Activation of Novel Signal Transduction Pathways by FP Receptors: The G- Coupled Receptors for Prostaglandin F2alpha

Item Type text; Electronic Dissertation

Authors Xu, Wei

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date 24/09/2021 06:48:12

Link to Item http://hdl.handle.net/10150/195223 ACTIVATIOOFOVELSIGAL TRASDUCTIOPATHWAYSBYFP RECEPTORS: THEGPROTEICOUPLEDRECEPTORS

FORPROSTAGLADIF2Α by WeiXu ADissertationSubmittedtotheFacultyofthe DEPARTMETOFPHARMACOLOGY&TOXICOLOGY InPartialFulfillmentoftheRequirements FortheDegreeof DOCTOROFPHILOSOPHY IntheGraduateCollege THEUIVERSITYOFARIZOA 2007 2

THEUNIVERSITYOFARIZONA® GRADUATECOLLEGE AsmembersoftheFinalExaminationCommittee,wecertifythatwehavereadthe dissertationpreparedbyWeiXu______ Entitled: Activation of Novel Signal Transduction Pathways by FP Receptors: the GProtein Coupled Receptors for Prostaglandin F2α and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ______Apr.12th,2007 JohnW.Regan Date ______Apr.12th,2007 JohnW.Bloom Date ______Apr.12th,2007 TimBowden Date ______Apr.12th,2007 RogerMiesfeld Date ______Apr.12th,2007 DanStamer Date Finalapprovalandacceptanceofthisdissertationiscontingentuponthecandidate’s submissionofthefinalcopyofthedissertationtotheGraduateCollege.Iherebycertify thatIhavereadthisdissertationpreparedundermydirectionandrecommendthatitbe acceptedasfulfillingthedissertationrequirement. ______JohnW.Regan______Apr.12th,2007 DissertationDirector Date 3

STATEMETBYAUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanceddegreeatTheUniversityofArizonaandisdepositedintheUniversityLibrary tobemadeavailabletoborrowersunderrulesoftheLibrary.

Briefquotationsfromthisdissertationareallowablewithoutspecialpermission,provided thataccurateacknowledgmentofsourceismade.Requestsforpermissionforextended quotationfromorreproductionofthismanuscriptinwholeorinpartmaybegrantedby theheadofthemajordepartmentortheDeanoftheGraduateCollegewheninhisorher judgmenttheproposeduseofthematerialisintheinterestsofscholarship.Inallother instances,however,permissionmustbeobtainedfromtheauthor.

SIGNED: WeiXu 4

ACKOWLEDGEMETS

First, I would like to thank Dr. John W. Regan for the support and guidance he has providedthroughoutmydoctoralstudies.Dr.Reganhasgivenmemanyopportunitiesto expandmyhorizonsbyallowingmetohavealotoffreedominmyresearch.Ivenerate

Dr.Regan’sintelligence,workethic,scientificintegrityaswellasattentiontodetail;they aresecondtononeanditiseasytoseewhyheisverysuccessful.

IwouldalsoliketothankmycommitteemembersDoctorsJohnBloom,TimBowden,

RogerMiesfeldandDanStamerfortheirscientificandprofessionalsupport.

IwouldliketothankDr.ChilingChouforhertime,experienceandprospectinhelping me with my studies. We worked together to get the results presented in this thesis.

Withoutherhelp,IcannotimagehowIcanachievesomuchinmygraduatestudy.

I would like to thank all the other folks in the Regan lab; Alfred, George, Dinesh,

Hiromichi,Tony,ChilingandAmyfortheirhelpover the years. I would also like to thankDr.Vallancourtforhishelpinmyprojects.Itishisideaandvisiontohelpthis projecttakeoff.

Last,andcertainlynotleast,Iwouldliketothank my parents, Kanglin Xu and Yixin

ShenaswellasmywifeZhouandsonWilliamfortheirsupportovertheyears. 5

DEDICATIO

Thisdissertationisdedicatedtomyfamily,especially my parents and parentsinlaws, whoovertheyearshavesupportedmyeffortswithgreatpatience,supportandlove.I would also like to thank my wife Zhou and son William for their support over these years.

6

TABLEOFCOTETS

LISTOFFIGURES ...... 8

LISTOFTABLES...... 10

LISTOFABBREVIATIONS...... 11

ABSTRACT...... 13

CHAPTERONE:INTRODUCTION,PURPOSEANDAIMS...... 15

1.1Introduction...... 16

1.2Prostanoidreceptors...... 19

1.3FPreceptors ...... 20

1.4Purposeandaims ...... 24

CHAPTER TWO: IDENTIFICATION OF GENES REGULATED BY THE

ACTIVATION OF FP PROSTANOID UTILIZING CDNA

MICROARRAYTECHNOLOGY ...... 27

2.1Introduction...... 28

2.2Experimentalprocedures ...... 29

2.3Results...... 32

2.4Discussion...... 34

CHAPTER THREE: CHARACTERIZATION OF THE SIGNALING PATHWAYS

INVOLVED IN THE REGULATION OF EGR1 EXPRESSION BY THE

ACTIVATIONOFFPPROSTANOIDRECEPTORS ...... 43

3.1Introduction ...... 44

3.2Experimentalprocedures ...... 46 7

TABLEOFCOTETSContinued

3.3Results...... 47

3.4Discussion...... 50

CHAPTER FOUR: CHARACTERIZATION OF THE SIGNALING PATHWAYS

INVOLVED IN THE REGULATION OF CYR61 EXPRESSION BY THE

ACTIVATIONOFFPPROSTANOIDRECEPTORS ...... 57

4.1Introduction...... 58

4.2Experimentalprocedures ...... 59

4.3Results...... 64

4.4Discussion...... 68

CHAPTER FIVE: CHARACTERIZATION OF THE SIGNALING PATHWAYS

INVOLVED IN THE REGULATION OF CTGF EXPRESSION BY THE

ACTIVATIONOFFPPROSTANOIDRECEPTORS ...... 80

5.1Introduction...... 81

5.2Experimentalprocedures ...... 83

5.3Results...... 85

5.4Discussion...... 89

CHAPTERSIX:CONCLUSIONSANDFUTURESTUDIES ...... 102

6.1Conclusions...... 103

6.2Futurestudies...... 107

REFERENCES ...... 110 8

LISTOFFIGURES Figure1.1Schematicpathwaysofeicosanoidbiosynthesisfromarachidonicacidrelease

and ...... 18

Figure1.2SignaltransductionpathwaysthroughtheFPreceptor ...... 23

Figure2.1FunctionClassificationofgenesidentifiedbycDNAmicroarrayanalysis ....39

Figure2.2NorthernBlottinganalysisofgenesidentifiedbycDNAmicroarrayanalysis41

Figure2.3WesternBlottinganalysisofgenesidentifiedbycDNAmicroarrayanalysis 42

Figure3.1MEK1/2isinvolvedinthegeneregulationofEGR1throughtheFPreceptor

...... 53

Figure3.2RasisinvolvedinthegeneregulationofEGR1throughtheFPreceptor ..... 54

Figure3.3CRafisinvolvedinthegeneregulationofEGR1throughtheFPreceptor . 55

Figure3.4SchematicpathwaysofthegeneregulationofEGR1throughtheFPreceptor

...... 56

Figure4.1BothRafkinaseandTCF/βcateninpathwaysareinvolvedintheinductionof

Cyr61throughtheFPreceptor...... 73

Figure4.2RafkinaseisinvolvedintheactivationofTCF/βcateninpathwaythroughthe

FPreceptor...... 74

Figure4.3RasisinvolvedintheactivationofTCF/βcateninpathwayandinductionof

Cyr61throughtheFPreceptor...... 75

Figure 4.4 Rho and actin stress fiber are involved in the activation of TCF/βcatenin

pathwayandinductionofCyr61throughtheFPreceptor...... 76 9

Figure4.5RafkinaseinducetheformationofactinstressfiberbytheactivationofFP

receptor ...... 77

Figure 4.6 Activation of TCF/βcatenin pathway through the FP receptor in an endogenoussystem ...... 78

Figure4.7SchematicpathwayofactivationofTCF/βcatenin pathway through the FP receptor ...... 79

Figure5.1ThesignaltransductionpathwaysinvolvedintheinductionofCTGFthrough theFPreceptor ...... 96

Figure5.2ThesignaltransductionpathwaysinvolvedintheinductionofHIF1αthrough theFPreceptor ...... 97

Figure 5.3 Protein degradation plays a major role in the gene regulation of HIF1α

throughtheFPreceptor...... 98

Figure5.4ROSisinvolvedintheactivationofTCF/βcateninpathwayandinductionof

HIF1αthroughtheFPreceptor...... 99

Figure5.5RegulationofHIF1αthroughtheFPreceptorinanendogenoussystem .... 100

Figure 5.6 Schematic pathways of gene regulation of HIF1α through the FP receptor

throughtheFPreceptor...... 101

Figure6.1NovelsignaltransductionpathwaysactivatedbytheFPprostanoidreceptors

...... 109

10

LISTOFTABLES

Table2.1GenesUpregulatedorDownregulatedinPGF2αStimulatedFPAorFPBCells

...... 36

Table2.2GeneListforNorthernBlotAnalysis...... 40

11

LISTOFABBREVIATIOS

COX1=Cyclooxygenase1

COX2=Cyclooxygenase2

GPCR=Gproteincoupledreceptor

NSAID=Nonsteroidalantiinflammatory

PCR=Polymerasechainreaction

PGD 2=ProstaglandinD 2

PGE 2=ProstaglandinE 2

PGF 2α=ProstaglandinF 2α

PGG 2=ProstaglandinG 2

PGH 2=ProstaglandinH 2

PGI 2=ProstaglandinI 2

PKC=ProteinkinaseC

PLA 2=PhospholipaseA 2

TM=Transmembrane

TXA 2 =ThromboxaneA 2

RTPCR=Reversetranscriptasepolymerasechainreaction

GAPDH=Glyceraldehyde3 12

TCF=Tcellfactor

HIF1α=hypoxiainduciblefactor1α

Cyr61=cysteinerich,angiogenicinducer61

CTGF=connectivetissuegrowthfactor

EGR1=earlygrowthresponsefactor1

DN=Dominantnegative

13

ABSTRACT

Prostaglandin F2 alpha (PGF 2α) is an arachidonic acid metabolite which plays an importantroleincardiachypertrophyandcancer.PGF 2αisknowntoactivateintracellular signalingpathwaysbyinteractionswithitscognateGproteincoupledreceptornamedthe

FP prostanoid receptor. To date, the signal transduction pathways by which the FP receptorregulatesgeneexpressionhaveyettobefullycharacterized.Inthisdissertation, multiplenovelsignaltransductionpathwaysbytheactivationofFPprostanoidreceptors involvedintheregulationofgeneexpressionhavebeenidentifiedandcharacterized.

TostudyFPdependentgeneregulation,cDNAmicroarraytechnologywasappliedusing

HEK293cellsexpressingFPreceptorsasamodel.Morethan150genes,whichcouldbe classified into diverse functional groups, were identified to be significantly regulated throughthestimulationofFPreceptorinthecDNAmicroarrayanalysis.Toconfirmthe resultsfrommicroarrayanalysis,20significantlyregulatedgenesfromcDNAmicroarray analysisweresubjected toNorthernblotanalysis. Theexpressionprofileof14outof these20geneswasinagreementwiththatofcDNAmicroarraydata.

