificial reverberation in music, 5 Circular buffer, 507 ASCII codes, table of, 484 Circularity. See under Discrete Fourier Aspect ratio of television, 386 transform Assembly program, 76-77, 520 Classifiers, 458 Astrophotography, 1, 10, 373-375, 394-396 Close neighbors in images, 439 Audio processing, 5-7, 304-307, 311, 351-372 Closing, morphological, 437 Audio signaling tones, detection of, 293 Coefficient of variation (CV), 17 Automatic gain control (AGC), 370 Color, 376, 379-381, 386 Compact laser disc (CD), 359-362 Backprojection, 446-450 Complex logarithm, 372 Basis functions Complex numbers discrete Fourier transform, 150-152, addition, 553-554 158-159 associative property, 554 discrete cosine transform, 496-497 commutative property, 5054 Bessel filter.
    [Show full text]
  • Laboratory Manual
    DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING EEL 4515 FUNDAMENTALS OF DIGITAL COMMUNICATION LABORATORY MANUAL Revised August 2018 Table of Content • Safety Guidelines • Lab instructions • Troubleshooting hints • Experiment 1: Time Division Multiplexing 1 • Experiment 2: Pulse Code Modulation 5 • Experiment 3: Delta Modulation 15 • Experiment 4: Line Coding (Manchester) 21 • Experiment 5: Frequency Shift Keying 25 • Experiment 6: Phase Shift Keying 33 • Experiment 7: Matlab Project 40 Safety Rules and Operating Procedures 1. Note the location of the Emergency Disconnect (red button near the door) to shut off power in an emergency. Note the location of the nearest telephone (map on bulletin board). 2. Students are allowed in the laboratory only when the instructor is present. 3. Open drinks and food are not allowed near the lab benches. 4. Report any broken equipment or defective parts to the lab instructor. Do not open, remove the cover, or attempt to repair any equipment. 5. When the lab exercise is over, all instruments, except computers, must be turned off. Return substitution boxes to the designated location. Your lab grade will be affected if your laboratory station is not tidy when you leave. 6. University property must not be taken from the laboratory. 7. Do not move instruments from one lab station to another lab station. 8. Do not tamper with or remove security straps, locks, or other security devices. Do not disable or attempt to defeat the security camera. ANYONE VIOLATING ANY RULES OR REGULATIONS MAY BE DENIED ACCESS TO THESE FACILITIES. I have read and understand these rules and procedures. I agree to abide by these rules and procedures at all times while using these facilities.
    [Show full text]
  • Digital Transmission Is the Transmittal of Digital Signals Between Two Or More Points in a Communications System
    Shri Vishnu Engineering College for Women :: Bhimavaram Department of Electronics & Communication Engineering Digital Communication UNIT I PULSE DIGITAL MODULATION Digital Transmission is the transmittal of digital signals between two or more points in a communications system. The signals can be binary or any other form of discrete-level digital pulses. Digital pulses can not be propagated through a wireless transmission system such as earth’s atmosphere or free space. Alex H. Reeves developed the first digital transmission system in 1937 at the Paris Laboratories of AT & T for the purpose of carrying digitally encoded analog signals, such as the human voice, over metallic wire cables between telephone offices. Advantages & disadvantages of Digital Transmission Advantages --Noise immunity --Multiplexing(Time domain) --Regeneration --Simple to evaluate and measure Disadvantages --Requires more bandwidth --Additional encoding (A/D) and decoding (D/A) circuitry Pulse Modulation --Pulse modulation consists essentially of sampling analog information signals and then converting those samples into discrete pulses and transporting the pulses from a source to a destination over a physical transmission medium. --The four predominant methods of pulse modulation: 1) pulse width modulation (PWM) 2) pulse position modulation (PPM) 3) pulse amplitude modulation (PAM) 4) pulse code modulation (PCM). Pulse Width Modulation --PWM is sometimes called pulse duration modulation (PDM) or pulse length modulation (PLM), as the width (active portion of the duty cycle) of a constant amplitude pulse is varied proportional to the amplitude of the analog signal at the time the signal is sampled. --The maximum analog signal amplitude produces the widest pulse, and the minimum analog signal amplitude produces the narrowest pulse.
