Interpretation of Cytokine Signaling Through the Transcription Factors STAT5A and STAT5B

Total Page:16

File Type:pdf, Size:1020Kb

Interpretation of Cytokine Signaling Through the Transcription Factors STAT5A and STAT5B Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B Lothar Hennighausen1 and Gertraud W. Robinson Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA Transcription factors from the family of Signal Trans- the “wrong” STATs and thus acquire inappropriate cues. ducers and Activators of Transcription (STAT) are acti- We propose that mice with mutations in various com- vated by numerous cytokines. Two members of this fam- ponents of the JAK–STAT signaling pathway are living ily, STAT5A and STAT5B (collectively called STAT5), laboratories, which will provide insight into the versa- have gained prominence in that they are activated by a tility of signaling hardware and the adaptability of the wide variety of cytokines such as interleukins, erythro- software. poietin, growth hormone, and prolactin. Furthermore, constitutive STAT5 activation is observed in the major- ity of leukemias and many solid tumors. Inactivation Historical perspective studies in mice as well as human mutations have pro- In 1994, Bernd Groner and colleagues (Wakao et al. vided insight into many of STAT5’s functions. Disrup- 1994), then at the Friedrich Miescher Institute in Basel, tion of cytokine signaling through STAT5 results in a cloned a cDNA from lactating ovine mammary tissue variety of cell-specific effects, ranging from a defective that encoded a transcription factor promoting prolactin- immune system and impaired erythropoiesis, the com- induced transcription of milk protein genes in mammary plete absence of mammary development during preg- epithelium. The respective protein had been coined nancy, to aberrant liver function. On a molecular level, Mammary Gland Factor (MGF), implying specificity to STAT5 has been linked to cell specification, prolifera- the physiology of mammary tissue. However, based on tion, differentiation, and survival. Evidence is growing its similarity to the family of Signal Transducers and that the diverse outcomes of STAT5 signaling are not Activators of Transcription (STAT), it was renamed ap- only determined by the expression of specific receptors propriately STAT5. In 1995, three groups independently but also by the interaction of STAT5 with cofactors and cloned the mouse homolog, now named STAT5A, and a the cell-specific activity of members of the SOCS family, closely related protein, called STAT5B (Azam et al. 1995; which negatively regulate STAT function. In this re- Liu et al. 1995; Mui et al. 1995). It turned out that both view, we focus on emerging concepts and challenges in STAT5A and STAT5B are widely expressed and acti- the field of Janus kinase (JAK)–STAT5 signaling. First, vated by a plethora of cytokines, including prolactin we discuss unique functions of STAT5 in three distinct (PRL), growth hormone (GH), erythropoietin, thrombo- systems: mammary epithelial cells, hepatocytes, and poietin, and several interleukins (ILs). Since the first regulatory T cells. Second, we present an example of how publication in 1997 in these pages of mice that carried STAT5 can achieve cell specificity in hepatocytes either an inactivated Stat5a (Liu et al. 1997) or Stat5b through a physical and functional interaction with the (Udy et al. 1997) gene, we have witnessed great advances glucocorticoid receptor. Third, we focus on the relevance in our understanding of how cytokines transmit their of STAT5 in the development and progression of leuke- message and control physiology and pathophysiology. mia. Next, we discuss lessons derived from human mu- However, we are still far from understanding how a lim- tations and disease. Finally, we address an emerging is- ited set of generic components can trigger specific events sue that the interpretation of experiments from STAT5- ranging from lactation to leukemia. deficient mice and cells might be compromised as these cells might reroute and reprogram cytokine signals to Background STAT5A and STAT5B are two closely related members [Keywords: Mammary epithelium; hepatocytes; immunoregulation; of the family of STAT proteins. STAT5A and STAT5B body growth; cytokine] are 96% conserved at the protein level. The two proteins 1Corresponding author. E-MAIL [email protected]; FAX (301) 480-7312. contain 793 and 786 amino acids, respectively, and the Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1643908. highest degree of divergence is found in the C-terminal GENES & DEVELOPMENT 22:711–721 © 2008 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/08; www.genesdev.org 711 Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Hennighausen and Robinson transactivation domain. STAT5A and STAT5B are en- diately downstream from the Stat5a gene. Although the coded by two genes located on chromosome 11 (in Stat5a and Stat5b gene promoters might share certain mouse) and