Wind and Rain Interaction in Erosion

Total Page:16

File Type:pdf, Size:1020Kb

Wind and Rain Interaction in Erosion WIND AND RAIN INTERACTION IN EROSION 2004 Tropical Resource Management Papers, No. 50 (2004). ISBN 90-67S4-843X ISSN: 0926-9495 Financial support for the organisation of the course titeled: "Wind and Water Erosion: Modelling and Measurements" was obtained from the C.T. de Wit graduate school PE & RC, Wageningen, The Netherlands. Financial support for the printing of this publication was obtained from the Stichting "Fonds Landbouw Export-Bureau 1916/1918", Wageningen, The Netherlands. WIND AND RAIN INTERACTION IN EROSION Saskia M. Visser and Wim M. Cornells (eds.) Acknowledgements The idea for organizing a combined wind and water erosion course was bom while 1 visited the Wind Erosion Unit (Manhattan, Kansas) and the National Soil Erosion Laboratory (Purdue, Indiana) as part of my thesis-work. Back in the Netherlands, Ghent University was contacted and preparations started. Thanks to financing of the C.T. de Wit graduate School PE & RC (Wageningen, The Netherlands), the course "Wind and Water Erosion: Modelling ad Measurement" started in September 2003. Young (PhD) researchers with 9 different nationalities came together to discuss and learn more about the interaction between wind and water erosion. I would like to thank Ghent University and the Erosion and Soil & Water Conservation Group of Wageningen University for hosting the course. Special thanks for their contribution to the course goes to the lectures: Ed Skidmore (WERU, Kansas University), Dennis Flanagan (NSEL, Purdue University), Donald Gabriels (Ghent University), Leo Stroosnijder (ESW, Wageningen University), Gunay Erpul, (Soil Department, University of Ankara), Wim Comelis (Ghent University), Michel Riksen (ESW, Wageningen University) and Geert Sterk (ESW, Wageningen University). At the end of the course the idea came up to combine the experiences and ideas of this group of researchers in this special edition of TRMP, for which financing for printing was obtained from the Stichting "Fonds Landbouw Export-Bureau 1916/1918", Wageningen, The Netherlands. Last but not last I want to thank all authors who contributed to this 50' edition of Tropical Resource Mangement Papers. Saskia Faye- Visser Table of Contents Chapter 1 Introduction L. Slroosnijder and D. Gabriels Chapter 2 Commonalities in WEPP and WEPS and Efforts Towards 15 a Single Erosion Process Model D.C.Flanagan and S.M. Visser Chapter 3 Applications of WEPP and WEPS in the Benelux 31 Using WEPP for Single Rainfall Event Prediction in Belgium 33 A.'. Verbist and W. Schiellecatte Predicting the Effect of Tilling Practices on Wind Erosion Activity 43 M.J. P.M. Riksen and S.M. Visser Chapter 4 Upscaling Wind and Water Erosion Models 59 Far from reality? S.M. Visser and J. Palma Chapter 5 The Role of Crust Formation in the Interaction Between 69 Wind and Water Erosion in the Sahel S.M. Visser and J.K. Leenders Chapter 6 Effect of Wind on Runoff 79 G. Erpul, D. Gabriels and D. Norton Chapter 7 The Role of Wind and Water Erosion in Drift-Sand Areas 97 in the Netherlands M.J.P.M. Riksen, D. Goosens and P. D. Jungerius Chapter 8 Effect of Wind-Driven Rain on Transport of Sand by 129 Splash Saltation W.M. Cornells and D. Gabriels Chapter 9 Effect of Slope Aspect on Sediment Transport 143 G. Erpul, D. Gabriels and D. Norton Chapter 10 Wind and Water Erosion in East Africa 157 G.R. Henneman Chapter 11 Farmers' Indicators for Water and Wind Erosion 167 O. Vigiak and J. K. Leenders Chapter 12 Measurement Options for Water and Wind Erosion 183 L. Stroosnijder Chapter 13 The I.C.E. Wind Tunnel for Wind and Water Interaction 195 Research W. M. Comelis, G. Erpul and D. Gabriels Chapter 14 Future Work on Wind and Water Interaction in Erosion 225 Models L. Stroosnijder and D. Gabriels Chapter 1 Introduction L. Stroosnijder & D. Gabriels 'Wageningen University, Erosion and Soil & Water Conservation Group, Nieuwe Kanaal 11, 6709 PA Wageningen; Email: [email protected] 2Dept. Soil Management and Soil Care, International Centre for Eremology, Ghent University, Coupure links 653, B-9000 Gent, Belgium; Email:[email protected] Introduction The 'Tropical Resources Management Papers' (TRMP) series is published by Wageningen UR to disseminate the results obtained by past and present researchers and graduate students in Wageningen research projects on managing tropical and subtropical resources. This 50" publication in the TRMP series is special because it brings together wind and water erosion, students and staff from Ghent and Wageningen universities, and American modeling experts from The National Soil Erosion Laboratory (NSEL), Purdue University, Indiana, USA (WEPP; Water Erosion Prediction Project) and the Wind Erosion Unit (WERU) at Manhattan, Kansas, USA (WEPS; Wind Erosion Prediction System). The classic paradigm is that water and wind erosion have little in common; they occur in different climates at different moments of the year, with water erosion confined to the humid