Oneofthe14genesisearlygrowthresponsegene1(EGR1).EGR1isatranscription factorwhichhasbeenshowntoplayimportantrolesinthecardiachypertrophy.Another geneidentifiedisconnectivetissuegrowthfactor(CTGF).CTGFbelongstoCCNfamily, whichplayanimportantroleincancerangiogenesis.Cysteinerich,angiogenicinducer

61(Cyr61)wasanothermemberofCCNfamily.GeneregulationofCyr61throughthe 14

FP receptor has previously been reported. FP receptor mediated gene regulation of the abovethreewasconfirmedusingWesternblottinganalysis.

FollowingconfirmationofFPreceptormediatedgeneregulationofEGR1,Cyr61and

CTGF, the pathways responsible were dissected. We found that FP can activate Ras, whichinturnactivatesCRaf.ActivationofCRafactivatesMEK1/2,andleadstothe upregulationofEGR1.Ontheotherhand,thestudiesdemonstratedthatactivationof

Ras through the FP receptor activate BRaf, which can lead to the TCF/βcatenin pathway.TCF/βcateninpathwayregulatestheexpressionofCyr61.Wealsofoundthat

HIF1αinducedbytheactivationofFPreceptorisinvolvedintheregulationofCTGF expression. Moreover, we found that reactive oxygen species (ROS), a wellknown activatorofHIF1α,isinvolvedintheactivationofTCF/βcateninpathway,whichleads tothegeneregulationofHIF1α.

Inconclusion,thesestudieshaveidentifiedpreviouslyunknownsignalingpathwaysand novel downstream effectors that are regulated by the FP prostanoid receptors. The identification of these novel interactions between the pathways activated by the FP receptormayhavefutureapplicationsinthetreatmentofheartdiseaseandcancer.

15

CHAPTEROE

ITRODUCTIO,PURPOSEADAIMS

16

1.1Introduction

Prostaglandinisanimportantdrugtarget.Forexample,aspirinandothernonsteroidal antiinflammatorydrugs(NSAIDS),whichareusedeverydayinmodernlife,liesintheir ability to inhibit prostaglandin synthesis to control the pain (Vane et al., 1971).

Prostaglandinsbelongtothegroupofchemicalsnamedautacoids,whicharethoughtto beextremelysusceptibletometabolicdegradation,therebylimitingtheirinfluenceonthe cellsproducingthemandthecellssurroundingthecellsproducingthem.Autacoidscan bedividedintotwomajordivisions,eicosanoidsandthemodifiedphospholipids.

Eicosanoidsareoxygenatedproductsofpolyunsaturated long chain fatty acids such as arachidonicacid.Eicosanoidscanbeclassifiedasprostaglandins,leukotrienes,epoxides, andisoprostanes,dependingontheenzymesystemsusedtometabolizearachidonicacid to generate the end products. Thus, the leukotrienes are synthesized by the action of lipoxygenases,epoxidesbytheactionofepoxygenases,isoprostanesbytheactionoffree radicalsandprostaglandinsbytheactionofprostaglandinHsynthase.

Prostaglandins were discovered in the 1930s as a chemical mainly present in seminal fluidandaccessoryreproductiveglandsthatcausedstripsofhumanuterustorelaxand contract upon contact. Euler coined the name prostaglandin in 1935 to denote lipid solubleacidsproducedbytheprostateglands.Variouskindsofprostaglandinsweresoon found,characterized,andchemicallysynthesized.TheseprostaglandinsincludedPGD 2, 17

PGE 2,PGF 2α,prostacyclins,andthromboxanes.Theyarebiochemicallysynthesizedby

theactionsofphoshpholipaseA 2onmembranephospholipids.Thereleasedarachidonic

acidproductisthenrapidlyoxygenatedandmetabolizedbyenzymesystemssuchasthe

cyclooxygenases,orthelipoxygenases.Theactionofcyclooxygenasesonthearachidonic

acid generates PGH 2. PGH 2, which is immediately chemically unstable, serves as a substrateforvarioussynthases,resultinginthesynthesisofamultitudeofprostaglandins.

Figure1.1outlinesthesyntheticpathwayofprostaglandins.

Cyclooxygenasesarethekeyenzymeinthesyntheticpathwayofprostaglandins,which regulates the production of prostaglandins. Cyclooxygenases themselves exist as two isoformsnamedasCOX1andCOX2.COX1isthoughttobeahousekeepingenzyme is constantly expressed. COX2, however, is known to be inducible and is the major contributorprecipitatinganadverseinflammatoryresponse(Williamsetal.,1996).COX isthedrugtargetofNSAIDssuchasaspirin.Thesedrugsareconventionallyusedtotreat mildtosevereconditions,andofferanalgesic,antipyretic,andantiinflammatoryeffects.

Recently,ithasbeenfoundthatlongtermuseoflowdosesofaspirinisalsoassociated withreducedincidenceofmyocardialinfarctionandlowerincidenceofcoloncancer.

18

Phospholipids(PL)

PLA 2

ArachidonicAcid

PGHsynthase(COX1&2)

PGH 2

Prostacyclinsynthase Thr omboxanesynthase PGEsynthase PGDsynthase

PGI 2 PGE 2 PGD 2 TXA 2

PGE 29reductase PGH 29,11endoperoxidereductase

PGF 2α

Figure 1.1 Schematic pathways of prostaglandin synthesis from arachidonic acid release and metabolism. Arachidonic acid is produced from phospholipids (PL) by PLA 2. COX then converts the arachidonicacidtoprostaglandins.Individualisomerases(e.g.PGF 2αsynthase)convertunstablePGH 2to thefivemajorprostanoidsubclasses,PGD 2,PGE 2,PGI 2,PGF 2αandTXA 2.

19

AlthoughCOXinhibitorsarewildlyusedinclinic,thesedrugshavesomesideeffects.

ThemostrecentexampleisthewithdrawlofCOX2inhibitorrofecoxib(Vioxx)fromthe marketbecauseofitssideeffectinheart.So,drugtargetingindividualprostaglandins, the product of COX, may be necessary to circumvent these side effects. Prostaglandin receptor antagonists may be good candidates. To develop the prostaglandin receptor antagonists,itisnecessarytoidentifythereceptorstowhichprostaglandinsbind.

1.2Prostanoidreceptors

Itisnowknownthattheprostanoidsactivatesignalingprocessesbyactivationofspecific

Gproteincoupledreceptors(GPCRs),whichareseventransmembranespanningproteins thathaveanextracellularaminoterminusandanintracellularcarboxylterminaltail.They are coupled intracellularly to heterotrimeric Gproteins. The binding of a ligand to its receptor results in a conformation change (usually in the alpha helices of the transmembrane domains). This change will activate the Gprotein heterotrimer (GDP exchangedwithGTP),resultinginthetransductionoftheextracellularstimulusintoan intracellularresponsethroughtheactivationofsecondmessengers,suchascalciumand proteinkinases.

ThereisatleastoneGPCRforeachofthefivemainprostaglandins,PGD 2,PGE 2,PGF 2α ,

PGI 2, and thromboxane A. Thus there are five major subdivisions of the prostanoid

receptorsthathavebeendefinedpharmacologically.TheyaretheDP,EP,FP,IP,andTP

receptors which are activated by the PGD2, PGE2, PGF 2α , PGI and TxA 2 respectively 20

(Colemanetal.,1994). Functionally,ithasbeenshown that both transmembrane and extracellularregionsoftheprostanoidreceptorsareinvolvedinligandbinding.Although each prostanoid has the highest affinity to its cognate receptor, there is some cross reactivitytootherreceptorswithinthefamily.

TheuseofrecombinantDNAtechnologyhasfacilitatedthecloningofcDNAsencoding alltheprostanoidreceptorsandelucidatingsignaltransductioncascadeselicitedbythe activationofthevariousreceptors(Pierceetal.,1998).MultiplesubtypesofEPreceptors hasbeenidentifiedthatareeachencodedbydistinctgenes.ThesubtypesofEPreceptor isoforms are the EP 1, EP 2, EP 3 and EP 4, and these account for the differential tissue specificeffectselicitedbyPGE 2 analogs.Forthedownstreamsignaling,theDP 2,IP,EP 2 andEP 4prostanoidreceptorsarecoupledtoGsandresultinanactivationofadenylate

cyclase. The EP 3 receptors are coupled to Gi to produce an inhibition of adenylate

cyclase.The EP 1,FP,andTParecoupledtoGq,whichstimulatesphospholipaseCto produceinositoltriphosphateanddiacylglycerol.

1.3FPreceptors

TheFPreceptorsareGPCRswhosephysiologicalagonistisPGF 2α.FPreceptorswere firstclonedfromahumankidneycDNAlibraryandFPreceptorgeneencodesaprotein of 359 a.a. (Abramovitz et al., 1994). Since then, FP has been cloned from multiple species.Forexample,ovineFPwasclonedin1995(Gravesetal.,1995).FPwasalso cloned from mouse and bovine (Sugimoto et al., 1994; Sakamoto et al., 1994). FP 21

isoforms generated by the different mRNA splicing were also cloned. The first FP isoformtobeunveiledwastheovinealternativesplicevariant(Pierceetal.,1997).This

FP isoform was designated FP B compared to the original isoform, which was further definedasFP A.TheovineFPsplicevariantsareidenticalinaminoacidsequenceuntil

they diverge at a tyrosine residue nine amino acids into the carboxy tail. The FP A isoformcontinuesfor46aminoacidsdownstreamofthesplicesitewhiletheFP B has

onlyoneadditionalresidue(isoleucine)resultinginatruncatedreceptorrelativetothe

FP A. The second FP receptor isoform was cloned from bovine corpus luteum that is

createdfromalternativemRNAsplicingatthe6TMsite(Ishiietal.,2001).

FPhasbeenshowntobepresentinnumeroustissuesfromavarietyofdifferentspecies.

Northern blot analysis of 12 human tissues revealed mRNA expression in the heart,

skeletalmuscle,colon,kidney,smallintestine,placentaandlung(unpublisheddata).FP

also has been shown to express in human granulosa cells and osteoblasts, the corpus

luteum,myometriumaswellassmoothmuscleandeyetissues (Anthony et al.,1998;

Mukhopadhyayetal.,1999).

ConsideringtheubiquitouspresenceofFPintheorgans,itisnotsurprisingthatFPplays

someimportantrolesinmanyphysiologicalprocesses.Forexample,FPhasbeenfound

tobethekeyintheuteruscontractionduringparturition(Sugimotoetal.,1997).FPhas

alsobeenshowntoplaykeyroleincorpusluteumregression(Olofssonetal.,1994).FP

isnotonlyinvolvedinthenormalphysiologicalprocess,butalsoplaysimportantrolesin 22

several diseases. One example is that FP can trigger heart hypertrophy (Adams et al.,

1996).FPreceptorhasalsobeenshowntobeimportantinendometrialadenocarcinomas

(Salesetal.,2005).

TobetterunderstandthebiologicalfunctionsofFPreceptors,itisnecessarytoidentify signal transduction pathways initiated from FP receptor. At first, FP receptors were linkedtoG qproteinandthedownstreamcomponentsofG qproteinkinaseC(PKC)and

calcium(Abramovitzetal.,1994;Pierceetal.,1997).However,evidenceindicatedthe

existenceofsignaltransductionpathwaysotherthanG q.Forexample,activationofRho smallGproteins,whichprobablyisregulatedbyG 12/13 butnotG q,isinvolvedinacell shapechangeandactinstressfiberformationinducedbytheactivationoftheFPreceptor

(Pierceetal.,1998).Furthermore,activationofTcellfactor(Tcf)/ βcateninsignalingby

FPreceptorswasidentified(Fujinoetal.,2001)andthisactivationwasshowntobeat thedownstreamoftheRhosignaltransductionpathway(Fujinoetal.,2002).Allthese signaltransductionpathwaysaresummarizedinFig1.2.