chromosome 17 (in humans) in a locus that regulatory elements, cell-preferential transcriptional also contains the Stat3 gene. patterns have emerged (Liu et al. 1995). While STAT5A STATs are the mediators of signals that emanate from is the prevalent STAT5 protein in mammary tissue, cytokine receptors. Considered latent transcription fac- STAT5B is more abundant in muscle and liver. Other tors, they are activated upon binding of a ligand to the tissues, such as heart and salivary gland, have an equiva- receptor by phosphorylation of a critical tyrosine residue lent distribution of STAT5A and STAT5B. In 1997, mice through Janus kinases (JAK). Activated STATs bind to with disabling mutations in the genes encoding STAT5A specific DNA sequences, named GAS (␥-interferon-acti- (Liu et al. 1997) and STAT5B (Udy et al. 1997) were re- vated sequences), and initiate transcription of target ported. Mice lacking the individual genes were viable genes. In the cytokine signaling pathway there are a large and displayed distinct defects. Loss of STAT5A resulted number of ligands and receptors that funnel into a lim- in impaired mammary development and differentiation ited number of transcription factors. STAT5 is impli- during pregnancy. The absence of STAT5B led to stunted cated in a wide variety of signaling events foremost in body growth. These gene-specific defects either reflect the immune system, mammary epithelial cells, and he- the tissue distribution of STAT5A and STAT5B or tis- patocytes. sue-specific functions of the two proteins. In 1998, Te- glund and colleagues (Teglund et al. 1998) introduced mutations in both genes in mice revealing redundant and Molecular structure of STAT molecules nonredundant roles of both isoforms. However, immu- nological defects were not as severe as had been antici- All members of the STAT family share a highly con- pated from mutations in receptors that signal through served molecular structure. Structural studies of STAT1, the JAK–STAT5 pathway. As it turned out, the gene tar- the best understood member of the family, have revealed geting mutations resulted in translation of hypomorphic an N-terminal domain, followed by an ␣-helical coiled- N-terminally truncated STAT5A and STAT5B proteins coil and DNA-binding domain and a linker that connects ⌬ (referred to as STAT5 N) that were able to form dimers to the C terminus. The C terminus contains the src ho- but not tetramers. To overcome this potential problem, mology 2 (SH2) domain, followed by a short region con- mice were generated that carried the 110-kb Stat5a/b taining a tyrosine residue, which is critical for the acti- locus flanked by loxP sites (Cui et al. 2004). This per- vation by phosphorylation through JAKs and a transac- mitted Cre-recombinase-based complete deletion of both tivation domain, which is the most divergent part within genes. These mice have been used extensively to explore the STAT family. The molecule contains two flexible cytokine–STAT5 signaling in specific cell types. loops, one between the N terminus and the core frag- ment and a second loop connecting the C terminus to the core. These loops are thought to allow conforma- tional changes in the transition from the inactive to the Mammary epithelium activated state. The three-dimensional structure of an The importance of STAT5A in the mammary gland is unphosphorylated STAT5A core fragment (residues 129– reflected in its original assignment as MGF, a transcrip- 712) lacking 129 amino acids from the N terminus and tion factor that stimulates prolactin-induced expression the C-terminal transactivation domain revealed overall of mammary-specific milk protein genes (Fig. 1). How- similarity to other STAT molecules (Neculai et al. 2005). ever, gene deletion revealed a much more profound role The N-terminal coil-coil domain forms a four-helix in mammary epithelial cells. Deletion of STAT5A (Liu bundle followed by a ␤-barrel domain that connects to et al. 1997) caused an attenuation of mammary alveolar the ␣-helical linker and SH2 domain. The unphosphory- development and milk secretion, while absence of lated STAT5A forms anti-parallel dimers in the cyto- STAT5B (Udy et al. 1997) did not affect mammary de- plasm through hydrophobic interactions of the four-he- velopment. The introduction of mutations into both lix bundle and ␤-barrel domains. Activation of STAT5A STAT5 genes had a much stronger effect, demonstrating by tyrosine phosphorylation induces
Recommended publications
  • The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer
    Published OnlineFirst October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 RESEARCH ARTICLE The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3, and Amina Zoubeidi1,2 ABSTRACT Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mecha- nistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with clas- sic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug- resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design.