zones during the rainy season and wind erosion to the more arid zones during the dry season. However, at the onset of the rainy season in semi-arid environments, high intensity rainfall is often preceded by strong convective winds and the processes of wind and water erosion occur almost simultaneously at the same location. Further, there is growing evidence of interaction between the two processes. In Australia and the West African Sahel, rivers draining inland towards desert regions bring vast amounts of sediment to semi-arid regions; when dry, these sediments may be vulnerable to wind erosion. In this way, water erosion of soils in the more humid margins of deserts is an important source of sediment for dust storms in semi-arid areas (McTainsh et al., 1992). On a smaller scale, the processes of wind and water erosion control crust formation and the dynamics of the fine particles. Under the influence of water, specific crusts that mitigate wind erosion are formed. Cultivated fields are the source of fine particles that will be eroded by wind and deposited elsewhere, where they result in more crust development and, in turn, in more runoff and erosion. So, the interaction between wind and water erosion plays an important role in fertility management in traditional agrosystems (Rajot and Valentin, 2001; Visser, 2004). The interaction between wind and water erosion also affects mass transport. Though wind is a factor that has important roles in water erosion processes, very few studies have been done on the effect of wind on raindrops and overflow characteristics (Erpul et al., 2004). In wind-driven rains, the wind velocity and direction are expected to affect not only the energy input of the rains, but also the shallow flow hydraulics, because impacting raindrops induce changes in micro relief. Significant aspects of the erosion processes in situations where wind and rain occur simultaneously are still imperfectly understood. In his wind tunnel study, Comelis (2002) showed that the particles transported due to wind-driven rain traveled higher and longer than particles saltating in rainless wind. Despite the many differences in the processes of wind and water erosion, there are also many similarities. Air and water are both fluids and thus air behaves in many ways like water. Sediments are detached by the same lift forces and so both fluids have to overcome the same resistances to stress. Sediment transport, whether by wind or by water, is dependent on the transport capacity of the fluid. When the flow is hindered by obstacles, this capacity decreases and selective deposition will occur: the coarser sediment is deposited first, and the finest sediment last. The similarities between the processes result in commonalities in the models describing the processes of wind and water erosion. II Chapter 1 There has been substantial effort in research and development of models of water erosion, and since the 1980s the number of publications on wind erosion has been rising sharply. However, so far the interrelationship between wind and water erosion has not attracted much interest, even though these interactions are an important component of the continuous land degradation in semi-arid environments. Furthermore, despite the clear commonalities, so far there has not been a single model that describes/predicts both the processes of wind and water erosion; neither has there been worldwide collaboration between the experts in the two research fields. To redress this, the idea was bom to bring together Ph.D. students interested in the commonalities between wind and water erosion in a 2-week postgraduate course under supervision of the Wageningen 'Production Ecology and Resource Conservation' Graduate School. The long-standing collaboration between the universities of Ghent and Wageningen made it easy to assemble a team of Dutch and Belgian students. The lecturers from Ghent and Wagenmgen were augmented by lecturers from Purdue and Kansas State universities. One week of the course was in Ghent and one in Wageningen. The students contributed their recent research experience in the form of case studies, and the lecturers contributed results from previous projects. The course was so successful that at its conclusion it was decided to combine all the experience and ideas into this special 50* TRMP publication. The book starts with a discussion in chapter 2 on the commonalities of WEPP and WEPS, two physically based models on water and wind respectively, developed in the USA. Their applicability outside the USA is discussed in chapter 3 and the possibilities for upscaling field-scale models to the region scale are described in chapter 4. Chapters 5 through 9 highlight the various aspects of the interrelationship between wind and water. How African farmers recognize the presence of wind and water erosion is described in chapter 10. Chapter 11 discusses the various techniques for measuring wind and water erosion separately, and chapter 12 describes the use of a wind tunnel to investigate water and wind interaction.
