Elements M Meteoritic Minerals

Total Page:16

File Type:pdf, Size:1020Kb

Elements M Meteoritic Minerals SMITHSONIAN CONTRIBUTIONS TO THE EARTH SCIENCES NUMBER 3 Brian Mason Minor and Trace and A. L. Graham pi t Elements m Meteoritic Minerals SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1970 ABSTRACT Mason, Brian and A. L. Graham. Minor and Trace Elements in Meteoritic Minerals. Smithsonian Contributions to the Earth Sciences, 3:1—17. 1970.—Nickel-iron, troilite, olivine, pyroxenes, plagioclase, chromite, and phosphate minerals (chlor- apatite and/or merrillite) have been separated from a number of meteorites (Modoc, St. Severin, Winona, Haraiya, Marjalahti, Springwater, Johnstown, Mt. Egerton, Soroti) and analyzed for minor and trace elements with the spark-source mass spectrometer. The elements Ni, Go, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au are concentrated in nickel-iron: Se and Ag in troilite; Th, U, and the lanthanides in the phosphate minerals and in diopside; Eu, Sr, Ba, Rb, and Gs in plagioclase. Molybdenum and tellurium are concentrated in nickel-iron and troilite. The elements Ti, Sc, V, Cu, Zn, Mn, and Ga are distributed over several coexisting minerals. Official publication date is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1970 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents (paper cover) Brian Mason Minor and Trace and A. L. Graham Elements in Meteoritic Minerals Introduction Vilcsek and Wanke (1965) and Honda and Shima (1967) ; however, study of their results indicates that During the past decade a very large amount of data this selective solution is seldom completely quantitative. has been accumulated on the abundances of minor and Moss et al. (1967) have developed a selective decom- trace elements in meteorites, and adequate informa- position procedure, based on heating a meteorite tion is now available on abundance levels of practically sample in a stream of dry chlorine, which enables all elements for the different classes of meteorite. The measurement of a number of elements in metal, sulfide, distribution of these elements, however, among the in- and silicate phases. dividual phases (minerals) of the meteorites is less well The introduction of the electron-beam microprobe known. This can be ascribed in part to the unavail- has made it possible to measure the concentration of ability of large enough samples of many meteorites many elements in the individual minerals in a polished (especially of the rarer classes) for mineral separation, section of a meteorite, without the necessity of sepa- and in part to the difficulty of making clean separations rating the individual minerals by physical or chemical of the fine-grained minerals in many meteorites, par- techniques. However, the lower detection limit of the ticularly the chondrites. The chondrites are, of course, microprobe is about 100 ppm, whereas comparatively of special interest, since they represent the least frac- few elements are present in the common minerals of tionated group of meteorites, and contain many minor meteorites above that level. and trace elements in amounts comparable to solar The spark source mass spectrometer appears to be abundances. an excellent tool with which to attack this problem. It Some significant information has been obtained by is extremely versatile, being capable of detecting all the analysis of magnetic (e.g., metallic) and nonmag- elements from boron to uranium at concentrations of netic (e.g., sulfide plus silicate) fractions of chon- the order of 0.1 ppm, and considerably less for some dritic meteorites (see, for example, Onishi and elements. Sample requirements are comparatively Sandell (1956), Wardani (1957), Shima (1964), small: 100 mg is a convenient amount, but good results Fouche and Smales (1967). This procedure, however, can be obtained on samples of 10-20 mg. This is very is useful only for distinguishing the extremely sidero- advantageous for chondritic meteorites, in which many phile elements, and provides no information on the dis- elements are concentrated in phases such as phosphates tribution of the other elements within the individual (apatite and/or merrillite) and chromite, present in minerals. Refined techniques of selective solution of amounts of less than 1 percent of the bulk meteorite. the different phases have been applied to chondrites by Brian Mason, Department of Mineral Sciences, National Mu- Experimental seum of Natural History, Smithsonian Institution, Washing- ton, D.C. 20560. A. L. Graham, Department of Geophysics MINERAL SEPARATION.