    [Show full text]
  • Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101
    Corporate Medical Policy Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101 File Name: mutation_analysis_in_myeloproliferative_neoplasms Origination: 1/1/2019 Last CAP review: 8/2021 Next CAP review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal disorders characterized by overproduction of one or more differentiated myeloid lineages (Grinfeld, Nangalia, & Green, 2017). These include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The majority of MPN result from somatic mutations in the 3 driver genes, JAK2, CALR, and MPL, which represent major diagnostic criteria in combination with hematologic and morphological abnormalities (Rumi & Cazzola, 2017). Related Policies: BCR-ABL 1 Testing for Chronic Myeloid Leukemia AHS-M2027 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for mutation analysis in myeloproliferative neoplasms when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Mutation Analysis in Myeloproliferative Neoplasms is covered 1. JAK2, CALR or MPL mutation testing is considered medically necessary for the diagnosis of patients presenting with clinical, laboratory, or pathological findings suggesting classic forms of myeloproliferative neoplasms (MPN), that is, polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis (PMF) when ordered by a hematology and/or oncology specialist in the following situations: A.
    [Show full text]
  • Quantitative Modelling Explains Distinct STAT1 and STAT3
    bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title Quantitative modelling explains distinct STAT1 and STAT3 activation dynamics in response to both IFNγ and IL-10 stimuli and predicts emergence of reciprocal signalling at the level of single cells. 1,2, 3 1 1 1 1 1 2 Sarma U , Maitreye M , Bhadange S , Nair A , Srivastava A , Saha B , Mukherjee D . 1: National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India. 2 : Corresponding author. [email protected] , [email protected] 3: Present address. Labs, Persistent Systems Limited, Pingala – Aryabhata, Erandwane, Pune, 411004 India. bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Cells use IFNγ-STAT1 and IL-10-STAT3 pathways primarily to elicit pro and anti-inflammatory responses, respectively. However, activation of STAT1 by IL-10 and STAT3 by IFNγ is also observed. The regulatory mechanisms controlling the amplitude and dynamics of both the STATs in response to these functionally opposing stimuli remains less understood. Here, our experiments at cell population level show distinct early signalling dynamics of both STAT1 and STAT3(S/1/3) in responses to IFNγ and IL-10 stimulation.
    [Show full text]
  • 942.Full.Pdf
    Original Article Opposite Effect of JAK2 on Insulin-Dependent Activation of Mitogen-Activated Protein Kinases and Akt in Muscle Cells Possible Target to Ameliorate Insulin Resistance Ana C.P. Thirone, Lellean JeBailey, Philip J. Bilan, and Amira Klip Many cytokines increase their receptor affinity for Janus kinases (JAKs). Activated JAK binds to signal transducers and activators of transcription, insulin receptor substrates olypeptides such as erythropoietin, prolactin, (IRSs), and Shc. Intriguingly, insulin acting through its leptin, angiotensin, growth hormone, most inter- own receptor kinase also activates JAK2. However, the leukins, and interferon-␥ bind to receptors that impact of such activation on insulin action remains un- Plack intrinsic kinase activity, recruiting and acti- known. To determine the contribution of JAK2 to insulin vating cytoplasmic tyrosine kinases of the Janus family signaling, we transfected L6 myotubes with siRNA against (JAK) consisting of JAK1, JAK2, JAK3, and Tyk2 (1–3). JAK2 (siJAK2), reducing JAK2 protein expression by 75%. Activated JAK phosphorylates tyrosine residues within Insulin-dependent phosphorylation of IRS1/2 and Shc was not affected by siJAK2, but insulin-induced phosphoryla- itself and the associated receptor forming high-affinity tion of the mitogen-activated protein kinases (MAPKs) binding sites for a variety of signaling proteins containing Src homology 2 and other phosphotyrosine-binding do- extracellular signal–related kinase, p38, and Jun NH2- terminal kinase and their respective upstream kinases mains, including signal transducers and activators of tran- MKK1/2, MKK3/6, and MKK4/7 was significantly lowered scription, insulin receptor substrates (IRSs), and the when JAK2 was depleted, correlating with a significant adaptor protein Shc (1–4).
    [Show full text]
  • IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death
    IRF8 Regulates Gram-Negative Bacteria− Mediated NLRP3 Inflammasome Activation and Cell Death This information is current as Rajendra Karki, Ein Lee, Bhesh R. Sharma, Balaji Banoth of September 25, 2021. and Thirumala-Devi Kanneganti J Immunol published online 23 March 2020 http://www.jimmunol.org/content/early/2020/03/20/jimmun ol.1901508 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/03/20/jimmunol.190150 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 23, 2020, doi:10.4049/jimmunol.1901508 The Journal of Immunology IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death Rajendra Karki,*,1 Ein Lee,*,†,1 Bhesh R. Sharma,*,1 Balaji Banoth,* and Thirumala-Devi Kanneganti* Inflammasomes are intracellular signaling complexes that are assembled in response to a variety of pathogenic or physiologic stimuli to initiate inflammatory responses.