23

PGF 2α FP

Rho Gq

PLC

Actinstressfiber

DAG IP3

TCF/βcatenin

PKC 2+ Ca

Fig 1.2 The signal transduction pathways through the FP receptor. The FP receptor is capable of 2+ couplingtotheG qproteinhydrolyzingphosphatidylinositollipidsresultinginactivationofPKCandCa mobilization.TheFPreceptoralsoactivatesthesmallGproteinRho,resultingintheformationofactin stress fiber. Moreover, the FP receptor can activate the TCF/βcatenin pathway through Rho small G protein.

24

Gene regulation is an important aspect of signal transduction. Some studies have identifiedcertaingenes,whichareregulatedthroughtheFPreceptor,andrelatedsignal transductionpathwaysinvolvedintheseregulations.Oneexampleistheupregulationof connectivegrowthfactor(CTGF)andcysteinerichangiogenicprotein61(Cyr61)bythe activation of the FP receptor (Liang et al., 2003 ). Rho small G protein and MAPK pathways were shown to be involved in these regulations. Another example is the

inductionofCOX2throughtheFPreceptor(Fujinoetal,2003).TNFαwasalsoshown tobeinducedbyactivationoftheFPreceptor(Fujinoetal.,2004). Butoverall, gene regulations mediated by the FP receptor and signal transduction involved in these regulationsarenotwellestablished.

1.4PurposeandAims

The overall purpose of this work was to detail the signal transduction pathways leadingtothegeneregulationbytheactivationofFPreceptor.

Toachievethisgoal,fourspecificaimsaresetup:

The first aim is to use cDNA microarray technology to identify the genes whose expressionweresignificantlyregulatedbytheactivationoftheFPreceptorinHEK293

cell lines stably expressing FP receptors (FP cells). To carry out this aim, cDNA 25

microarray analysis were performed using RNA extracted from FP cells treated with vehicleorPGF 2α fordifferenttimesareextracted.

ThesecondaimistouseNorthernblotanalysisandWesternblotanalysistoconfirmthe gene regulations identified in cDNA microarray analysis in PGF 2α stimulated FP cells.

Multiplegenes,whoseexpressionswerefoundtobesignificantlyregulatedinthecDNA

microarray analysis, were chosen and their expression profiles were confirmed at the

RNAandproteinlevelsusingNorthernblottinganalysisandWesternblottinganalysis.

Thethirdaimistoidentifythesignaltransductionpathwaysleadingtotheregulationof

genes in PGF 2α stimulated FP cells. To carry out this aim, several genes, whose

regulationsinPGF 2α stimulatedFPcellsareconfirmedatproteinlevelsusingWestern blotanalysis,werechosenandsignaltransductionpathwaysleadingtotheirregulation were dissected using multiple approaches, including specific signal transduction inhibitorsanddominantnegativeconstructstargetingspecificsignalproteins.

ThefourthaimistoconfirmthesignaltransductionpathwaysidentifiedintheFPcells using a system endogenously expressing FP receptor. To carry out this aim, we first identified the cells which endogenously express FP receptor. Then, the genes, whose regulationsthroughtheFPreceptorshavebeencharacterizedinFPcells,werechosento be subject to signal transduction dissection in cells expressing FP receptors endogenously. The methods used for dissection were FP antagonist or specific signal 26

transduction inhibitors. Cells were pretreated with FP antagonist or specific signal transduction inhibitors followed by treatment with PGF 2α . We expected that PGF 2α

stimulatedgeneregulationsincellsexpressingFPreceptorendogenouslyaresimilarto

that in FP cells. We also expected FP antagonist and specific signal transduction

inhibitorscanblockthesegeneregulations,whichissimilartothatinFPcells.

27

CHAPTERTWO

IDETIFICATIOOFGEESREGULATEDBYTHE

ACTIVATIOOFFPPROSTAOID RECEPTORUTILIZIG

CDAMICROARRAYTECHOLOGY

28

2.1 Introduction A cDNA microarray is a collection of microscopic cDNA spots attached to a solid surface, such as glass, plastic or a silicon chip, forming an array for the purpose of expression profiling and monitoring expression levels for thousands of genes simultaneously.Thistechnologyiswidelyusedtostudythegeneregulationatgenomic level.

Somestudieshavebeendonetoelucidatethegeneregulation by the activation of FP receptors.Onestudy,forexample,focusedontheupregulationsofconnective growth factor(CTGF)andCyr61bytheactivationofFPreceptor(Liangetal.,2003).Another exampleistheupregulationofmatrixmetalloproteinase1productionbyprostaglandin

F2α inhumangingivalfibroblasts(Noguchietal.,2001).However,asystematicstudyof generegulationbytheactivationofFPreceptorhasnotyetbeenreported.

To study gene regulation mediated by the FP receptor at genomic level, cDNA microarray technology was applied to study the gene regulation of agonist stimulated

HEK293cellsstablyexpressingtheovineFP AandFP Breceptorisoforms(FP AandFP B cells).Wefoundextensivegeneregulationatthelevelofthewholegenome.Toconfirm the results from microarray analysis, 20 significantly regulated genes from cDNA microarrayanalysisweresubjectedtoNorthernblotanalysis.Theexpressionprofileof

14ofthese20geneswasinagreementwiththatofcDNAMicroarraydata.Oneofthe14 genes,EGR1,wassubjectedtoWesternblotanalysis.TheexpressionprofileofEGR1 29

attheproteinlevelisthesameasthatfromNorthernblotanalysis.Thisisthefirstreport ofgeneregulationbytheactivationoftheFPreceptoratthegenomiclevel.

2.2ExperimentalProcedures

Materials. Dulbecco'smodifiedEagle'smedium,bovinealbumin,hygromycinB, geneticin, gentamicin and Trizol were obtained from Invitrogen (Carlsbad, CA). Anti

EGR1antibodieswereobtainedfromSantaCruzbiotechnology(SantaCruz,CA).Anti rabbit IgG conjugated with horseradish peroxidase, polydeoxyinosinicdeoxycytidylic, polyoxethylenesorbitanmonolaurateandallotherunspecifiedchemicalswerepurchased from SigmaAldrich (St. Louis, MO). Antiactin IgG, antimouse IgG, Zetaprobe blotting membrane and nitrocellulose membrane were purchased from BioRad

(Hercules,CA).PGF 2α wasobtainedfromtheCaymanChemicalCompany(AnnArbor,

MI). [α32 P] dCTP (10 mCi/ml) was from PerkinElmer Life and Analytical Sciences

(Boston,MA).

Cell culture . FP A and FP B cells were maintained at 37°C with 5% CO 2/95% air in

Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, 250µg/ml

geneticin,200µg/mlhygromycin B,and100µg/ml gentamicin.

o RAextraction. Cellswereincubatedat37 Cwithvehiclefor24hoursor1MPGF 2α for15minutes,1hour,3hours,6hours,12hoursand24hours.Aftertreatment,crude

RNAwasextractedusingTrizolaccordingtothemanual.ThecrudeRNAextractwas 30

then purified by Absolute RNA ® Miniprep Kit (Stratagene, Cedar Creek, TX). The purifiedRNAwasconcentratedbyspeedvacuumandtheconcentrationwasdetermined byUVspectrumat260nmand280nmwavelengths.

Microarray analysis. The cDNA microarray fabrication was performed as previously described(Wattsetal.,2001).FluorescentcDNAwasmadefromreversetranscriptionof

40µgoftotalRNAinthepresenceof50MCy5dCTPorCy3dCTPina25lvolume containing the following: 500 ng oligo(1218) dT, 1 X Superscript Buffer, 400 U

SuperscriptII,3.3URNAseinhibitor(allfromGibcoBRL,GrandIsland,NY),400M eachofdGTP,dATP,dTTP,100MdCTP,and10mMdithiothreitol.ThecDNAwas purified,lyophylizedtodryness,resuspendedin10lhybridizationbuffer(2XSSC,

0.1% SDS, 100 ng/l Cot1 DNA, 100 ng/l oligo dA), denatured by boiling for 2.5 minutesandhybridized toamicroarray for16 hoursat62˚C for18hours.Following hybridization,slideswerewashedandscannedforCy3andCy5fluorescenceusingan

AxonGenePix4000microarrayreaderandquantitatedusingGenePixsoftware.Results were loaded into GeneSpring (Silicon Genetics, Redwood City, CA) and normalized using lowess intensity dependent normalization. The cutoff score for up or down regulationwasdefinedasfollows:inatleastonechannelthesignalofthegenesmustbe

1.5timesmorethanthebackgroundsignalandthesignalofgenesfromPGF 2α treated cellsshouldbechangedatleast2timescomparedwiththesignalofgenesfromcontrol cells.

31

orthern blotting analysis. 10 g RNA each well was run on 1% denaturing formaldehydeagarosegels,andRNAwastransferredtoaZetaprobeblottingmembrane afteralkalidenaturationandneutralization.Themembraneswerethenbakedin80 oCfor

2hoursandwettedwithdiethylpyrocarbonatetreatedwater.Hybridizationswerecarried outat42°Cfor16hourswithlabeledDNAprobein 50% deionized formamide, 10% dextransulfate,1%(w/v)SDS,1MNaCland100µg/mldenaturedsalmonspermDNA.

The DNA probe was prepared using PrimeaGene ® Labeling System (Promega,

Madison, WI) followed by purification with PCR purification (Gibco BRL, Grand

Island, NY). Blots were washed twice at 42°C in 2 x SSC, 0.1% (w/v) SDS for 30 minuteseach,andtwiceat42°Cin0.1xSSC,0.1%(w/v)SDSfor30minuteseach.

ImmunoblotAnalysis. Cellswereincubatedat37 oCwithvehiclefor24hoursor1M

PGF 2α for1hour,3hours,6hours,12hoursand24hours.Cellswerescrapedintoalysis buffercontaining150mMNaCl,50mMTrisHCl(pH8.0),5mMEDTA(pH8.0),1%

Nonidet P40, 0.5% sodium deoxycholate, 10mM sodium fluoride, 10 mM disodium pyrophosphate, 0.1% SDS, 0.1 mM phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 10 g/ml leupeptin and 10 g/ml aprotinin, and then transferred to microfugetubes.Thesampleswererotatedfor30minutesat4 oCandwerecentrifugedat

16,000gfor15minutes.ProteinconcentrationsweredeterminedusingaBioRadassay

kit(Hercules,CA).ForWesternblottinganalysisusingantiEGR1antibody,aliquotsof

the supernatants containing 20 ~ 100 g protein were electrophoresed on 7.5% SDS polyacrylamide gels and transferred to nitrocellulose membrane. Membranes were 32

blocked in 5% nonfat dry milk in Trisbuffered saline containing 0.1% polyoxethylenesorbitanmonolaurate(TBST)foronehouratroomtemperatureandwere thenincubatedat4 oCfor16hourswithprimaryantibodies(1:1000dilution).Afterthe membranesunderwentthreefiveminutewashesinTBST,theywereincubatedwiththe corresponding secondary antibodies conjugated with horseradish peroxidase (1:10000 dilution)for1houratroomtemperaturewithrotation.Themembraneswerewashedand visualized by enhanced chemiluminescence (Supersignal; Pierce, Rockford, IL). The primaryantibodiesareantiEGR1(SantaCruz)andantiactinantibodies(Biorad).