—As originally planned, the and Geochemistry, The Australian National University, Can- principal objective of this research was to obtain com- berra, Australian Capital Territory, 2600. prehensive data on the distribution of minor and trace 1 SMITHSONIAN CONTRIBUTIONS TO THE EARTH SCIENCES elements among the minerals of the common chon- The portion with D>3.32 was further fractionated drites. Preliminary experiments showed that to obtain using Clerici solution of controlled density. Hyper- adequate samples of accessory minerals such as chro- sthene concentrated in the 3.32-3.45 fraction, olivine mite and the phosphates it would be necessary to start in the 3.50-3.60 fraction; chromite and troilite formed with about 100 g of the meteorite. This limited the se- the fraction with D>4.0. These fractions were fur- lection to chondrites available in considerable amounts. ther processed with the isodynamic separator, yielding Since terrestrial weathering would be a complicating reasonably pure separates of hypersthene, olivine, factor, only fresh falls were considered. Ultimately two troilite, and chromite. The hypersthene and chromite were selected from the meteorite collection of the fractions were further treated with hot HC1 to remove Smithsonian Institution, Modoc (NMNH 360), a any adhering olivine and troilite. hypersthene chondrite belonging to the L6 group of The 100-200 mesh magnetic fraction, consisting of Van Schmus and Wood (1967), and St. Severin metal particles with adhering silicates, was placed in (NMNH 2608), a hypersthene chondrite (amphoter- a beaker of acetone and agitated repeatedly in an ite subclass) belonging to the LL6 group. General de- ultrasonic cleaner. The silicates were separated from scriptions of these meteorites, with bulk analyses, have the metal by magnetic separation (Modoc), and by been published: Modoc (Mason and Wiik, 1967) ; St. centrifugation in Clerici solution (St. Severin). Severin (Jarosewich and Mason, 1969). The purity of these mineral separates was evaluated A crust-free piece weighing about 100 g was cut from by microscopic examination. The Modoc fractions were each of these meteorites. The pieces were broken into uniformly purer than those from St. Severin, this being smaller fragments which were carefully crushed in a conditioned by the somewhat coarser crystallinity of hardened steel mortar until all the material passed Modoc. Notes on the individual minerals follow. through a 10-mesh sieve. Further crushing in a large Modoc olivine: about 99 percent pure; impurity agate mortar reduced all the material to —100 mesh, mainly pyroxene; some grains contain minute opaque except for coarse metal particles, which were removed inclusions, probably chromite; slight limonite staining with a hand magnet. We found the optimum size for on many grains. mineral separation was the —200 +325 mesh fraction, Modoc hypersthene: about 98 percent pure; im- except for the metal, most of which was coarser than purities are tiny inclusions of plagioclase and admixed 200 mesh, and for which the —100 +200 fraction was grains of diopside. used. Modoc feldspar: about 99 percent pure; principal The —200 +325 fraction was sedimented in a impurity is pyroxene, as tiny inclusions; a few grains large beaker with distilled water to remove dust. Metal- show a small amount of opaque dust, probably lic particles were removed with a magnet from the chromite. dried fraction, after which this fraction was separated Modoc troilite: about 98 percent pure, impurities into two portions by centrifuging in pure CH2I2 are olivine and pyroxene. (D = 3.32). The denser portion consisted largely of Modoc chromite: about 99 percent pure; impurity olivine and pyroxene, with minor amounts of troilite is mainly pyroxene. and chromite; the less dense portion contained the Modoc metal: about 95 percent pure; principal plagioclase and phosphate minerals; both portions still impurities are olivine