    [Show full text]
  • Orf L- Burl .1 I
    WRIT Wr 1/195 : aifistririr 113 Orf l- Burl .1 I. The examination will be conducted by the Union MINISTRY OF PERSONNEL, PUBLIC GRIEVANCES Public Service Commission in the manner prescribed in AND PENSIONS Appendix Ito these rules. (Department of Personnel and Training) The dates on which and the places at which the NOTIFICATION Preliminary and Main Examinations will be held shall be fixed New Delhi, the 4th February, 2012 by the Commission. RULES 2. A candidate shall be required to indicate in his/her F. No. 13018/20/2011-AIS(I).—The rules for a application form for the Main Examination his/her order of competitive examination—Civil Services Examination—to be preferences for various services/posts for which he/she would like to be considered for appointment in case he/she held by the Union Public Service Commission in 2012 for the is recommended for appointment by Union Public Service purpose of filling vacancies in the following services/posts Commission. No change in preference of services once are, with the concurrence of the Ministries concerned and indicated by a candidate would be permitted. the Comptroller and Auditor General of India in respect of the Indian Audit and Accounts Service, published for general A candidate who wishes to be considered for IAS/IPS shall be required to indicate in his/her application form for information :- the Main Examination his/ her order of preferences for various () The Indian Administrative Service. State caders for which he/she would like to be considered for (i) The Indian Foreign Service. allotment in case he/she is appointed to the IAS/1PS.
    [Show full text]
  • Delta Modulation
    DELTA MODULATION PREPARATION ...............................................................................122 principle of operation...............................................................122 block diagram.........................................................................................122 step size calculation................................................................................124 slope overload and granularity.................................................124 slope overload ........................................................................................124 granular noise.........................................................................................125 noise and distortion minimization ..........................................................126 EXPERIMENT .................................................................................126 setting up..................................................................................126 slope overload..........................................................................129 the ADAPTIVE CONTROL signal................................................................129 the output .................................................................................130 complex message.....................................................................131 TUTORIAL QUESTIONS................................................................132 APPENDIX.......................................................................................133 a ‘complex’
    [Show full text]
  • Readingsample
    Signals and Communication Technology Digital Communication Principles and System Modelling Bearbeitet von Apurba Das 1. Auflage 2010. Buch. xviii, 246 S. ISBN 978 3 642 12742 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 1220 g Weitere Fachgebiete > Technik > Nachrichten- und Kommunikationstechnik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Waveform Encoding 2.1 Introduction ‘Any natural signal is in analog form’. To respect the said statement and to meet the basic requirement of any type of digital signal processing and digital com- munication, the essential and prior step is converting the electrical form (through transducer) of the natural analog signal into digital form, as digital modulator or any type of digital signal processor does not accept analog signal as its input. Therefore, to consider the digital transmission of analog signal, it is very important to encode the waveform 1st. This process of waveform encoding is done through sampling, quantization and encoding; finally the analog information is converted to digital data. The digitally coded analog signal produces a rugged signal with high immunity to distortion, interference and noise. This source coding also allows the uses of regen- erative repeater for long distance communication. In the process of quantization, the approximation results in quantization noise and with a target of removing the noise, the bandwidth becomes comparable to the analog signal.