2.3Results

Gene expression profile of FP A or FP B cells following treatment with PGF 2α . To

characterize gene regulation through the activated FP receptor, cDNA microarray

analysiswasemployedtodeterminethetemporalgeneregulationprofileofFP AorFP B cells following treatment with PGF 2α. We treated FP A or FP B cells with PGF 2α for differentlengthsoftimeasdescribedin Experimental Procedures, thenextractedthe

RNA. The time points were chosen to identify the early, intermediate and longterm responses of cells to PGF 2α. cDNA microarray hybridization and data analysis were carriedoutasdescribedin ExperimentalProcedures. Thegenesshowntoberegulated

according to the standards in Experimental Procedures are summarized in table 2.1.

Thegeneswereclassifiedintocategoriesbasedonfunctionalannotation(asdetermined bytheNCBIProteinDatabaseandSOURCE)andtheresultsaresummarizedinFig.2.1. 33

This classification revealed that the genes encompassed a wide range of functional groups.TheTranscriptioncategory(15.5%inTable2.1)andSignalingcategory(16.1% inTable2.1)werethetwolargestgroups.TheseresultssuggestthattheactivationofFP receptorshasabroadimpactoncellphysiologybyaffectinggenesinvolvedinavariety ofbiochemicalpathwaysanddiversecellularfunctions.

orthern blot analysis of genes identified to be regulated in cDA microarray analysis. Tovalidatethemicroarraydata,weusedNorthernblotanalysistoinvestigate theexpressionprofilesofthegenesregulatedincDNAmicroarrayanalysis.FromTable

2.1, we selected 20 genes whose functions interested us. The Northern blots were performedasdescribedin ExperimentalProcedures andtheresultsaresummarizedin

Table2.2.InTable2.2,14outof20genesshowedasimilarpatternofgeneregulationin boththeNorthernblotsandthemicroarrayanalysis.Eightgenes,whichwerefoundtobe regulatedinanagonistdependentmanner,weresubjecttofurtherNorthernblotanalysis.

ThedataaresummarizedinFig.2.2.Toconfirmequalloading,theblotswerestripped and reprobed with glyceralaldehyde3phosphate dehydrogenase (GAPDH). As shown inFig.2.2,nearlyequalamountsofGAPDHwerepresentinallcelllinesandthroughout thetimecourseineachNorthernblot.TheregulationofeachgeneshowninFig.2.2was agonistdependent.

WesternblotanalysisofEGR1.AfterNorthernblotanalysis,wechoseEGR1,one ofthegeneswhoseexpressionprofilewasconfirmedutilizingNorthernblottinganalysis, 34

forfurtherconfirmationattheproteinlevel.Thedrugtreatment,celllysatepreparation andWesternblotanalysiswere carriedout asdescribedin ExperimentalProcedures .

TheresultsarepresentedinFig.2.3.Toconfirmequalloading,theblotswerestripped

andreprobedwithantibodiesagainstactin.Nearlyequalamountsofactinwerepresent

in FP A and FP Bcellsthroughoutthetimecourseintheblot.EGR1 was found to be inducedinanagoniststimulatedmannerinFP AcellsandFP Bcells. Thisresultwasin

agreementwiththeresultfromtheNorthernblotanalysis.

2.4Discussion

Inthepresentstudy,weidentifiedalargenumberofgenesthatwereregulatedinagonist stimulatedFP AandFP Bcellsusingmicroarraytechnology.Thesesignificantlyregulated

geneshavebeencategorizedintoseveralgroupsonthebasisoftheirknownfunctions

(Fig.2.1).

AmajorconcernregardingthecDNAmicroarraytechnologyisaccuracy.However,we

consider this study is a success with high accuracy. We based our judgment on 3 parameters. First, 70% of gene expression profile of 20 genes from Northern blotting

analysis,agoldstandardforgeneexpressionattheRNAlevel,isinagreementwiththat

from cDNA microarray analysis. Second, the functions of multiple genes identified in

cDNA microarray are in agreement with the physiological functions of PGF 2α. For

example,EGR1,foslikeantigen1andJunBareidentifiedtobeupregulatedinthe 35

cDNAmicroarrayanalysis.Thesegenesaremembersoftheearlyresponsegenefamily,

members of which exhibit de novo transcription shortly after stressful or mitogenic

stimulations, and are important in wound healing and the inflammatory reaction

(Braddocketal.,2001).ConsideringtheimportantroleofPGF 2α inwoundhealingand

inflammation (Willoughby et al., 2000), it is not surprising to identify the early up

regulationofthisclassofgenesinagoniststimulated FP A and FP B cells. Third, some

genesidentifiedhavebeenreportedtoberegulatedbytheactivationoftheFPreceptor.

Forexample,CTGFwasreportedtobeinducedupontheactivationoftheFPreceptor

(Liangetal.,2003).

ThisreportisthefirstdemonstrationofgeneregulationthroughtheactivationoftheFP

receptoratthegenomiclevel.Thesuccessofthisanalysisprovidesthe foundationfor

identifyingthesignalingpathwaysresponsibleforgeneregulationbytheactivationofthe

FPreceptors.

36

Table2.1:GenesUpregulatedorDownregulatedin PGF 2α Stimulated FP A orFP BCells FunctionalGroup **Access FP A FP B No. Transcription HIV1Tatinteractiveprotein,60kDa AA017042 N.C.* * fingerprotein AA033532 N.C. +* Runtrelatedtranscriptionfactor1(acutemyeloidleukemia1;aml1oncogene) AA146826 N.C. + Cbp/p300interactingtransactivator,withGlu/Asprichcarboxyterminaldomain,1 AA432143 N.C. + NuclearfactorofkappapolypeptidegeneenhancerinBcells1(p105) AA451716 N.C. + Zincfingerprotein162 AA454673 N.C. + Etsvariantgene5(etsrelatedmolecule) AA463830 + + InhibitorofDNAbinding4,dominantnegativehelixloophelixprotein AA464856 N.C. + Murineleukemiaviral(bmi1)oncogenehomolog AA478036 N.C. Immediateearlyresponse3 AA480815 N.C. + Earlygrowthresponse1 AA486628 + + Nuclearreceptorsubfamily4,groupA,member2 AA598611 N.C. + Transmembraneprotein(63kD),endoplasmicreticulum/Golgiintermediate AA598787 N.C. compartment Kruppellikefactor4(gut) H45711 + + Slug(chickenhomolog),zincfingerprotein H57309 N.C. Upstreambindingtranscriptionfactor,RNApolymeraseI N92443 N.C. JunBprotooncogene N94468 N.C. + CAMPresponseelementbindingproteinCREBpa R21172 N.C. + Leucinezipperliketranscriptionalregulator,1 R38194 N.C. FOSlikeantigen1 T82817 N.C. + FOSlikeantigen1 T89996 N.C. + JunBprotooncogene T99236 + + Sp3transcriptionfactor W32135 N.C. NuclearfactorofkappalightpolypeptidegeneenhancerinBcellsinhibitor,alpha W55872 N.C. + Vmycavianmyelocytomatosisviraloncogenehomolog W87741 N.C. Signaling Proteinkinase,AMPactivated,gamma1noncatalyticsubunit AA070381 N.C. + KIAA0118protein AA076645 + + Januskinase1(aproteintyrosinekinase) AA284634 N.C. GTPbindingproteinoverexpressedinskeletalmuscle AA418077 N.C. + Lymphocytespecificproteintyrosinekinase AA469965 N.C. Tumornecrosisfactor,alphainducedprotein3 AA476272 N.C. + ProteinkinaseCbindingprotein1 AA480906 N.C. receptor(p90,CD71) AA488721 + + Insulinlikegrowthfactorbindingprotein3 AA598601 N.C. + Mitogenactivatedproteinkinasekinase6 H07920 N.C. ProteinkinaseH11 H57494 N.C. + KIAA0022geneproduct H60460 N.C. Bromodomaincontaining2 H72520 N.C. Proteintyrosinephosphatase,receptortype,A H82419 N.C. EphA2 H84481 + + RAB9,memberRASoncogenefamily H98534 N.C. + Hyaluronanmediatedmotilityreceptor(RHAMM) R10284 N.C. Myotubularinrelatedprotein3 R10293 N.C. + Translocatedpromoterregion(toactivatedMEToncogene) R11490 + + TypeItransmembraneproteinFn14 R33355 N.C. + Amyotrophiclateralsclerosis2(juvenile)chromosomeregion,candidate3 R65928 N.C. + Argininerich,mutatedinearlystagetumors R91550 + + Insulinlikegrowthfactor2receptor T62547 N.C. + Vav1oncogene T65770 N.C. + Serine/threoninekinase4 T94961 N.C. + Dualspecificityphosphatase5 W65461 + + GrowthFactorsandInterleukins Naturalkillercelltranscript4 AA458965 N.C. + Thrombospondin1 AA464630 N.C. Connectivetissuegrowthfactor AA598794 + + 37

Interleukin1,alpha AA936768 N.C. + Delta(Drosophila)like1 R41685 N.C. Interleukin1receptorantagonist T72877 N.C. + Metabolism Spermidine/spermineN1acetyltransferase AA011215 N.C. + Enolase2,(gamma,neuronal) AA450189 N.C. + Phosphomevalonatekinase H09914 N.C. CarbonicanhydraseII H23187 + + GS1999full H25606 N.C. PhytanoylCoAhydroxylase(Refsumdisease) N91990 N.C. Cystathionase(cystathioninegammalyase) R07167 + N.C. Prenylcysteinelyase R78527 N.C. UDPGlcNAc:betaGalbeta1,3Nacetylglucosaminyltransferase1 R82733 N.C. + Ferrochelatase(protoporphyria) T64893 N.C. NicotinamideNmethyltransferase T72235 N.C. + Oxysterol7alphahydroxylase W01800 N.C. Translation Mitochondrialtranslationalinitiationfactor2 H18070 N.C. Proteindisulfideisomeraserelatedprotein(calciumbindingprotein,intestinal N59626 N.C. + related) Tutranslationelongationfactor,mitochondrial R45183 N.C. Cytoskeleton Dynein,cytoplasmic,heavypolypeptide1 AA410454 N.C. + H1histonefamily,member0 H57830 N.C. Neurofilament,lightpolypeptide(68kD) R14230 + + CellAdhesion Protocadherin20 AA040043 N.C. + Osteoblastspecificfactor2(fasciclinIlike) AA598653 N.C. + Vascularcelladhesionmolecule1 H07071 N.C. + CellCycle CyclinG1 AA083032 N.C. CentromereproteinE(312kD) H94559 N.C. Chromosomesegregation1(yeasthomolog)like N69204 N.C. Mphasephosphoprotein1 N91105 N.C. Others KIAA1128protein AA114106 Tissuefactorpathwayinhibitor2 AA399473 N.C. + Nohit AA405804 N.C. CoagulationfactorVIII,procoagulantcomponent(hemophiliaA) AA437191 N.C. + Nohit AA442092 N.C. Peroxisomalmembraneprotein3(35kD,Zellwegersyndrome) AA452566 + + ATPbindingcassette,subfamilyB(MDR/TAP),member1 AA455911 N.C. + Vmycavianmyelocytomatosisviraloncogenehomolog AA464600 N.C. Nohit AA488073 N.C. + Nmycdownstreamregulated AA489261 N.C. + ThymineDNAglycosylase AA490546 N.C. + Splicingfactor,arginine/serinerich5 AA598965 N.C. Thioredoxin,mitochondrial AI017377 N.C. HeterogeneousnuclearribonucleoproteinD(AUrichelementRNAbindingprotein H11069 N.C. 1,37kD) KIAA0449protein H14513 N.C. + Paternallyexpressed10 H51765 + + Nohit H53268 N.C. + Hypotheticalprotein H59188 N.C. Nohit H59208 N.C. Nohit H61003 N.C. + HypotheticalproteinFLJ20392 H69785 N.C. Nohit H70120 N.C. Nohit H71857 N.C. CASP8associatedprotein2 H50582 N.C. VonHippelLindausyndrome H73054 N.C. Chromosome20openreadingframe1 H73329 N.C. Transmembraneprotein2 H75632 N.C. + Nohit H91256 N.C. Nucleosomeassemblyprotein1like4 H92347 N.C. Highmobilitygroup(nonhistonechromosomal)protein17 H93087 N.C. 38