and pyroxene. contained a considerable quantity of composite grains. Modoc phosphate: about 99 percent pure; impuri- Pure plagioclase was obtained by extracting a frac- ties are tiny inclusions of olivine, pyroxene, and plagioclase. tion with D<2.70 (centrifugation in CH2I2-acetone mixture), purification of this fraction with the Frantz The impurities in the St. Severin separates were Isodynamic Separator, and boiling the final separate essentially the same as the corresponding Modoc sepa- in HC1 to remove any adhering acid-soluble minerals. rates, but the estimated purity was lower, viz, olivine, The phosphate minerals were concentrated in the 97 percent; hypersthene, 95 percent; feldspar, 96 per- fraction with D = 3.08-3.20, followed by passage cent; troilite, 94 percent; chromite, 98 percent; metal, through the isodynamic separator at full power, the 90 percent; phosphate, 98 percent. phosphate being entirely nonmagnetic. Only small In order to provide
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs The Moss (CO3) meteorite: an integrated isotopic, organic and mineralogical study Conference or Workshop Item How to cite: Greenwood, R. C.; Pearson, V. K.; Verchovsky, A. B.; Johnson, D.; Franchi, I. A.; Roaldset, E.; Raade, G. and Bartoschewitz, R. (2007). The Moss (CO3) meteorite: an integrated isotopic, organic and mineralogical study. In: 38th Lunar and Planetary Science Conference (Lunar and Planetary Science XXXVIII), 12-16 Mar 2007, Houston, Texas. For guidance on citations see FAQs. c [not recorded] Version: [not recorded] Link(s) to article on publisher’s website: http://www.lpi.usra.edu/meetings/lpsc2007/pdf/2267.pdf Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Lunar and Planetary Science XXXVIII (2007) 2267.pdf THE MOSS (CO3) METEORITE: AN INTEGRATED ISOTOPIC, ORGANIC AND MINERALOGICAL STUDY. R. C. Greenwood1, V. K. Pearson1, A. B. Verchovsky1, D. Johnson1, I. A. Franchi1, E. Roaldset2, G. Raade2 and R. Bartoschewitz3, 1Planetary and Space Sciences Research Institute, Open University, Milton Keynes, MK7 6AA, UK. E-mail: [email protected]; 2Naturhistorisk museum, Universitetet i Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway; 3Meteorite Laboratory, Lehmweg 53, D-38518 Gifhorn, Germany. Introduction: Following a bright fireball and a oxygen three-isotope diagram (Fig.1) previously ana- loud explosion the Moss meteorite fell on 14 July 2006 lyzed CO3 falls plot as a tight central cluster with CO3 at approximately 10:20am in the Moss-Rygge area on finds on either side [7].
    [Show full text]
  • Sulfide/Silicate Melt Partitioning During Enstatite Chondrite Melting
    61st Annual Meteoritical Society Meeting 5255.pdf SULFIDE/SILICATE MELT PARTITIONING DURING ENSTATITE CHONDRITE MELTING. C. Floss1, R. A. Fogel2, G. Crozaz1, M. Weisberg2, and M. Prinz2, 1McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, St. Louis MO 63130, USA ([email protected]), 2American Museum of Natural History, Department of Earth and Planetary Sciences, New York NY 10024, USA. Introduction: Aubrites are igneous rocks thought (present only in CaS-saturated charges) has a flat REE to have formed from an enstatite chondrite-like pattern with abundances of about 0.5 x CI. precursor [1]. Yet their origin remains poorly Discussion: Oldhamite/glass D values are close to understood, at least partly because of confusion over 1 for most REE, consistent with previous results the role played by sulfides, particularly oldhamite. [4,5,6], and significantly lower than those expected CaS in aubrites contains high rare earth element based on REE abundances in aubritic oldhamite. In (REE) abundances and exhibits a variety of patterns contrast, D values for FeS are surprisingly high (from [2] that reflect, to some extent, those seen in about 0.1 to 1), given the low REE abundances of oldhamite from enstatite chondrites [3]. However, natural troilite. FeS/silicate partition coefficients experimental work suggests that CaS/silicate melt reported by [5] are somewhat lower, but exhibit a REE partition coefficients are too low to account for similar pattern. Alkali loss from the charges, the high abundances observed [4,5] and do not explain resulting in Ca-enriched glass, might provide a partial the variable patterns.