Recommended publications
  • Adapting the Water Erosion Prediction Project (WEPP) Model for Forest Applications
    Journal of Hydrology 366 (2009) 46–54 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Adapting the Water Erosion Prediction Project (WEPP) model for forest applications Shuhui Dun a,*, Joan Q. Wu a, William J. Elliot b, Peter R. Robichaud b, Dennis C. Flanagan c, James R. Frankenberger c, Robert E. Brown b, Arthur C. Xu d a Washington State University, Department of Biological Systems Engineering, P.O. Box 646120, Pullman, WA 99164, USA b US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA c US Department of Agriculture, Agricultural Research Service (USDA-ARS), National Soil Erosion Research Laboratory, West Lafayette, IN 47907, USA d Tongji University, Department of Geotechnical Engineering, Shanghai 200092, China article info summary Article history: There has been an increasing public concern over forest stream pollution by excessive sedimentation due Received 11 July 2008 to natural or human disturbances. Adequate erosion simulation tools are needed for sound management Received in revised form 6 December 2008 of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in Accepted 12 December 2008 forest applications where Hortonian flow is the major form of runoff, such as modeling erosion from roads, harvested units, and burned areas by wildfire or prescribed fire. Nevertheless, when used for mod- eling water flow and sediment discharge from natural forest watersheds where subsurface flow is dom- Keywords: inant, WEPP (v2004.7) underestimates these quantities, in particular, the water flow at the watershed Forest watershed outlet. Surface runoff Subsurface lateral flow The main goal of this study was to improve the WEPP v2004.7 so that it can be applied to adequately Soil erosion simulate forest watershed hydrology and erosion.
    [Show full text]
  • Soil Erosion Prediction in the Grande River Basin, Brazil Using Distributed Modeling
    Catena 79 (2009) 49–59 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling S. Beskow a,b,⁎, C.R. Mello b, L.D. Norton c, N. Curi d, M.R. Viola b, J.C. Avanzi a,d a National Soil Erosion Research Laboratory, 275 South Russell Street, Purdue University, 47907-2077, West Lafayette, IN, USA b Department of Agricultural Engineering, Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil c USDA-ARS National Soil Erosion Research Laboratory, 275 South Russell Street, Purdue University, 47907-2077, West Lafayette, IN, USA d Department of Soil Science, Federal University of Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil article info abstract Article history: Mapping and assessment of erosion risk is an important tool for planning of natural resources management, Received 20 June 2008 allowing researchers to modify land-use properly and implement management strategies more sustainable in Received in revised form 25 May 2009 the long-term. The Grande River Basin (GRB), located in Minas Gerais State, is one of the Planning Units for Accepted 27 May 2009 Management of Water Resources (UPGRH) and is divided into seven smaller units of UPGRH. GD1 is one of them that is essential for the future development of Minas Gerais State due to its high water yield capacity and Keywords: potential for electric energy production. The objective of this study is to apply the Universal Soil Loss Equation Simulation (USLE) with GIS PCRaster in order to estimate potential soil loss from the Grande River Basin upstream from the Erosion fi USLE Itutinga/Camargos Hydroelectric Plant Reservoir (GD1), allowing identi cation of the susceptible areas to GIS water erosion and estimate of the sediment delivery ratio for the adoption of land management so that further Soil conservation soil loss can be minimized.
    [Show full text]
  • A Landscape Evolution Model with Dynamic Hydrology
    r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology Brendan Alexander Harmon1, Helena Mitasova2,3, Anna Petrasova2,3, and Vaclav Petras2,3 1Robert Reich School of Landscape Architecture, Louisiana State University, Baton Rouge, Louisiana, USA 2Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA 3Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA Correspondence: Brendan Harmon ([email protected]) Nota bene: since we have restructured the manuscript, the references to sections, equations, figures, and tables in our responses refer to the revised paper. 1 Reviewer 1 Comment Although the difference between steady-state and dynamic flow regimes is discussed, the differences between the 5 erosion regimes (e.g. detachment capacity limited, transport capacity limited, erosion-deposition and detachment limited) are less clear. A more thorough discussion of those regimes and their differences would allow for a clearer understanding of the results of the model compared to the typical characteristics associated with these regimes. On P16 L24 to L27, the results of SIMWE were compared to the characteristics typical of the simulated erosion regime. Establishing the characteristics of the erosion regimes earlier, perhaps after the explanation of the flow regimes, would give the reader more clarity regarding what 10 influences these regimes and how the model compares to real-world characteristics. Response We have restructured the paper and now thoroughly discuss soil erosion-deposition regimes in Section 2.1.2 with equations 6-9. 15 Comment Given that the study area has information for 2012 and 2016, one possible improvement is to compare the model results to the observed difference between those two years.