    [Show full text]
  • Reduced Expression of IL-12 Receptor B2 and IL-18 Receptor a Genes in Natural Killer Cells and Macrophages Derived from B6-Mi/Mi Mice
    Laboratory Investigation (2005) 85, 146–153 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Reduced expression of IL-12 receptor b2 and IL-18 receptor a genes in natural killer cells and macrophages derived from B6-mi/mi mice Tatsuki R Kataoka1,2, Nobuyasu Komazawa3, Keisuke Oboki1, Eiichi Morii1 and Toru Nakano1,4 1Department of Pathology, Medical School/Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan; 2Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan; 3Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan and 4Department of Molecular Cell Biology, Research Institute for Microbial Disease, Osaka University, Osaka, Japan The mi transcriptional factor (MITF) is a basic helix–loop–helix leucine zipper-type transcriptional factor. The mi mutant allele encodes an abnormal MITF, in which one out of four consecutive arginines is deleted in the basic domain. The VGA-9-tg (tg) allele is another mutant allele and considered to be a null mutant allele. C57BL/6 (B6)- mi/mi mice showed abnormal phenotypes of natural killer (NK) cells and macrophages, whereas B6-tg/tg mice did not. The expression levels of the genes for the interleukin-12 receptor (IL-12R) b2 and IL-18Ra were reduced in both the NK cells and macrophages of B6-mi/mi mice, while the expression levels of the corresponding genes in B6-tg/tg mice were unaffected. The B6-mi/mi NK cells and B6-mi/mi macrophages showed impaired responses to stimulation with IL-12, IL-18, and IL-12 plus IL-18 stimulation.
    [Show full text]
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • Signal Transducer and Activator of Transcription 5A/B in Prostate and Breast Cancers
    Endocrine-Related Cancer (2008) 15 367–390 REVIEW Signal transducer and activator of transcription 5A/B in prostate and breast cancers Shyh-Han Tan and Marja T Nevalainen Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA (Correspondence should be addressed to M T Nevalainen; Email: [email protected]) Abstract Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2- STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone- refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium.
    [Show full text]
  • Anti-Inflammatory Cytokines Hepatocyte Growth Factor and Interleukin-11 Are Over-Expressed in Polycythemia Vera and Contribute T
    Oncogene (2011) 30, 990–1001 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F M Boissinot1,3,4, C Cleyrat1,3, M Vilaine1, Y Jacques1, I Corre1 and S Hermouet1,2 1INSERM UMR 892, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France and 2Laboratoire d’He´matologie, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France The V617F activating mutation of janus kinase 2 (JAK2), Keywords: Polycythemia vera; JAK2V617F; hepatocyte a kinase essential for cytokine signalling, characterizes growth factor (HGF); interleukin 11 (IL-11); interleukin Polycythemia vera (PV), one of the myeloproliferative 6 (IL-6); inflammation neoplasms (MPN). However, not all MPNs carry mutations of JAK2, and in JAK2-mutated patients, expression of JAK2V617F does not always result in clone expansion. In the present study, we provide evidence that Introduction inflammation-linked cytokines are required for the growth of JAK2V617F-mutated erythroid progenitors. In a first Myeloproliferative neoplasms (MPNs) constitute a series of experiments, we searched for cytokines over- group of three clonal diseases: Polycythemia vera expressed in PV using cytokine antibody (Ab) arrays, and (PV), essential thrombocythemia (ET) and primary enzyme-linked immunosorbent assays for analyses of myelofibrosis. About half of MPN patients present with serum and bone marrow (BM) plasma, and quantitative activating mutations in the janus kinase 2 (JAK2) gene, reverse transcription–PCRs for analyses of cells purified which encodes for a tyrosine kinase essential for the from PV patients and controls.