Nohit H94947 N.C. CathepsinD(lysosomalaspartylprotease) N20475 N.C. VkitHardyZuckerman4felinesarcomaviraloncogenehomolog N20798 N.C. KIAA1718protein N26802 N.C. + CMyctargetJPO1 N45440 N.C. KIAA0914geneproduct N51424 N.C. HypotheticalproteinFLJ20008 N52394 N.C. HypotheticalproteinFLJ10099 N52973 N.C. + TJ6protein N70122 N.C. + Nohit N73575 N.C. FragileXmentalretardation,autosomalhomolog1 N79708 N.C. Nohit N91731 N.C. Nohit N92035 N.C. Nohit N94234 N.C. Nohit R02654 N.C. KIAA0648protein R02820 N.C. Decayacceleratingfactorforcomplement(CD55,Cromerbloodgroupsystem) R09561 + N.C. Nohit R11605 N.C. Nohit R25114 N.C. Nohit R26789 N.C. Nohit R33154 + + Syntaxin11 R33851 N.C. + HypotheticalproteinFLJ10357 R34205 N.C. + HypotheticalproteinPRO1847 R45056 + + Nohit R63298 N.C. CDA14 R64203 N.C. Nohit R64660 N.C. Lemancoiledcoilprotein R66633 + + Nohit R67336 N.C. + KIAA1571protein R68133 N.C. + Nohit R70488 N.C. Adisintegrinlikeandmetalloprotease(reprolysintype)withthrombospondintype1 R76553 + + motif,1 Nohit R77213 N.C. ATPbindingcassette,subfamilyB(MDR/TAP),member10 R83875 N.C. HypotheticalproteinNUF2R R92435 N.C. Nohit R95851 N.C. Membranemetalloendopeptidase(neutralendopeptidase,enkephalinase,CALLA, R98851 N.C. CD10) Nohit R99526 + + Nohit T62100 N.C. + Nohit T67053 N.C. Nohit T68336 N.C. + Nohit T70413 N.C. ApolipoproteinCIV T71886 N.C. + Nohit T78110 N.C. + Coatomerproteincomplex,subunitalpha T81091 + + Nohit T89283 N.C. + FK506bindingprotein8(38kD) W25035 N.C. Caspase6,apoptosisrelatedcysteineprotease W45688 N.C. RNAbindingmotifprotein5 W73892 N.C. *:N.C.:Nochange,+:Upregulation,:Downregulation **:Accessno.representESTs.Thecorrespondinggenewerematchedusingblastninthegenebankof NCBI. 39

Transcription(16.0%)

Others(48.7%) Signaling(16.0%)

Growthfactorsandinterleukins(16%) Metabolism(7.4%) Translation(1.8%) Cytoskeleton(1.8%) CellAdhesion(1.8%) Cellcycle(2.5%) Fig.2.1Piechartoffunctionalgroupingof the genesidentifiedasdownregulatedorupregulatedbythe activationofFPreceptorutilizingcDNAmicroarrayanalysis. 40

Table2.2:GeneListfororthernBlotAnalysis

FunctionGroup AccessNo.** Microarray NorthernResults Results

FP A FP B FP A FP B Protocadherin20* AA040043 N.C. + ++ + MemberofRASoncogenefamily AA076645 + + + ++ (RAB21)* Januskinase1 AA284634 N.C. N.C. + MSG1* AA432143 N.C. + N.C. + EGR1* AA486628 + + + ++ NmycDownstreamRegulated* AA489261 N.C. + + ++ HomosapiensgeneforTcellnuclear AA598611 N.C. + + ++ receptorNOT(Nurr1),completecds.* Homosapiensconnectivetissuegrowth AA598794 + + ++ + factor(CTGF)* Interleukin1,alpha AA936768 N.C. + + N.C. EphA2* H84481 + + + ++ CmyctargetJPO1 N45440 N.C. ProteinDisulfideisomeraserelated N59626 N.C. + + + protein* Homosapiensmatrixmetalloprotease R76553 + + + N.C. (ADAMTS1)* Argininrich,mutatedinearlystage R91550 + + + + tumors* Vav1oncogene T65770 N.C. + N.C. N.C. Interleukin1receptorantagonist T72877 N.C. + N.C. N.C. FRA1* T82817 N.C. + + ++ FOSlikeantigen1* T89996 N.C. + + + JunB* T99236 + + + ++ FK506bindingprotein8(38KD) W25035 N.C. N.C. N.C.

N.C.:Nochange,+ : Upregulation, :Downregulation,++:Robustupregulation *:TheNorthernblotsresultsareinagreementwithmicroarrayresults. **:Accessno.representESTs.Thecorrespondinggenewerematchedusingblastninthegenebankof NCBI.

41

HEK FP A FP B HEK FP A FP B

0 0 .251 3 6 12 240 .251 3 6 12 24 00 .251 3 6 12 240 .251 3 6 12 24 (hr)

1

R MSG1

G

E

1

G

R D EphA2 N

1 P

R A

I

D FR P

0

2

B

D

n

A

u

C

J P

Fig.2.2 NorthernblotsofgenesthatwerefoundtoberegulatedinPGF 2αstimulatedFP AorFP Bexpressing cells.Cellsweretreatedwith1MPGF 2α fortheindicatedtimes.RNAwasextractedandsubjectedto Northernblotanalysisasdescribedin Experimental Procedures .TengoftotalRNAwasusedforeach lane.GAPDH,whichwasshownatthebottomblotforeachgene,wasusedforloadingcontrol.Resultsare representative of at least two independent experiments. Abbreviations of gene names: EGR1 for early growthresponsefactor1,EphA2forephrinA2,FRA1forfosrelatedantigen1,MSG1formelanocytes specific gene 1, NGFβ for neuron growth factor β, NDRG1 for Nmyc downstreamregulated gene 1, PDIRPforproteindisulfideisomeraserelatedproteinandPCAD20forprotocadherin20.

42

FPA FPB 0 1 3 6 12 24 0 1 3 6 12 24 (hr)

EGR1

Actin

Fig.2.3 WesternblotsofEGR1inFP AorFP Bexpressing cells treatedwithPGF 2αfordifferentlengthsof o time. Cells were treated with PGF 2α for the indicated time at 37 C. The cells were then subjected to immunoblot as described in Experimental Procedures . Each blot was stripped and reprobed with antibodiesagainstactin.Resultsarerepresentativeofthreeindependentexperiments.

43

CHAPTERTHREE

CHARACTERIZATIOOFTHESIGALIGPATHWAYS

IVOLVEDITHEREGULATIOOFEGR1EXPRESSIOBY

THEACTIVATIOOFFPPROSTAOIDRECEPTORS

44

3.1Introduction

EGR1isamemberofthezincfingerfamilyoftranscriptionfactors.Itisinducedwithin

1530minutesafterstimulationoffibroblastsandothercellswithavarietyofmitogenic stimuli.ExpressionofEGR1isrelatedtosuppressionofcellgrowth,transformationand induction of apoptosis (Liu et al., 1998). Recently, EGR1 has been related to heart hypertrophy(Khachigianetal.,2006;Buitragoetal.,2005).Itwasdemonstratedthat

NAB1, a negative regulator of Egr1, and Egr1 serve as endogenous regulators of pathologic cardiac hypertrophy. Overexpression of NAB1 suppressed cardiomyocyte

hypertrophy,skeletalorganization, andproteinsynthesis,whereascardiomyocytegrowth was unaffected by a mutant form of NAB1 that lacked the Egrbinding site.

Complementing these observations, ventricular and cardiomyocyte hypertrophy were

reduced in Egr1–null mice subjected totransverseaorticconstrictioninducedpressure

overload.

Regarding the importance of EGR1 in physiological process, the signal transduction pathways related to the gene regulation of EGR1 have been extensively studied.

TyrosinekinasereceptorshavebeenrelatedtotheinductionofEGR1.Forexample,the inductionofEGR1expressionisinducedbyepithelialgrowthfactor(EGF)(Tsaietal.,

2000) . GPCRshavealsobeenreportedtobeinvolvedingeneregulationofEGR1.For example, the induction of EGR1 in Swiss 3T3 fibroblasts is stimulated by PGE 2

(Daneschetal.,1994).Forthedownstreamcomponentsofthereceptorsleadingtothe 45

inductionofEGR1,mitogenactivatedproteinkinasekinase½(MEK1/2)anditsdirect downstream component, extracellular signalregulated kinase (ERK), are well known.

For example, the induction of EGR1 expressionby lipopolysaccharide was shown to dependontheactivationofMEK1/2andERK(Guhaetal.,2001).Theactivationofthe

Ras/RafpathwayisnecessaryfortheactivationofMEK1/2.Ithasalsobeenshownthat

Ras/RafisinvolvedintheinductionofEGR1(Guhaetal.,2001).

Similar signal transduction pathways, which were found to be involved in the gene regulationofEGR1,werealsoidentifiedtobethroughtheFPreceptor.Forexample,the activation of FP has been shown to activate Ras pathways (Sales et al., 2005). The activationofRafkinase,adirectdownstreamcomponentofRas,hasalsobeenshownto occurthroughtheFPreceptor(Chenetal.,1998) .Moreover,i thasbeenshownthatthe activationofMEK1/2isthroughtheFPreceptor(Saleetal.,2005).

Inthisstudy,wedemonstratethatactivationoftheFPreceptorcanactivateRas,which turnsontheRafkinase,leadingtotheactivationofMEK1/2andinductionofEGR1.It isthefirstreporttolinktheFPreceptorwithEGR1.Consideringtheimportantroleof

FP(Adamsetal.,1996)andEGR1(Khachigianetal.,2006;Buitragoetal.,2005)in heart hypertrophy, the induction of EGR1 by the activation of FP may suggest a mechanismofFPinducedhearthypertrophy.

46

3.2ExperimentalProcedures

Materials. Dulbecco'smodifiedEagle'smedium,bovineserumalbumin,hygromycinB, geneticin and gentamicin were obtained from Invitrogen (Carlsbad, CA). AntiEGR1 antibodieswereobtainedfromSantaCruzbiotechnology(SantaCruz,CA).Antirabbit

IgGconjugatedwithhorseradishperoxidase,vincullinantibodyandallotherunspecified chemicals were purchased from SigmaAldrich (St. Louis,MO).HRPconjugatedanti

MouseIgGandnitrocellulosemembranewerepurchasedfromBioRad(Hercules,CA).

CelllysisbufferwasobtainedfromCellSignaling(Boston,MA).PGF 2α wasobtained fromtheCaymanChemicalCompany(AnnArbor, MI).DominantnegativeCRafwas provided by Dr. Morrison at NCI (Fradrick, MD) and Ras dominant negative was provided by Dr Vallancourt at University of Arizona (Tucson, AZ). PD 98059 was

obtainedfromCalbiochem(SanDiego,CA).Bay439006wasprovidedbyDr.Hurleyat

UniversityofArizona(Tucson,AZ).