    [Show full text]
  • Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
    International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters.
    [Show full text]
  • Application of the WEPP Model to Surface Mine Reclamation• By
    Application of the WEPP Model to Surface Mine Reclamation• by W. J. Elliot Wu Qiong Annette V. Elliot2 Abstract. Sediment from mining sources contributes to the pollution of surface waters. Restoration of mined sites can reduce the problems associated with erosion, and one of the most important objectives of surface mine reclamation is the control of surface runoff and erosion from reclaimed areas. Current methods for predicting sediment yield do not suit surface mine sites because non- agricultural soils and vegetation are involved. There is a need for a computer model to aid in identifying improved management systems and reclamation practices with suitable input data files and appropriate hydrologic modeling routines. The USDA Water Erosion Prediction Project (WEPP) resulted in the development of a computer model based on fundamental erosion mechanics. The WEPP model will be in widespread use by the mid 1990s by the Soil Conservation Service (SCSI, and will be the erosion prediction model of choice well into the next century. This paper gives an overview of the WEPP erosion prediction technology and its implications to surface mine reclamation, and reports on a research project that identifies critical watershed parameters unique to surface mining and reclamation through a sensitivity analysis of the WEPP Watershed Model. The study contributes to the validation of the WEPP Watershed Version by comparing estimates generated by the model with observed data from watersheds after surface mining. Additional Key Words: Erosion simulation INTRODUCTION control of surface runoff and erosion from reclaimed areas (Mitchell et al., 1983; Hartley As renewable fossil fuel energy reserves are and Schuman, 1984).
    [Show full text]
  • Erosion and Sediment Control for Agriculture
    Chapter 4C: Erosion and Sediment Control 4C: Erosion and Sediment Control Management Measure for Erosion and Sediment Apply the erosion component of a Resource Management System (RMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture–Natural Resources Conservation Service (see Appendix B) to minimize the delivery of sediment from agricultural lands to surface waters, or Design and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency. Management Measure for Erosion and Sediment: Description Application of this management measure will preserve soil and reduce the mass of sediment reaching a water body, protecting both agricultural land and water quality. This management measure can be implemented by using one of two general strategies, or a combination of both. The first, and most desirable, strategy is to implement practices on the field to minimize soil detachment, erosion, and transport of sediment from the field. Effective practices include those that maintain crop residue or vegetative cover on the soil; improve soil properties; Sedimentation reduce slope length, steepness, or unsheltered distance; and reduce effective causes widespread water and/or wind velocities. The second strategy is to route field runoff through damage to our practices that filter, trap, or settle soil particles. Examples of effective manage- waterways. Water ment strategies include vegetated filter strips, field borders, sediment retention supplies and wildlife ponds, and terraces. Site conditions will dictate the appropriate combination of resources can be practices for any given situation.
    [Show full text]
  • The Water Erosion Prediction Project (WEPP) Model
    WEPP Model Background, Status, and Current Projects Dennis C. Flanagan Research Agricultural Engineer USDA-Agricultural Research Service Adjunct Professor Purdue Univ., Dept. of Agric. & Biol. Eng. National Soil Erosion Research Laboratory West Lafayette, Indiana, USA “The NSERL – to provide the knowledge and technology needed by land users to conserve soil for future generations.” Building dedicated 1/15/1982 Presentation Outline Erosion Prediction History WEPP Model Background Model Status – 2015 Current Projects Summary Scales of interest 0.01 to 1 ha – Hillslope scale Hillslope profiles in 1 to 1000 ha – Field, farm scale agricultural fields, forested areas, rangeland parcels, Small watersheds in landfills, mines, highways, agricultural fields, on farms, construction sites, etc. in forested catchments, construction sites, etc. Important Processes at these Scales Precipitation (and weather in general) – rainfall occurrence, volume, storm duration, intensity Surface hydrology – infiltration, pondage, ET, runoff Subsurface hydrology – percolation, seepage, lateral flow Hillslope erosion processes – detachment by rainfall, shallow flow transport, rill detachment by flow shear stress, sediment transport, sediment deposition. Channel erosion processes – detachment by flow shear stress, sediment transport, downcutting to a nonerodible layer, sediment deposition. Hillslope region from a small watershed Erosion Prediction History Early tools developed in the 1940’s-1970’s were all empirically-based. Universal Soil Loss Equation (USLE) and revisions Beginning in late 1970’s, efforts began to focus on process-based modeling. ANSWERS and CREAMS models were first distributed parameter hillslope/watershed models with some physical processes represented. They still used USLE for sediment generation. In 1985, the Water Erosion Prediction Project (WEPP) was initiated by USDA, at a meeting in Lafayette, Indiana.