    [Show full text]
  • Lossless Image Compression and Decompression Using Huffman Coding
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072 LOSSLESS IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING Anitha. S, Assistant Professor, GAC for women, Tiruchendur,TamilNadu,India. Abstract - This paper propose a novel Image the training set (neighbors), reduce some redundancies. compression based on the Huffman encoding and Context based compression algorithms are used predictive technique [2][3]. decoding technique. Image files contain some redundant and inappropriate information. Image compression 2. HISTORY addresses the problem of reducing the amount of data required to represent an image. Huffman encoding and Morse code, invented in 1838 for use in telegraphy, is an decoding is very easy to implement and it reduce the early example of data compression based on using shorter codeword’s for letters such as "e" and "t" that are more complexity of memory. Major goal of this paper is to common in English. Modern work on data compression provide practical ways of exploring Huffman coding began in the late 1940s with the development of information technique using MATLAB . theory. In 1949 Claude Shannon and Robert Fano devised a systematic way to assign codeword’s based on probabilities Keywords - Image compression, Huffman encoding, Huffman of blocks. An optimal method for doing this was then found decoding, Symbol, Source reduction… by David Huffman in 1951.In 1980’s a joint committee , known as joint photographic experts group (JPEG) 1. INTRODUCTION developed first international compression standard for continuous tone images. JPEG algorithm included several A commonly image contain redundant information i.e.
    [Show full text]
  • DPCM (Differential PCM) 3
    Digital Image Processing IMAGE DATA COMPRESSION – PART2 Hamid R. Rabiee Fall 2015 Predictive Techniques 2 Previous methods doesn’t consider correlation between pixels. However, in real word images we always expect some kind of correlation in images. The philosophy underlying predictive techniques is to remove mutual redundancy between successive pixels and encode only the new information DPCM (differential PCM) 3 For each pixel 풖 풏 a quantity 풖 .(풏) an estimate of 풖.(풏) (decoded sample), is predicted from the previously decoded samples Now it is sufficient to code the prediction error: If 풆.(풏) is the quantized value of 풆(풏) then: DPCM CODEC scheme 4 Feedforward Prediction 5 In DPCM the prediction is based on the output rather than the input, so that the quantizer error at a given step is fed back to the quantizer input at the next step. If the prediction rule is based on the past inputs the signal reconstruction error would depend on all the past and present quantization errors in the feedforward prediction-error sequence. Feedback Versus Feedforward 6 Prediction Example Delta Modulation 7 The simplest of the predictive coders uses a one-step delay function as a predictor and a 1-bit quantizer, giving a 1-bit representation of the signal: Other DPCM Variants 8 Line-by-Line DPCM: In this method each scan line of the image is coded independently by the DPCM technique. Two-Dimensional DPCM: Adaptive Techniques for DPCM 9 To improve DPCM performance we can adapt the quantizer or predictor to variations in the local statistics of the image data such as: Adaptive gain control Adaptive classification Adaptive gain control 10 A simple adaptive quantizer updates the variance of the prediction error at each step and adjusts the spacing of the quantizer levels accordingly.
    [Show full text]
  • Adaptive Delta Modulation Techniques
    Special Issue of International Journal of Computer Applications (0975 – 8887) International Conference on Electronic Design and Signal Processing (ICEDSP) 2012 Adaptive Delta Modulation Techniques Niranjan U M.N.Suma Dept. of E&C Dept. of E&C BMS college of Engineering BMS college of Engineering Bangalore-19 Bangalore-19 ABSTRACT Switched Telephone Network (PSTN) where it is called μ-law Delta modulation is a waveform coding technique which Pulse Code Modulation (PCM). Later the engineers recognized reduces the data rate to a larger extent in data communication; the slight correlation between the samples of the speech and the problem encountered in delta modulation is the slope over found another kind of coding called Differential PCM where the load error, which is inherent in the system. In order for the difference of the successive samples is calculated, coded and signal to have good fidelity, the slope-overload error needs to transmitted. This was helpful to reduce the data rate required to be as small as possible. Hence there is need for adaptive some extent. Further bandwidth was tried to reduce using techniques to be applied to Delta Modulation to reduce the complex algorithms and Adaptive predictors are used to form noise. Adaptive delta modulation reduces the slope over load Adaptive Differential PCM (ADPCM), this could reduce the error to a greater extent. ADM attempts to increase the dynamic data rate requirements at the cost of increased complexity in range and the tracking capabilities of fixed step-size delta implementation. Later the techniques that can send one bit per modulation. The adaptive algorithms adjust the step size (from sample are devised and are termed as Delta Modulation (DM) a range of step sizes) to the power level of the signal and thus where typically, data rate is equal to the sampling rate.
    [Show full text]