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • Nanomagnetic Properties of the Meteorite Cloudy Zone
    Nanomagnetic properties of the meteorite cloudy zone Joshua F. Einslea,b,1, Alexander S. Eggemanc, Ben H. Martineaub, Zineb Saghid, Sean M. Collinsb, Roberts Blukisa, Paul A. J. Bagote, Paul A. Midgleyb, and Richard J. Harrisona aDepartment of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom; bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom; cSchool of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom; dCommissariat a` l’Energie Atomique et aux Energies Alternatives, Laboratoire d’electronique´ des Technologies de l’Information, MINATEC Campus, Grenoble, F-38054, France; and eDepartment of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom Edited by Lisa Tauxe, University of California, San Diego, La Jolla, CA, and approved October 3, 2018 (received for review June 1, 2018) Meteorites contain a record of their thermal and magnetic history, field, it has been proposed that the cloudy zone preserves a written in the intergrowths of iron-rich and nickel-rich phases record of the field’s intensity and polarity (5, 6). The ability that formed during slow cooling. Of intense interest from a mag- to extract this paleomagnetic information only recently became netic perspective is the “cloudy zone,” a nanoscale intergrowth possible with the advent of high-resolution X-ray magnetic imag- containing tetrataenite—a naturally occurring hard ferromagnetic ing methods, which are capable of quantifying the magnetic state mineral that
    [Show full text]
  • Assessment of the Mesosiderite-Diogenite Connection and an Impact Model for the Genesis of Mesosiderites
    45th Lunar and Planetary Science Conference (2014) 2554.pdf ASSESSMENT OF THE MESOSIDERITE-DIOGENITE CONNECTION AND AN IMPACT MODEL FOR THE GENESIS OF MESOSIDERITES. T. E. Bunch1,3, A. J. Irving2,3, P. H. Schultz4, J. H. Wittke1, S. M. Ku- ehner2, J. I. Goldstein5 and P. P. Sipiera3,6 1Dept. of Geology, SESES, Northern Arizona University, Flagstaff, AZ 86011 ([email protected]), 2Dept. of Earth & Space Sciences, University of Washington, Seattle, WA, 3Planetary Studies Foundation, Galena, IL, 4Dept. of Geological Sciences, Brown University, Providence, RI, 5Dept. of Geolo- gy, University of Massachusetts, Amherts, MA, 6Field Museum of Natural History, Chicago, IL. Introduction: Among well-recognized meteorite 34) is the most abundant silicate mineral and in some classes, the mesosiderites are perhaps the most com- clasts contains inclusions of FeS, tetrataenite, merrillite plex and petrogenetically least understood. Previous and silica. Three of the ten norite clasts contain a few workers have contributed important information about tiny grains of olivine (Fa24-32). A single, fine-grained “classic” falls and Antarctic finds, and have proposed breccia clast was found in NWA 5312 (see Figure 2). several different models for mesosiderite genesis [1]. Unlike the case of pallasites, the co-occurrence of met- al and silicates (predominantly orthopyroxene and cal- cic plagioclase) in mesosiderites is inconsistent with a single-stage “igneous” history, and instead seems to demand admixture of at least two separate compo- nents. Here we review the models in light of detailed ex- amination of multiple specimens from a very large mesosiderite strewnfield in Northwest Africa. Many specimens (totaling at least 80 kilograms) from this area (probably in Algeria) have been classified sepa- rately by us and others; however, in most cases the Figure 1.
    [Show full text]
  • Validity of the Apatite/Merrillite Relationship in Evaluating the Water Content in the Martian Mantle: Implications from Shergottite Northwest Africa (NWA) 2975
    Originally published as: Słaby, E., Förster, H.‐J., Wirth, R., Giera, A., Birski, Ł., Moszumańska, I. (2017): Validity of the Apatite/Merrillite Relationship in Evaluating the Water Content in the Martian Mantle: Implications from Shergottite Northwest Africa (NWA) 2975. ‐ Geosciences, 7, 4. DOI: http://doi.org/10.3390/geosciences7040099 geosciences Article Validity of the Apatite/Merrillite Relationship in Evaluating the Water Content in the Martian Mantle: Implications from Shergottite Northwest Africa (NWA) 2975 Ewa Słaby 1,*, Hans-Jürgen Förster 2, Richard Wirth 2, Alicja Wudarska 1,2, Łukasz Birski 1 and Izabela Moszuma ´nska 1 1 Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warsaw, Poland; [email protected] (A.W.); [email protected] (Ł.B.); [email protected] (I.M.) 2 Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany; [email protected] (H.-J.F.); [email protected] (R.W.) * Correspondence: [email protected] Received: 17 July 2017; Accepted: 26 September 2017; Published: 4 October 2017 Abstract: Phosphates from the Martian shergottite NWA 2975 were used to obtain insights into the source and subsequence differentiation of the melt/melts. The crystallization of two generations of fluorapatite (F > Cl~OH and F-rich), chlorapatite and ferromerrillite-merrillite were reconstructed from TEM (Transmission Electron Microscopy) and geochemical analyses. The research results indicated that the recognized volatiles budget of the two generations of fluorapatite was related to their magmatic origin. The apatite crystals crystallized from an evolved magma during its final differentiation and degassing stage.