    [Show full text]
  • Expression of Androgen Receptor Coregulators in Prostate Cancer
    1032 Vol. 10, 1032–1040, February 1, 2004 Clinical Cancer Research Expression of Androgen Receptor Coregulators in Prostate Cancer Marika J. Linja,1 Kati P. Porkka,1 Conclusions: These findings suggest that the decreased Zhikang Kang,3 Kimmo J. Savinainen,1 expression of PIAS1 and SRC1 could be involved in the progression of prostate cancer. In addition, gene amplifica- Olli A. Ja¨nne,3 Teuvo L. J. Tammela,2 4 3 tion of SRC1 in one of the xenografts implies that, in some Robert L. Vessella, Jorma J. Palvimo, and tumors, genetic alteration of SRC1 may provide a growth 1 Tapio Visakorpi advantage. 1Laboratory of Cancer Genetics, Institute of Medical Technology and 2Department of Urology, University of Tampere and Tampere University Hospital, Tampere, Finland; 3Institute of Biomedicine, INTRODUCTION 4 University of Helsinki, Helsinki, Finland; and Department of The critical role of androgens in the development of pros- Urology, University of Washington, Seattle, Washington tate cancer is indicated, for example, by the fact that prostate cancer does not develop in men castrated early in their life (1). ABSTRACT In addition, more that 50 years ago, Huggins and Hodges (2) Purpose: The androgen receptor (AR)-mediated signal- showed that hormonal therapy is an effective treatment for ing pathway seems to be essentially involved in the develop- prostate cancer. Subsequently, androgen withdrawal has become ment and progression of prostate cancer. In vitro studies the standard and is practically the only effective treatment for have shown that altered expression of AR coregulators may advanced prostate cancer. Although most prostate carcinomas significantly modify transcriptional activity of AR, suggest- are originally androgen dependent, they eventually become hor- ing that these coregulators could also contribute to the mone refractory during treatment (3).
    [Show full text]
  • The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse
    The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samantha J. Shaw May 2014 © 2014 Samantha J. Shaw. All Rights Reserved. 2 This thesis titled The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys by SAMANTHA J. SHAW has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Karen T. Coschigano Associate Professor of Biomedical Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT SHAW, SAMANTHA J., M.S., May 2014, Biological Sciences The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys Director of Thesis: Karen T. Coschigano Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and renal failure in humans. The molecular pathways that lead to DN are not well known. This research investigates possible roles of several signal transducers and activators of transcription (STAT) proteins in this disease using a STAT5A/B knockout (SKO) mouse model. Based on previous observations of increased inflammation-related gene expression in the kidneys of diabetic SKO mice, the hypothesis of the current project was that the combination of the loss of STAT5 repression and increase of STAT3 activity escalates inflammation-related gene expression in the kidneys of diabetic SKO mice. In support of this hypothesis, an increase of IRF-1 RNA expression, reflective of the loss of STAT5 repression, was observed in the kidneys of diabetic SKO mice.
    [Show full text]
  • Myeloid-Derived Suppressor Cell Development Is Regulated by a STAT/IRF-8 Axis
    Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D. Waight, … , Kebin Liu, Scott I. Abrams J Clin Invest. 2013;123(10):4464-4478. https://doi.org/10.1172/JCI68189. Research Article Immunology Myeloid-derived suppressor cells (MDSCs) comprise immature myeloid populations produced in diverse pathologies, including neoplasia. Because MDSCs can impair antitumor immunity, these cells have emerged as a significant barrier to cancer therapy. Although much research has focused on how MDSCs promote tumor progression, it remains unclear how MDSCs develop and why the MDSC response is heavily granulocytic. Given that MDSCs are a manifestation of aberrant myelopoiesis, we hypothesized that MDSCs arise from perturbations in the regulation of interferon regulatory factor–8 (IRF-8), an integral transcriptional component of myeloid differentiation and lineage commitment. Overall, we demonstrated that (a) Irf8-deficient mice generated myeloid populations highly homologous to tumor-induced MDSCs with respect to phenotype, function, and gene expression profiles; (b) IRF-8 overexpression in mice attenuated MDSC accumulation and enhanced immunotherapeutic efficacy; (c) the MDSC-inducing factors G-CSF and GM-CSF facilitated IRF-8 downregulation via STAT3- and STAT5-dependent pathways; and (d) IRF-8 levels in MDSCs of breast cancer patients declined with increasing MDSC frequency, implicating IRF-8 as a negative regulator in human MDSC biology. Together, our results reveal a previously unrecognized role for IRF-8 expression in MDSC subset development, which may provide new avenues to target MDSCs in neoplasia. Find the latest version: https://jci.me/68189/pdf Research article Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D.
    [Show full text]