Detection of Torque Teno Sus Virus in Diarrheic Piglet Fecal Samples Positive Or Negative for Porcine Group a Rotavirus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Identification of Novel Anelloviruses with Broad Diversity In
Edinburgh Research Explorer The identification of novel anelloviruses with broad diversity in UK rodents Citation for published version: Nishiyama, S, Dutia, BM, Stewart, JP, Meredith, AL, Shaw, DJ, Simmonds, P & Sharp, CP 2014, 'The identification of novel anelloviruses with broad diversity in UK rodents', Journal of General Virology, vol. 95, no. 7, pp. 1544-1553. https://doi.org/10.1099/vir.0.065219-0 Digital Object Identifier (DOI): 10.1099/vir.0.065219-0 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of General Virology Publisher Rights Statement: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 Journal of General Virology (2014), 95, 1544–1553 DOI 10.1099/vir.0.065219-0 Identification of novel anelloviruses with broad diversity in UK rodents Shoko Nishiyama,1 Bernadette M. -
Pdf Available
Virology 554 (2021) 89–96 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Diverse cressdnaviruses and an anellovirus identifiedin the fecal samples of yellow-bellied marmots Anthony Khalifeh a, Daniel T. Blumstein b,**, Rafaela S. Fontenele a, Kara Schmidlin a, C´ecile Richet a, Simona Kraberger a, Arvind Varsani a,c,* a The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA b Department of Ecology & Evolutionary Biology, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, CA, 90095, USA c Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925, Cape Town, South Africa ARTICLE INFO ABSTRACT Keywords: Over that last decade, coupling multiple strand displacement approaches with high throughput sequencing have Marmota flaviventer resulted in the identification of genomes of diverse groups of small circular DNA viruses. Using a similar Anelloviridae approach but with recovery of complete genomes by PCR, we identified a diverse group of single-stranded vi Genomoviridae ruses in yellow-bellied marmot (Marmota flaviventer) fecal samples. From 13 fecal samples we identified viruses Cressdnaviricota in the family Genomoviridae (n = 7) and Anelloviridae (n = 1), and several others that ware part of the larger Cressdnaviricota phylum but not within established families (n = 19). There were also circular DNA molecules identified (n = 4) that appear to encode one viral-like gene and have genomes of <1545 nts. This study gives a snapshot of viruses associated with marmots based on fecal sampling. -
Edinburgh Research Explorer
Edinburgh Research Explorer Serological profile of torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and -2), and between porcine and human anelloviruses Citation for published version: Huang, Y-W, Harrall, KK, Dryman, BA, Opriessnig, T, Vaughn, EM, Roof, MB & Meng, X-J 2012, 'Serological profile of torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and -2), and between porcine and human anelloviruses', Journal of Virology, vol. 86, no. 19, pp. 10628-39. https://doi.org/10.1128/JVI.00176- 12 Digital Object Identifier (DOI): 10.1128/JVI.00176-12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Virology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 Serological Profile of Torque Teno Sus Virus Species 1 (TTSuV1) in Pigs and Antigenic Relationships between Two TTSuV1 Genotypes (1a and 1b), between Two Species (TTSuV1 and -2), and between Porcine and Human Anelloviruses Yao-Wei Huang,a Kylie K. -
Description of a Novel Species of Torque Teno Sus Virus (Ttsuv) and First Insights on Immunization Against Ttsuvs in Naturally Infected Pigs
Description of a novel species of Torque teno sus virus (TTSuV) and first insights on immunization against TTSuVs in naturally infected pigs Memòria presentada per l’ Alexandra Jiménez Melsió per optar al grau de Doctora en el programa de Bioquímica, Biologia Molecular i Biomedicina del Departament de Bioquímica i Biologia Molecular de la Universitat Autònoma de Barcelona Dra. Tuija Kekarainen Dr. Joaquim Segalés i Coma Dra. Anna Bassols Teixidó Directora Director Tutora Alexandra Jiménez Melsió Doctoranda Bellaterra, setembre 2015 La Dra. Tuija Kekarainen, investigadora del Centre de Recerca en Sanitat Animal (CReSA), i el Dr. Joaquim Segalés i Coma, professor