Cell Culture . FP cells were maintained at 37°C with 5% CO 2/95% air in Dulbecco's

modified Eagle's medium containing 10% fetal bovine serum, 250µg/ml geneticin,

200µg/mlhygromycin B,and100µg/ml gentamicin.

o Westernblotting .Cellswereincubatedat37 Cwith1MPGF 2α (CaymenChemical) for1hour.Insomecasescellwerepretreatedwitheithervehicle(0.1%Me 2SOorwater)

or50MPD98059(Calbiochem)for30minutes,or20MBay439006for1hourat 47

37 oC. In other cases, cells were transfected with CRaf dominant negative or Ras

dominantnegativeconstructfor24hours.Cellswerescrapedinto1xlysisbuffer(10x bufferfromCellSignaling)containing1MPMSFandtransferredtomicrofugetubes.

Thesampleswererotatedfor16hoursat4 oC and were centrifuged at 16,000g for 15 minutes.Aliquotsofthesupernatantscontaining50gproteinwereelectrophoresedon

7.5% SDSpolyacrylamide gels and transferred to nitrocellulose membrane (BioRad).

Membraneswereincubatedin5%nonfatmilkforonehouratroomtemperatureand werethenincubatedat4 oCfor16hourswithprimaryantibodies.Themembraneswere

then washed three times and incubated with the corresponding secondary antibodies

conjugatedwithahorseradishperoxidasein5%nonfatmilkatroomtemperature.After

incubation with secondary antibody, the membranes were washed three times and

immunoactivitywasdetectedbySuperSignal(Pierce).Theprimaryantibodiesusedwere

EGR1 (Santa Cruz), phosphoMEK1/2 (Cell Signaling), phosphoser 338 CRaf (Cell

Signaling),vincullin(Sigma),CRaf(SantaCruz)andMEK1/2(CellSignaling)

3.3Results

MEK1/2isinvolvedingeneregulationofEGR1throughtheFPreceptor .Because

theactivationofMEK1/2isknowntobenecessaryfortheinductionofEGR1,wefirst

checkedtoseeifMEK1/2isinvolvedinthegeneregulationofEGR1throughtheFP

receptor.Thedosageusedfortreatmentwas1Mandthetimecoursewas1hour.As

shownintheupperpanelofFigure3.1A,therewasaphosphorylationofMEK1/2in 48

HEK293expressinghumanFPreceptor(FPcells)treatedwithPGF 2α.Tocheckforan

equalamountofMEK1/2beforeandafterPGF 2αtreatment,theblotintheupperpanelof

Figure 3.1 A was reprobed with antibody against MEK1/2 protein. As shown in the

lower panel of Fig. 3.1 A, the amount of MEK1/2 is nearly equal. In the same

experiment,aspecificMEK1/2inhibitorPD98059wasusedtotestiftheactivationof

MEK1/2isnecessaryfortheinductionofEGR1byactivationoftheFPreceptor.The

dosage of PD 98059 and PGF 2α was as described in Experimental Procedures . As

shown in the upper panel of Figure 3.1 B, the induction of EGR1 through the FP

receptorwasblockedbythepretreatmentofPD98059.Tochecktheequalloadingof proteinlysates,theblotintheupperpanelofFigure3.1Bwasreprobedwithantibody

againstvincullin.AsshowninthelowerpanelofFig3.1B,anequalamountofvincullin

suggeststheequalloadingofproteinlysatesineachlane.Thisexperimentclearlyshows

thatMEK1/2isinvolvedintheinductionofEGR1byactivationoftheFPreceptor.

CRafisinvolvedingeneregulationofEGR1throughtheFPreceptor .Thewell known upstream component of MEK1/2 is Raf kinase. After finding that MEK1/2 is involvedintheinductionofEGR1throughtheFPreceptors,wecontinuedtoexamine whetherRafkinaseisinvolvedintheinductionofEGR1throughtheFPreceptor.At first,aRafkinasespecificinhibitorBay439006wasusedtoexamineifRafkinaseis involvedintheinductionofEGR1.ThedoseandtimecoursefortreatmentofBay43

9006andPGF 2αwereasdescribedin ExperimentalProcedures .TheupperpanelofFig

3.2AshowsthatBay439006inhibitestheinductionofEGR1.Thisblotwasreprobed 49

withantibodyagainstvincullinandanequalamountofvincullininthelowerpanelof

Fig.3.2Asuggeststheequalloadingofproteinlysatesineachlane.BRafandCRafare thetwomainmembersoftheRafkinasefamily.However, Bay439006inhibitsboth kinases.ToexaminewhichkinaseisinvolvedintheinductionofEGR1,CRafandB

Rafdominantconstructswereused.Thetransienttransfectionanddrugtreatmentwereas described in Experimental Procedures . As shown in the upper panel of Fig. 3.2 B, transient transfection of CRaf dominant negative construct inhibits the induction of

EGR1bytheactivationofFPreceptor.TheblotintheupperpanelofFig.3.2Bwasre probed with antibody against vincullin and an equal amount of vincullin in the lower panelofFig.3.2Bsuggeststheequalloadingofproteinlysatesineachlane.Ontheother hand,transienttransfectionofBRafdominantnegativeconstructhasnoeffect(datanot shown). After CRaf was identified to be involved in the induction of EGR1, the activationofCRafthroughtheFPreceptorwasexamined.Itwaswelldocumentedthat phosphorylationofSer338ofCRafisrelatedtotheactivationofCRaf(Chongetal.,

2001).Antibodyagainstphosphoser338ofCRafwasusedtodetecttheactivationofC

RafinFP AcellstreatedwithPGF 2α.AsshowninFig.3.2C,theupperpanelofFig.3.2C showsphosphorylationofSer338inCRafaftertreatmentwithPGF 2α.Theblotinthe

upperpanelofFig.3.2CwasreprobedwithantibodyagainstCRafandtheresultis presentedinthelowerpanelofFig.3.2C.ThelowerpanelofFig.3.2Cshowsthatthe

amount of CRaf is equal in each lane. In this experiment, CRaf was found to be

activatedthroughtheFPreceptorandinvolvedintheinductionofEGR1.

50

Ras is involved in gene regulation of EGR1 through the FP receptor. After identificationoftheinvolvementofCRafintheinductionofEGR1byactivationofFP receptor, we tried to identify the upstream components of CRaf pathways. The best known upstream component is Ras small G protein. To test if Rasis involved in the induction of EGR1, Ras dominant negative construct was used. The transient transfection and Western blot analysis were carried out as described in Experimental

Procedures .IntheupperpanelofFig.3.3,theinductionofEGR1byactivationofthe

FPreceptorisinhibitedbythetransfectionofRasdominantnegativeconstruct.Forthe control of equal loading, the blot in the upper panel of Fig. 3.3 was reprobed with antibodyagainstvincullin.TheresultwasshowninthelowerpanelofFig.3.3andan equalamountofvincullinsuggeststheequalloadingofproteinlysatesineachlane.

3.4Discussion

PGF 2α has been reported to induce heart hypertrophy (Adams et al., 1996). However,

littleisknownaboutthemechanismofthisinduction.

ThereceptorforPGF 2αisFP,whichisaGPCRcoupledwiththeGq.Ithasbeenreported thattheFPreceptorcanactivateseveralsmallGproteinsincludingRhosmallGprotein

(Pierceetal.,1999)andRassmallGprotein(Salesetal.,2006).Inourstudy,Raswas alsofoundtobeactivatedthroughtheFPreceptor(Fig.3.3).Interestingly,Rashasbeen showntoplayanimportantroleinhearthypertrophy(Proudetal.,2004). 51

The bestknown direct downstream components of Ras are Raf kinases. Raf kinases includeCRaf,BRafandARaf.IthasbeenreportedthatCRafandBRaf,butnotA

RafcanbeactivatedbyFPreceptors(Chenetal.,1998).Rafkinasehasalsobeenshown tobeinvolvedinthehearthypertrophy(Proudetal.,2004).Morespecifically,CRafhas beenshowntoplayanimportantroleinhearthypertrophy(Harrisetal.,2004).Inthis study,transgenicmiceexpressingdominantnegativeCRafwerefoundtobemarkedly resistanttothedevelopmentofcardiachypertrophyandhypertrophicgeneinductionin responsetotransverseaorticconstriction.Inourstudy,wealsofoundthatactivationof

CRafthroughtheFPreceptor,whichleadstotheinductionofEGR1(Fig.3.2).

MEK1/2 is the bestknown downstream component of Raf kinases. MEK1/2 can be activated through the FP receptor (Sales et al., 2005) and has been reported to be involvedinthehearthypertrophy(Xiaoetal.,2001).Inourstudy,weclearlyshowthe activationofMEK1/2throughtheFPreceptor,whichisnecessaryfortheinductionof

EGR1.OneinterestingaspectofourfindingsistheMEK1/2independentactivationof

ERK1/2.InFPcells,ERK1/2hasbeenphosphorylatedwithoutagonisttreatment(data notshown).Furtherwork,suchastransfectionofERK1/2dominantnegativeconstructs, isnecessarytoidentifytheroleofERK1/2inthe inductionofEGR1throughtheFP receptors.

52

Inthepresentstudy,weidentifiedthattheRas/Raf/MEK1/2pathwaysareinvolvedinthe inductionofEGR1byactivationoftheFPreceptor.ConsideringthatbothFPandEGR

1playimportantrolesinhearthypertrophy,thisinductionofEGR1byactivationofthe

FPreceptormaysuggestapossiblemechanismofFPinducedhearthypertrophy.

53

A Vehicle PD98059

V P V P

EGR1

Vincullin

B V P

PMEK1/2

MEK1/2

Fig.3.1MEK1/2isinvolvedinthegeneregulationofEGR1throughtheFPreceptor.A,humanFP cellswerepretreatedwitheithervehicleor50µMPD98059for1houraftertreatmentwithvehicle(V)or 1µMPGF 2α (P)for1hat37°Candwerethenimmediatelysubjectedtoimmunoblotanalysisasdescribed under Experimental Procedures. Intheupperpanel,antibodyagainstEGR1isused. The blots in the upperpanelisreprobedwithantibodyagainstvincullinandtheresultisshowninthelowerpanels.B, humanFPweretreatedwithvehicle(V)or1µMPGF 2α (P)for1hat37°Candwerethenimmediately subjected to immunoblot analysis as described under Experimental Procedures. In the upper panels, antibody against phospho MEK1/2 is used. The blots in the upper panels were reprobed with antibody againstMEK1/2andtheresultsareshowninthelowerpanels.Immunoblottingresultsarerepresentativeof threeexperimentswitheachantibodyandcondition. 54

A B Vehicle Bay Vehicle CRafDN

VP V P V P V P

EGR1

Vincullin

C VP

Phosphoserine338CRaf

CRaf

Fig3.2TheCRafisinvolvedintheinductionofEGR1throughtheFPreceptor.AandB,HumanFP cellsweretreatedwithvehicle(V)or1µMPGF 2α (P)for6hat37°Candwerethenimmediatelysubjected to immunoblot analysis as described under Experimental Procedures. In some cases, the cells were pretreatedwitheithervehicle,20µMBay439006for1hour( A).Inothercases,thecellsweretransfected withvehicleorCRafdominantnegativeconstruct(CRafDN)for16hours( B)beforeaddingPGF 2α .In the upper panels, antibody against EGR1 was used. Theblotsintheupperpanelswerereprobedwith antibodyagainstvincullinandtheresultsareshowninthelowerpanels. C.humanFPweretreatedwith vehicle (V) or 1µM PGF 2α (P) for 1h at 37°C and were then immediately subjected to immunoblot analysisunder ExperimentalProcedures. Intheupperpanel,antibodyagainstphosphoser338CRafis used.TheblotintheupperpanelwasreprobedwithantibodyagainstCRafandtheresultisshowninthe lower panels. Immunoblotting results are representative of three experiments with each antibody and condition. 55

Vehicle RasDN V P V P

EGR1

Vinculin

Fig3.3RasisinvolvedingeneregulationofEGR1throughtheFPreceptor .HumanFPcellswere transfected with Ras dominant negative construct (Ras DN) followed by treatment with vehicle (V) or 1µM PGF 2α (P) for 1h at 37°C and were then immediately subjected to immunoblot analysis under ExperimentalProcedures. Intheupperpanels,antibodyagainstEGR1wasused.Theblotintheupper panel was reprobed with antibody against vincullin and the results are shown in the lower panel. Immunoblottingresultsarerepresentativeofthreeexperimentswitheachantibodyandcondition.