    [Show full text]
  • Application of the Wind Erosion Prediction System in the Airpact Regional Air Quality Modeling Framework
    APPLICATION OF THE WIND EROSION PREDICTION SYSTEM IN THE AIRPACT REGIONAL AIR QUALITY MODELING FRAMEWORK S. H. Chung, F. L. Herron-Thorpe, B. K. Lamb, T. M. VanReken, J. K. Vaughan, J. Gao, L. E. Wagner, F. Fox ABSTRACT. Wind erosion of soil is a major concern of the agricultural community, as it removes the most fertile part of the soil and thus degrades soil productivity. Furthermore, dust emissions due to wind erosion degrade air quality, reduce visibility, and cause perturbations to regional radiation budgets. PM10 emitted from the soil surface can travel hundreds of kilometers downwind before being deposited back to the surface. Thus, it is necessary to address agricultural air pollutant sources within a regional air quality modeling system in order to forecast regional dust storms and to understand the im- pact of agricultural activities and land-management practices on air quality in a changing climate. The Wind Erosion Prediction System (WEPS) is a new tool in regional air quality modeling for simulating erosion from agricultural fields. WEPS represents a significant improvement, in comparison to existing empirical windblown dust modeling algorithms used for air quality simulations, by using a more process-based modeling approach. This is in contrast with the empirical approaches used in previous models, which could only be used reliably when soil, surface, and ambient conditions are similar to those from which the parameterizations were derived. WEPS was originally intended for soil conservation ap- plications and designed to simulate conditions of a single field over multiple years. In this work, we used the EROSION submodel from WEPS as a PM10 emission module for regional modeling by extending it to cover a large region divided in- to Euclidean grid cells.
    [Show full text]
  • Web-Based Rangeland Hydrology and Erosion Model
    WEB-BASED RANGELAND HYDROLOGY AND EROSION MODEL Mariano Hernandez, Associate Research Scientist, University of Arizona, Tucson, AZ, [email protected] Mark Nearing, Research Agricultural Engineer, USDA-ARS, Tucson, AZ, [email protected] Jeffry Stone, Retired, USDA-ARS, Tucson, AZ Gerardo Armendariz, IT Specialists, USDA-ARS, Tucson, AZ, [email protected] Fred Pierson, Research Leader, USDA-ARS, Boise, ID, [email protected] Osama Al-Hamdan, Research Associate, University of Idaho, Moscow, ID, [email protected] C. Jason Williams, Hydrologist, USDA-ARS, Boise, ID, [email protected] Ken Spaeth, Rangeland Management Specialist, USDA-NRCS, Dallas, TX, [email protected] Mark Weltz, Research Leader; USDA-ARS, Reno, NV, [email protected] Haiyan Wei, Associate Research Scientist, University of Arizona, Tucson, AZ, [email protected] Phil Heilman, Research Leader, USDA-ARS, Tucson, AZ, [email protected] Dave Goodrich, Research Hydraulic Engineer, USDA-ARS, Tucson, AZ, [email protected] Abstract: The Rangeland Hydrology and Erosion Model (RHEM) is a newly conceptualized model that was adapted from relevant portions of the Water Erosion Prediction Project (WEPP) Model and modified specifically to address rangelands conditions. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of a single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model’s hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on diverse rangeland datasets for predicting runoff and erosion responses on rangeland sites distributed across 15 western U.