    [Show full text]
  • 8. Projectile ˜˜˜
    8. Projectile ˜˜˜ Meteoritic remnants of the impacting asteroid that produced Barringer Crater littered the landscape when exploration began ~115 years ago. As described in Chapter 1, meteoritic irons are what initially captured Foote’s interest and spurred Barringer’s interest in a possibly rich natural source of native metal. After Foote’s description was published, samples were collected by F. W. Volz at a nearby trading post and sold widely. Gilbert (1896) estimated that 10 tons of meteoritic debris had already been recovered by the time of his visit. Similarly, Barringer (1905) estimated that 10 to 15 tons of it were circulating around the world by the time his exploration work began. Fortunately, he tried to document the geographic and mass distribution of that debris in a detailed map, which is reproduced in Fig. 8.1. The map indicates that meteoritic irons were recovered from distances approaching 10 km. Gilbert (1896) apparently recovered a sample nearly 13 km beyond the crater rim. A lot of the meteoritic material was oxidized. It is sometimes simply called oxidized iron, but large masses are also called shale balls. A concentrated deposit of small oxidized iron fragments was found northeast of the crater, although those types of fragments are distributed in all directions around the crater. The current estimate of the recovered meteoritic iron mass is 30 tons (Nininger, 1949; Grady, 2000), although this is a highly uncertain number. Specimens were transported in pre-historical times and have been found scattered throughout Arizona (see, for example, Wasson, 1968). Specimens have also been illicitly removed in recent times, without any documentation of the locations or masses recovered.
    [Show full text]
  • MARTIAN METEORITES: GEOCHEMISTRY and SUCH 6:00 P.M
    Lunar and Planetary Science XLVIII (2017) sess333.pdf Tuesday, March 21, 2017 [T333] POSTER SESSION I: MARTIAN METEORITES: GEOCHEMISTRY AND SUCH 6:00 p.m. Town Center Exhibit Area Irving A. J. Kuehner S. M. Lapen T. J. Righter M. Busemann H. et al. POSTER LOCATION #466 Keeping Up with the Martian Meteorites and Constraining the Number of Separate Launch Sites on Mars [#2068] Petrologic, chemical, and cosmogenic nuclide criteria suggest that the 101 unpaired martian meteorites may come from as few as 20 launch sites on Mars. Habermann M. Agee C. Spilde M. POSTER LOCATION #467 Multi-Layered Clast in Martian Breccia Northwest Africa 10922 [#2743] We performed chemical analyses of an unusual, concentrically-layered clast within the martian breccia NWA 10922. Santos A. R. Lewis J. A. Agee C. B. Humayun M. McCubbin F. M. et al. POSTER LOCATION #468 Feldspar Variability in Northwest Africa 7034 [#2349] Northwest Africa 7034 contains feldspar of different grain size, texture, and composition, some of which suggest modification by secondary alteration. Cao T. He Qi. POSTER LOCATION #469 Petrology and Mineral Chemistry of the Eniched Basaltic Shergottite Northwest Africa 8656 [#1384] The characterization of primary petrography and mineralogy of Northwest Africa 8656, basalt shergottite, are described in this abstract. Jacobs G. M. Abernethey F. J. Anand M. Franchi I. A. Grady M. M. POSTER LOCATION #470 Understanding the Early Martian Environment Through the Inventory of Breccia Clasts in Northwest Africa 7034 [#2139] The clasts and matrices of Northwest Africa 7034 and its breccia clasts reveal the meteorite aggregates material from multiple sources with distinct histories.
    [Show full text]
  • (M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
    crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å .
    [Show full text]
  • Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
    Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock­ The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock­ annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]