56

PGF 2α FP

Ras RasDN

Bay439006 CRaf CRafDN

PD98059 MEK1/2

EGR1

Fig 3.4 The signal transduction pathways involved in the induction of EGR1 through the FP receptor. TheFPreceptoriscapableofactivatingRas,whichinturnleadstotheactivationofCRafand MEK1/2.TheactivationofMEK1/2inducestheEGR1,whichmaybenecessaryforthePGF 2α dependent hearthypertrophy.

57

CHAPTERFOUR

CHARACTERIZATIOOFTHESIGALIGPATHWAYS IVOLVEDITHEREGULATIOOFCYR61EXPRESSIOBY THEACTIVATIOOFFPPROSTAOIDRECEPTORS 58

4.1 Introduction Cysteinerich,angiogenicinducer,61(Cyr61)isamemberoftheCCN(Cyr61,CTGF,

Nov)family.TheCCNfamilyiscomposedofmatricellularregulatoryfactorsinvolved ininternalandexternalcellsignalling.TherearesixmembersoftheCCNfamily,namely

Cyr61(CCN1),CTGF(CCN2),CCN3,CCN4,CCN5andCCN6(Perbaletal.,2004 ).

This family participates in angiogenesis, chondrogenesis, and osteogenesis and is probablyinvolvedinthecontrolofcellproliferationanddifferentiation.TheCCNfamily

hasbeenreportedtoplayanimportantroleincancer. One example is that Cyr61 was

showntobeinvolvedinthebreastcancer(Menendezetal,2003).Inthisreview,Cyr61

was shown to be involved in all aspects of breast cancer malignancy: angiogenesis,

metasis,survivalfactorandcellproliferation.Inadditiontothebreastcancer,Cyr61is

alsoshowntobeinvolvedintheinvasionandangiogenesisofmelanoma(Kunzetal.,

2003).

ConsideringtheimportantbiologicalfunctionsofCyr61,somestudieshavebeencarried

outtoelucidatethesignaltransductionpathwaysrelatedtothegeneregulationofCyr61.

Tyrosine kinase receptors have been related to the induction of Cyr61. For example,

Cyr61expressionisinducedbyepithelialgrowthfactor (EGF) (Sampath et al., 2002 ).

GPCRs have also been reported to be involved in the gene regulation of Cyr61. For example,Cyr61isinducedbyactivationoftheFPreceptor(Liangetal.,2003).Forthe downstream components of the receptors leading to the induction of Cyr61, multiple important signal transduction pathways have been identified as involved. One is the 59

Wnt/βcatenin pathway (Si et al., 2006), while another is small Rho small G protein

(Liangetal.,2003).RafkinasehasalsobeeninvolvedintheinductionofCyr61(Chung etal.,1998).Overall,however,thegeneregulationofCyr61isnotwellestablished.

AfteridentifyingtheinductionofCyr61byactivationoftheFPreceptorusingWestern blot analysis, we began to detail the signal transduction pathways leading to this induction.TCF/ βcateninhasbeenshowntobeactivatedthroughtheFPreceptor(Fujino

et al, 2001). Raf kinase can also be activated through the FP receptor (Fig. 3.3).

Interestingly,bothpathwaysareinvolvedinthegeneregulationofCyr61(Sietal.,2006;

Chungetal.,1998).FurtherstudyindicatedthatbothTCF/ βcateninandBRafkinase areinvolvedintheinductionofCyr61throughtheFPreceptor.Moreover,wefoundthat activationofBRafisnecessaryfortheactivationofTCF/ βcatenininagoniststimulated

FPcells.ThisisthefirstdemonstrationofcrosstalkbetweentheRafkinaseandTCF/ β

cateninpathways.ConsideringtheimportantrolesofRafkinaseandTCF/ βcatenin in

cancer,thesefindingsmayhavesignificantimpactoncancerresearch.

4.2ExperimentalProcedures

Materials. Dulbecco'smodifiedEagle'smedium,bovineserumalbumin,hygromycinB,

geneticin and gentamicin were obtained from Invitrogen (Carlsbad, CA). AntiCyr61

antibodieswereobtainedfromSantaCruzbiotechnology(SantaCruz,CA).Antirabbit

IgG conjugated with horseradish peroxidase, antivincullin antibody and all other 60

unspecified chemicals were purchased from SigmaAldrich(St. Louis, MO).Celllysis buffer wasobtainedfromCellSignaling (Boston,MA). PGF 2α was obtained from the

CaymanChemicalCompany(AnnArbor, MI).TCF4Dominantnegativeconstructwas providedbyDr.FrearoninUniversityofMichigan(AnnHarbor,MI).BRafandCRaf dominant negative constructs were provided by Dr. Morrison in NCI (Frederick, MD).

Dominant negative Ras construct was provided by Dr. Vallancourt in University of

Arizona (Tucson, AZ). Cytochalasin D and Toxin B were obtained from Calbiochem

(SanDiego,CA). Bay 439006wasprovidedby Dr.Hurley at University of Arizona

(Tucson,AZ).TOPflashandFOPflashluciferaseconstructswereobtainedfromPromega

(Madison,Wisconsin).

Cell culture . FP and FP B cells were maintained at 37°C with 5% CO 2/95% air in

Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, 250µg/ml

geneticin, 200µg/ml hygromycin B, and 100µg/ml gentamicin. Microgalia cells were

maintained at 37°C with 10% CO 2/90% air in Ealge’s minimum essential medium

(MEM)containing6g/lglucose,10%fetalcalfserum(FCS),105U/lpenicillinand0.1

g/lstreptomycin.

o Westernblotting .Cellswereincubatedat37 Cwith1MPGF 2α (CaymenChemical) for6hour.Insomecasescellwerepretreatedwitheithervehicle(0.1%Me 2SOorwater),

20MBay439006for1hourorToxinB10ng/mlfor16hoursat37 oC.Inothercases,

cells were transfected with CRaf, BRaf or Ras dominant negative constructs for 16 61

hours using FuGENE6 (Roche Molecular Biochemicals). Cells were scraped into 1x lysisbuffer(10xbufferfromCellSignaling)containing1MPMSFandtransferredto microfugetubes.Thesampleswererotatedfor16hoursat4 oCandwerecentrifugedat

16,000g for 15 minutes. Aliquots of the supernatants containing 30 g protein were

electrophoresed on 7.5% SDSpolyacrylamide gels and transferred to nitrocellulose

membrane(BioRad).Membraneswereincubatedin5%nonfatmilkfor1houratroom

temperatureandwerethenincubatedat4 oCfor16hourswithprimaryantibodies.Then,

themembraneswerewashedthreetimesandincubatedwiththecorrespondingsecondary

antibodies conjugated with horseradish peroxidase in 5% nonfat milk at room

temperature.Afterincubationwithasecondaryantibody,themembraneswerewashed

three times and immunoactivity was detected by SuperSignal (Pierce). The primary

antibodiesusedwerevincullin(Sigma),Cyr61(SantaCruz).

Luciferaseassay. Cellsweresplitinto6wellplatesandthenextday weretransiently transfectedwitheither1µg/wellofthewildtypeTcf/Lef reporter plasmid TOPflash or themutantplasmidFOPflash.FOPflashdiffersfrom TOPflashbythemutationofitsTcf binding sites and serves to differentiate Tcf/βcateninmediated signaling from

background (Upstate Biotechnology, Inc.). Then, cells were treated with 1 M PGF 2α

(CaymenChemical)for16hours.Insomecasescellwerepretreatedwitheithervehicle

(0.1%Me 2SOorwater),10MBay439006,2McytochalasinDfor1houror10M

AL8810(Cayman)for15minutesat37 oC.Inothercases,cellswerecotransfectedwith

1µg/wellofCRaf,BRaforRasdominantnegativeconstructs.Thetreatedcellswere 62

rinsedtwicewithicecoldphosphatebufferedsalineandextractswerepreparedusingthe

Luciferase Assay System (Promega). Luciferase activity in the extracts (~1 µg protein/sample)wasmeasuredusingaTurnerTD20/20luminometerandwascorrected forbackgroundbysubtractionofFOPflashvaluesfromcorrespondingTOPflashvalues.

PhalloidinStaining .FP Bcellsweregrownfor2dayson22mmroundglasscoverslips

(VWRScientific)in6welldishesundersubconfluentconditions. Cellswerepretreated with20MBay439006for1hourfollowedbytreatmentwithPGF 2α for1hour.Then, cells were fixed for 15 min in freshly made 4% paraformaldehyde in 1× phosphate buffered saline,quenched3timesfor10minin0.1Mglycine,pH7.4, andpermeabilized

for 15min in 2× SSC (30mM NaCl, 300mM sodium citrate) containing 0.1% (v/v)

Triton X100 (BioRad). Cells were preincubated in blocking buffer (2× SSC, 0.05%

Triton X100, 2% goat serum, 1% bovine serum albumin, 0.01% sodium azide) for

30 min. The cells were then incubated with 0.1unit of Texas red isothiocyanate

conjugatedphalloidin(MolecularProbes)in50 µlofblockingbufferatroomtemperature for1h.Thecellswere brieflywashedin1×phosphatebufferedsalineandmountedusing pphenylenediamine.Thecellswereviewedbyimmunofluorescence microscopywithan

OlympusBH2microscopewitha40×oilobjective throughaTexasredisothiocyanate

filter cube.

PCR reaction . The FP receptor expressed on microglia cells was determined by RT

PCR. Total RNA from microglia cells was isolated by using the RNeasy mini kit 63

(Qiagen)followingthemanufacturer'sprotocolwithoncolumnDNasedigestion.1µgof total RNA were reverse transcribed in a total volume of 20 µl including 200 units of

SuperScript™ III Reverse Transcriptase (Invitrogen), 25 units of RNase inhibitor

(Invitrogen), 0.5 µg of oligo(dT) 15 primer,0.5mMofeachdNTPs,and1xfirststrand buffer provided by Invitrogen. The reaction will be incubated at 42 °C for 90 min.