    [Show full text]
  • Erosion Prediction
    WV-NRCS Technical Guide Section I EROSION PREDICTION Revised Universal Soil Loss Equation (RUSLE) GENERAL are needed for the selection of the control practices best suited to the The Revised Universal Soil Loss particular needs of each site. Equation (RUSLE) is an erosion model predicting longtime average annual Such guidelines are provided by the soil loss (A) resulting from raindrop procedure for soil-loss prediction splash and runoff from specific field using RUSLE. The procedure slopes in specified cropping and methodically combines research management systems and from information from many sources to pastureland. Widespread use has develop design data for each substantiated the RUSLE’s usefulness conservation plan. Widespread field and validity. RUSLE retains the six experience for more than four decades factors of Agriculture Handbook No. has proved that this technology is 537 to calculate A from a hillslope. valuable as a conservation-planning Technology for evaluating these factor guide. The procedure is founded on values has been changed and new the empirical Universal Soil Loss data added. The technology has been Equation (USLE) that is believed to be computerized to assist calculation. applicable wherever numerical values of its factors are available. Research has supplied information from which BACKGROUND at least approximate values of the equation’s factors can be obtained for Scientific planning for soil specific farm or ranch fields or other conservation and water management small land areas throughout most of requires knowledge of the relations the United States. The personal- among those factors that cause loss of computer program makes information soil and water and those that help to readily available for field use.
    [Show full text]
  • Overview of the CHILD Model Version
    0 Overview of the CHILD Model Version 2.0 Gregory E. Tucker1, Nicole M. Gasparini, Rafael L. Bras, and Stephen T. Lancaster Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge, MA 02139 Part I-B of final technical report submitted to U.S. Army Corps of Engineers Construction Engineering Research Laboratory (USACERL) by Gregory E. Tucker, Nicole M. Gasparini, Rafael L. Bras, and Stephen T. Lancaster in fulfillment of contract number DACA88-95-C-0017 April, 1999 1. To whom correspondence should be addressed: Dept. of Civil & Environmental Engineering, MIT Room 48-429, Cambridge, MA 02139, ph. (617) 252-1607, fax (617) 253-7475, email [email protected] 1 Overview of the CHILD Model The CHILD model simulates landscape evolution by tracking the passage of water and sediment across an irregular lattice of points that represents the landscape surface. Figure 1 shows (a) (b) FIGURE 1. Drainage basin simulated using the CHILD model. (a) Perspective view of landscape. (For graphical display purposes, the mesh has been interpolated onto a regular grid. Visualization is from the SG3D module of GRASS.) (b) Plan view of drainage network and irregular mesh. The catchment outline is that of the Forsyth Creek watershed, Fort Riley, Kansas, and represents an area of about 11.5 km2. a typical simulation, highlighting the drainage networks that form naturally when converging flow excavates valleys and leads to further flow convergence. The model tracks a number of basic state variables that determine the depth of erosion or deposition at each point during a given iteration, including elevation, slope, drainage area, and surface runoff rate (Figure 1).
    [Show full text]
  • Predicting Rainfall Erosion Losses—A Guide to Conservation Planning
    1 Ke^<lMAM^ / "f 7 3 Í¿ ^4- AH 5 37/12/78 [f ^ 5-''í - 1 PREDICTING - RAINFALL EROSION LOSSES A GUIDE TO CONSERVATION PLANNING f ■ K UNITED STATES AGRICULTURE PREPARED BY |] DEPARTMENT OF HANDBOOK SCIENCE AND m ' AGRICULTURE NUMBER 537 EDUCATION ADMINISTRATION U.S. Department of Af^'■' National AgricuJtural L.. Division of Lending PRFDirTINC ^^'^'""^''^^'^^'^"'^ ^^^^^ RAINFALL EROSION LOSSES A GUIDE TO CONSERVATION PLANNING Supersedes Agriculture Handbook No. 282, ''Predicting Rainfall-Erosion Losses From Cropland East of the Rocky Mountains" Science and Education Administration United States Department of Agriculture in cooperation with Purdue Agricultural Experiment Station USDA policy does not permit discrimination because of age, race, color, national origin, sex, or religion. Any person who believes he or she has been discriminated against in any USDA-related activity should write immediately to the Secretary of Agriculture, Washington, D.C. 20250. December 1978 ABSTRACT Wischmeier, W. H., and Smith, D.D. 1978. Predicting rainfall erosion losses—a guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook No. 537. The Universal Soil Loss Equation (USLE) enables planners to predict the average rate of soil erosion for each feasible alter- native combination of crop system and management practices in association with a specified soil type, rainfall pattern, and topography. When these predicted losses are compared with given soil loss tolerances, they provide specific guidelines for effecting erosion control within specified limits« The equation groups the numerous interrelated physical and management parameters that influence erosion rate under six major factors whose site-specific values can be expressed numerically. A half century of erosion research in many States has supplied infor- mation from which at least approximate values of the USLE factors can be obtained for specified farm fields or other small erosion prone areas throughout the United States.
    [Show full text]