titular del Departament de Sanitat i d’Anatomia Animals de la Facultat de Veterinària de la Universitat Autònoma de Barcelona (UAB) i investigador adscrit al CReSA, com a co-directors, i la Dra. Anna Bassols Teixidó, professora titular del Departament de Bioquímica i Biologia Molecular de la UAB, com a tutora acadèmica, Certifiquen: Que la memòria de tesi doctoral titulada: “Description of a novel species of Torque teno sus virus (TTSuV) and first insights on immunization against TTSuVs in naturally infected pigs “ presentada per l’Alexandra Jiménez Melsió s’ha realitzat sota la seva direcció en el CReSA i n’autoritzen la seva presentació per tal de ser avaluada per la comissió corresponent per l’obtenció del grau de Doctora del programa de Bioquímica, Biologia Molecular i Biomedicina del Departament de Bioquímica i Biologia Molecular de la Universitat Autònoma de Barcelona. I per tal que consti, als efectes oportuns, signem el present certificat a Bellaterra, a 28 de setembre del 2015. -
First Description of Adenovirus, Enterovirus, Rotavirus and Torque
First description of Adenovirus, Enterovirus, Rotavirus and Torque teno virus in water samples collected from the Arroio Dilúvio, Porto Alegre, Brazil Vecchia, AD.a,b, Fleck, JD.a,b, Comerlato, J.c, Kluge, M.b, Bergamaschi, B.c, Da Silva, JVS.b, Da Luz, RB.b, Teixeira, TF.b, Garbinatto, GN.d, Oliveira, DV.d, Zanin, JG.d, Van der Sand, S.d, Frazzon, APG.d, Franco, AC.c, Roehe, PM.c,e and Spilki, FR.a,b* aPrograma de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, CEP 93352-000, Novo Hamburgo, RS, Brazil bLaboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, CEP 93352-000, Novo Hamburgo, RS, Brazil cLaboratório de Virologia, Departamento de Microbiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Sarmento Leite, 500, CEP 90050-170, Porto Alegre, RS, Brazil dDepartamento de Microbiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Sarmento Leite, 500, CEP 90050-170, Porto Alegre, RS, Brazil eInstituto de Pesquisa Veterinária “Desidério Finamor” – IPVDF, Fundação Estadual de Pesquisa Agropecuária – FEPAGRO-Saúde Animal, Estrada do Conde, 6000, CEP 92990-000, Eldorado do Sul, RS, Brazil *e-mail: [email protected] Received May 11, 2011 – Accepted July 14, 2011 – Distributed May 31, 2012 (With 1 figure) Abstract Adenovirus (AdV), enterovirus (EV), genogroup A rotaviruses (GARV) and Torque teno virus (TTV) are non-enveloped viral agents excreted in feces and so may contaminate water bodies. In the present study, the molecular detection of these viruses was performed in samples of surface water collected from the Arroio Dilúvio, a waterstream that crosses the city of Porto Alegre, RS, Brazil, receiving great volumes of non-treated sewage from a large urban area. -
Detection of Torque Teno
Explor Anim Med Res, ISSN 2277- 470X (Print), ISSN 2319-247X (Online) Vol.10, Issue - 2, 2020, p. 162-168Exploratory Animal and Medical Research, Vol.10, Issue 2, December,Website: 2020 www.animalmedicalresearch.org Research Article DETECTION OF TORQUE TENO SUS VIRUS (TTSUV) IN CLINICAL SPECIMENS OF PIGS WITH CLASSICAL SWINE FEVER, PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME, AND PORCINE CIRCOVIRUS 2 INFECTIONS Vinutha Subramanyam1, Divakar Hemadri*, Shashidhara Phanikashyap1, Jagadish Hiremath, Sharanagouda S. Patil, Parimal Roy Received 10 September 2019, revised 25 October 2020 ABSTRACT: Torque teno sus viruses (TTSuVs) have never been implicated in direct causation of any disease; however, their role as cofactors in precipitation of certain disease conditions is gaining some support. Considering the spurt in the number of outbreaks of porcine reproductive and respiratory syndrome (PRRS), porcine circovirus 2 (PCV2) infections and classical swine fever (CSF) in India, we have investigated the extent of association of TTSuVs with the above said viruses by PCR. The TTsuVs were detected in 53% and 26.22% of CSFV-PRRSV-PCV-positive and apparently healthy negative tissue samples respectively. In serum, these were detected respectively in 29.60% and 21.42 % of CSFV-PRRSV- infected and apparently samples. The results obtained for the tissue samples is in concurrence with the observations of previous studies which reported higher prevalence of TTSuVs in CSFV-PRRSV-PCV-positive clinical specimens as compared to the healthy ones. This is the first report of co-infection of TTSuVs with CSFV, PRRSV and PCV from India. Future works are needed to establish pathogenic role of TTSuVs through experimental studies. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
The Intestinal Virome of Malabsorption Syndrome-Affected and Unaffected
Virus Research 261 (2019) 9–20 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres The intestinal virome of malabsorption syndrome-affected and unaffected broilers through shotgun metagenomics T ⁎ Diane A. Limaa, , Samuel P. Cibulskib, Caroline Tochettoa, Ana Paula M. Varelaa, Fabrine Finklera, Thais F. Teixeiraa, Márcia R. Loikoa, Cristine Cervac, Dennis M. Junqueirad, Fabiana Q. Mayerc, Paulo M. Roehea a Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil b Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil c Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil d Centro Universitário Ritter dos Reis - UniRitter, Health Science Department, Porto Alegre, RS, Brazil ARTICLE INFO ABSTRACT Keywords: Malabsorption syndrome (MAS) is an economically important disease of young, commercially reared broilers, Enteric disorders characterized by growth retardation, defective feather development and diarrheic faeces. Several viruses have Virome been tentatively associated to such syndrome. Here, in order to examine potential associations between enteric Broiler chickens viruses and MAS, the faecal viromes of 70 stool samples collected from diseased (n = 35) and healthy (n = 35) High-throughput sequencing chickens from seven flocks were characterized and compared. Following high-throughput sequencing, a total of 8,347,319 paired end reads, with an average of 231 nt, were generated. Through analysis of de novo assembled contigs, 144 contigs > 1000 nt were identified with hits to eukaryotic viral sequences, as determined by GenBank database. -
Chronic Viral Infections Vs. Our Immune System: Revisiting Our View of Viruses As Pathogens
Chronic Viral Infections vs. Our Immune System: Revisiting our view of viruses as pathogens Tiffany A. Reese Assistant Professor Departments of Immunology and Microbiology Challenge your idea of classic viral infection and disease • Define the microbiome and the virome • Brief background on persistent viruses • Illustrate how viruses change disease susceptibility – mutualistic symbiosis – gene + virus = disease phenotype – virome in immune responses Bacteria-centric view of the microbiome The microbiome defined Definition of microbiome – Merriam-Webster 1 :a community of microorganisms (such as bacteria, fungi, and viruses) that inhabit a particular environment and especially the collection of microorganisms living in or on the human body 2 :the collective genomes of microorganisms inhabiting a particular environment and especially the human body Virome Ø Viral component of the microbiome Ø Includes both commensal and pathogenic viruses Ø Viruses that infect host cells Ø Virus-derived elements in host chromosomes Ø Viruses that infect other organisms in the body e.g. phage/bacteria Viruses are everywhere! • “intracellular parasites with nucleic acids that are capable of directing their own replication and are not cells” – Roossinck, Nature Reviews Microbiology 2011. • Viruses infect all living things. • We are constantly eating and breathing viruses from our environment • Only a small subset of viruses cause disease. • We even carry viral genomes as part of our own genetic material! Diverse viruses all over the body Adenoviridae Picornaviridae -
Discovery of Novel Anelloviruses in Small Mammals Expands the Host
Virology 514 (2018) 9–17 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Discovery of novel anelloviruses in small mammals expands the host range and diversity of the Anelloviridae T ⁎ William Marciel de Souzaa,b, ,1, Marcílio Jorge Fumagallia,1, Jansen de Araujoc, Gilberto Sabino-Santos Jr.a, Felipe Gonçalves Motta Maiaa,d, Marilia Farignoli Romeiroa, Sejal Modhab, Marcello Schiavo Nardie, Luzia Helena Queirozf, Edison Luiz Durigonc, Márcio Roberto Teixeira Nunesg,h, Pablo Ramiro Murciab, Luiz Tadeu Moraes Figueiredoa a Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil b MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom c Laboratory Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil d Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil e Divisão Técnica de Medicina Veterinária e Manejo da Fauna Silvestre, Prefeitura de São Paulo, Brazil f Faculty of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil g Center for Technological Innovations, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil h Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA ARTICLE INFO ABSTRACT Keywords: The Anelloviridae comprises single-stranded DNA viruses currently grouped in sixty-eight species classified in Anellovirus twelve genera. They have been found in many vertebrate hosts including primates. In this study, we describe the Rodent-borne virus application of the high-throughput sequencing to examine the frequency and diversity of anelloviruses in ro- Bat-borne virus dents, bats and opossums captured in São Paulo State, Brazil. -
TTV) in Jordan
viruses Article The Molecular Epidemiology and Phylogeny of Torque Teno Virus (TTV) in Jordan Haneen Sarairah 1, Salwa Bdour 2,* and Waleed Gharaibeh 1,* 1 Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan; [email protected] 2 Department of the Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan * Correspondence: [email protected] (S.B.); [email protected] (W.G.); Tel.: +962-6-5355000 (ext. 22233) (S.B.); +962-6-5355000 (ext. 22205) (W.G.) Received: 19 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Torque teno virus (TTV) is the most common component of the human blood virobiota. Little is known, however, about the prevalence of TTV in humans and the most common farm domesticates in Jordan, or the history and modality of TTV transmission across species lines. We therefore tested sera from 396 Jordanians and 171 farm animals for the presence of TTV DNA using nested 50-UTR-PCR. We then performed phylogenetic, ordination and evolutionary diversity analyses on detected DNA sequences. We detected a very high prevalence of TTV in Jordanians (~96%); much higher than in farm animal domesticates (~29% pooled over species). TTV prevalence in the human participants is not associated with geography, demography or physical attributes. Phylogenetic, ordination and evolutionary diversity analyses indicated that TTV is transmitted readily between humans across the geography of the country and between various species of animal domesticates. However, the majority of animal TTV isolates seem to derive from a single human-to-animal transmission event in the past, and current human-animal transmission in either direction is relatively rare. -
No Evidence Known Viruses Play a Role in the Pathogenesis of Onchocerciasis-Associated Epilepsy
pathogens Article No Evidence Known Viruses Play a Role in the Pathogenesis of Onchocerciasis-Associated Epilepsy. An Explorative Metagenomic Case-Control Study Michael Roach 1 , Adrian Cantu 2, Melissa Krizia Vieri 3 , Matthew Cotten 4,5,6, Paul Kellam 5, My Phan 5,6 , Lia van der Hoek 7 , Michel Mandro 8, Floribert Tepage 9, Germain Mambandu 10, Gisele Musinya 11, Anne Laudisoit 12 , Robert Colebunders 3 , Robert Edwards 1,2,13 and John L. Mokili 13,* 1 College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia; michael.roach@flinders.edu.au (M.R.); robert.edwards@flinders.edu.au (R.E.) 2 Computational Sciences Research Center, Biology Department, San Diego State University, San Diego, CA 92182, USA; [email protected] 3 Global Health Institute, University of Antwerp, 2160 Antwerp, Belgium; [email protected] (M.K.V.); [email protected] (R.C.) 4 Wellcome Trust Sanger Institute, Hinxton CB10 1RQ, UK; [email protected] 5 MRC/UVRI and London School of Hygiene and Tropical Medicine, Entebbe, Uganda; [email protected] (P.K.); [email protected] (M.P.) 6 Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK 7 Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1012 WX Amsterdam, The Netherlands; [email protected] 8 Provincial Health Division Ituri, Ministry of Health, Ituri, Congo; [email protected] Citation: Roach, M.; Cantu, A.; Vieri, 9 Provincial Health Division Bas Uélé, Ministry of Health, Bas Uélé, Congo; fl[email protected] M.K.; Cotten, M.; Kellam, P.; Phan, M.; 10 Provincial Health Division Tshopo, Ministry of Health, Tshopo, Congo; [email protected] Hoek, L.v.d.; Mandro, M.; Tepage, F.; 11 Médecins Sans Frontières, Bunia, Congo; [email protected] Mambandu, G.; et al.