AliquotsoftheRTproductsweresubsequentlyusedforPCRamplification. 10µlofRT

productswasbroughttoavolumeof50µl containing1mMMgCl 2,0.12mMofeach dTNPs, 1 unit of Taq polymerase (Invitrogen), 0.5 µM of both the upstream and downstreamPCRprimersforspecificprostanoidreceptors,and1xPCRbuffer,provided by Invitrogen. Amplification was carried out with a PTC100 programmable thermal controller(MJResearchInc.,Watertown,MA)afteraninitial denaturationat94°Cfor3

min.Thiswasfollowedby35 cyclesofPCRusingthefollowingtemperatureandtime profile: denaturationat94°Cfor1min,primerannealingat 56 °C for 1 min, primer extensionat72°Cfor1min,and afinalextensionof72°Cfor10min.Thefollowing primer was used: FPR sense 5’ATG TCC ATG AAC AAT TCC AAA CAG CTA

GTG3’, antisense 5’GGT TTT GTG ACT CCA ATA CAC CGC TC3’and GAPDH sense 5’TGGGTGTGAACCATGAGAAG3’,GAPDHantisense5’TCTACATGG

CAACTGTGAGG3’. ThePCRproductswerevisualizedbyelectrophoresisona1.2% agarose gel in 0.5x TBE buffer after staining with 0.5 µg/ml ethidium bromide. The

ultraviolet (UV)illuminated gels were photographed. pCep4 containing FP plasmids

wasusedaspositivecontrolwhilewaterwasusedasnegativecontrol.

64

4.3Results

BothRafkinaseandTCF/βcateninpathwaysareinvolvedintheinductionofCyr61 throughtheFPreceptor. TheinductionofCyr61atmRNAlevelbyactivationoftheFP

receptorhasbeenreported(Liangetal,2003).However,theinductionofCyr61atthe

proteinlevelthroughtheFPreceptorhasnotbeenreported.AsshowninbothFig.4.1A

andFig.4.1B,wefoundthattheinductionofCyr61throughtheFPreceptorhappensat

theproteinlevel.Afterthisfinding,webeganto identifythepathwaysleadingtothis

induction.TheRafkinasepathway,whichhasbeenfoundtobeactivatedthroughtheFP

receptor(Fig.3.3),hasbeenshowntobeinvolvedintheinductionofCyr61(Chunget

al.,1998).AsshowninFig.4.1A,aRafkinasespecificinhibitorBay439006inhibits

theinductionofCyr61throughtheFPreceptor.TCF/βcatenin pathway has also been

showntobeinvolvedintheinductionofCyr61bytheactivationoftheFPreceptor(Siet

al.,2006).TotestifTCF/βcateninisinvolvedintheinductionofCyr61throughtheFP

receptor, we used a TCF4 dominant negative construct. As shown in Fig. 4.2 B, the

induction of Cyr61 in agonist stimulated human FP expressing cells is inhibited. To

ensureequalloadingofproteins,theblotsshownintheupperpanelswerereprobedwith

antibodies to vincullin and, as shown inthelowerpanelssimilaramountsofvincullin werepresentthroughoutthetreatments.TheseresultssuggestthatbothRafkinaseand

TCF/ βcateninpathwaysareinvolvedintheinductionofCyr61throughtheFPreceptor.

65

RafkinaseisinvolvedintheactivationofTCF/βcateninpathwaythroughtheFP receptor. BothRafkinase(Chenetal.,1998)and TCF/βcatenin(Fujinoetal.,2001)

havebeenshowntobeactivatedthroughtheFPreceptor.Bothpathwayshavealsobeen

shown to be involved in the induction of Cyr61 through the FP receptor (Fig 4.1).

However, the relationship between Raf kinase and TCF/βcatenin has never been

reported.WeusespecificRafkinaseinhibitorBay439006,BRafandCRafdominant

negativeconstructtoaddressthisquestion.AsshownintheFig4.2,pretreatmentwith

Bay439006 inhibits the activation of TCF/βcatenin by activation of the FP receptor.

There are three isoforms of Raf kinase: ARaf, BRafandCRafandBay439006can

inhibit all of them. To identify the isoform responsible for this activation of TCF/β

cateninthroughtheFPreceptor,wetransientlytranfectedthehumanFPcellswithBRaf

andCRafdominantnegativeconstructs.ARafdominantnegativewasnotusedbecause

ithasbeenshownthatARafcannotbeactivatedthroughtheFPreceptor(Chenetal.,

1998). As shown in Fig. 4.2 B, transient transfection of BRaf dominant negative

construct,caninhibittheactivationofTCF/βcateninthroughtheFPreceptor.However,

CRaf dominant negative increase the activation of TCF/βcatenin through the FP

receptor (data not shown). These results suggest that Raf kinase, specifically BRaf

kinase,isinvolvedintheactivationofTCF/βcateninthroughtheFPreceptor.

Ras is involved in the activation of TCF/βcatenin pathway and the induction of

Cyr61 through the FP receptor. Because it is wellknown that activation of Ras is

necessaryfortheactivationofRafkinase,webegantoidentifytheroleofRasinthe 66

induction of Cyr61 and activation of TCF/ βcatenin pathway through the FP receptor.

Rasdominantnegativeconstructwasappliedtoaddressthisquestion.Asshowninthe

Fig. 4.3 A, transient transfection of Ras dominant negative construct inhibits the

activationofTCF/ βcateninpathwaythroughtheFPreceptor.Transienttransfectionof

Ras dominant negative construct also inhibits the induction of Cyr61 through the FP

receptor (Fig. 4.3 B). These results suggest that Ras is involved in the activation of

TCF/ βcateninandinductionofCyr61throughtheFPreceptor.

RhoandactinstressfiberareinvolvedintheactivationofTCF/βcateninpathway andinductionofCyr61throughtheFPreceptor. Ithasbeenreportedinourlaboratory that Rho small protein is involved in the activation of TCF/ βcatenin through the FP receptor (Fujino et al., 2002). After identification of TCF/ βcatenininvolvementinthe inductionofCyr61(Fig4.1B),weusedtoxinB,aspecificRhoinhibitor,tocheckifRho isinvolvedintheinductionofCyr61throughtheFPreceptor.AsshowninFig.4.4A, pretreatment of toxin B inhibits the induction of Cyr61 through the FP receptor and inhibitsthebasalexpressionofCyr61.Rhohasbeenshowntobenecessaryfortheactin stressfiberformationthroughtheFPreceptor(Pierceetal.,1999).BecauseRhohasalso beenshowntobeinvolvedintheactivationofTCF/βcatenin through the FP receptor

(Fujinoetal.,2002),weusedanactinstressfiberdisruptor,cytochalasinD,tofindoutif

actinstressfiberisnecessaryfortheactivationofTCF/ βcatenin.AsshowninFig.4.4B,

cytochalsin D inhibits the activation of TCF/ βcatenin through the FP receptor. These 67

results suggest that both Rho and actin stress fiber are involved in the activation of

TCF/βcateninpathwayandinductionofCyr61throughtheFPreceptor.

Rafkinaseisinvolvedintheformationofactinstressfiberbytheactivationofthe

FP receptor. Afteridentificationoftheinvolvementofactinstress fiber formation in activationofTCF/ βcateninthroughtheFPreceptor,aquestionwasraised.Whatisthe relationshipbetweenRafandstressfiberformation?Toaddressthisquestion,weused

RafkinasespecificinhibitorBay439006.AsshowninFig.4.5D,Bay439006inhibits theformationofstressfiberformationthroughFPreceptor.ThisresultsuggeststhatRaf kinase is involved in the formation of actin stress fiber by the activation of the FP receptor.

Activation of TCF/βcatenin pathway through the FP receptor in an endogenous system. AlltheaboveexperimentswerecarriedoutinFPcells,wheretheFPreceptoris overexpressed.ThisraisedthequestionofwhetherallthefindingsinFPcellsaredueto the artificial effects derived from the overexpressing FP receptor. To address this question,acelllinederivedfromhumanmicrogliacells(microgliacells)wasused.For thefirststep,wecheckedtheexpressionoftheFPreceptorinthiscellline.Asshownin thethirdlaneofFig.4.6A,mRNAoftheFPreceptorispresentinthemicrogliacellline.

InthefirstlaneofFig.4.6A,waterwasusedasa template and no mRNA of the FP receptorpresents.Thisresultservedasanegativecontrol.InthesecondlaneofFig.4.6

A,aplasmidcontainingFPcDNAwasusedasatemplate.Theresultservedasapositive 68

control. After proving the presence of FP receptor inthemicrogliacells,webeganto identifythesignaltransductionpathwaysbytheactivationoftheFPreceptorinthiscell line.ToexamineiftheactivationofTCF/ βcateninthroughtheFPreceptorhappensin

microagliacells,aFPreceptorantagonistAL8810wasused.AsshowninFig.4.6B,

TCF/ βcatenin pathway is activated in microglia cells stimulated with PGF 2α, but this activationisinhibitedbythepretreatmentofAL8810.WealsousedRafkinasespecific inhibitor Bay439006 and actin stress fiber disruptor cytochalasin D to pretreat the microgliacellsfollowedbythetreatmentwithPGF 2α.AstheresultshowsinFig.4.6C, the activation of TCF/ βcatenin through the FP receptor in the microglia cells was

inhibitedbybothBay439006andcytochalasindD.TheseresultssuggestthatbothRaf

kinaseandactinstressfiberareinvolvedintheactivation of TCF/ βcatenin through a

naturalFPreceptor.

4.4Discussion

Cyr61hasbeenshowntoplayimportantrolesinmultiplecancersincludingbreastcancer

(Menendez et al, 2003) and melanoma (Kunz et al., 2003). However, the signal

transduction pathways regulating the gene expression of Cyr61 have not been well

established.Inthepresentstudy,wedissectedthesignaltransductionpathwaysleadingto

the gene regulation of Cyr61 through the FP receptors and found some novel signal

transductionpathways.

69

Cyr61hasbeenreportedtoberegulatedbyTCF/ βcateninpathways(Sietal.,2006).In that study, Si et al. reported that Cyr61 could be induced by Wnt3A in marrow mesenchymalstemcells.However,itispossiblethatWnt3AcaninduceCyr61through acalciumdependentnoncanonicalWntsignaling(Milleretal.,1999).Herein,aTCF4 dominant negative construct was used to successfully inhibit the induction of Cyr61 throughtheFPreceptor.ItisthefirstreportwhichindicatesthatCyr61canberegulated throughthecanonicalWntsignalingpathway.Rafkinasehasbeenshowntobeinvolved inthegeneregulationofCyr61(Chungetal.,1998).However,thisgeneregulationof

Cyr61showninthepaperisatthemRNAlevel.Inourstudy,theRafkinasespecific inhibitorBay439006hasbeenshowntoinhibittheinductionofCyr61throughtheFP receptorattheproteinlevel(Fig.4.1A).

AfteridentificationofbothRafkinaseandTCF/ βcatenininthegeneregulationofCyr61

throughtheFPreceptor,wetriedtoclarifytherelationshipbetweenthetwopathways.

WefoundthatRafkinase(Fig.4.2A),specificallyBRafbutnotCRaf(Fig.4.2B),is

involvedintheactivationofTCF/ βcateninpathwaythroughtheFPreceptor.Toruleout

thepossibleartificialeffectstemmingfromtheengineeredcellline,wealsocheckedthis

involvement of Raf kinase in the activation of TCF/βcatenin in a microglia cell line

whereFPisendogenouslyexpressed(Fig4.6).Theresultsfromthemicrogliacellsare

verysimilartothoseobtainedfromFPcells.WealsogotsimilarresultsinHEK293cells

expressingovineFPreceptors(datanotshown).Allthesedatasuggestthatthecrosstalk between BRaf and TCF/ βcatenin may be ubiquitous. This is the first report that 70

suggeststhecrosstalkbetweentheRafkinaseandTCF/ βcateninpathways.Considering

the important roles of TCF/ βcatenin and BRaf in cancer, this finding may be very

important for the cancer research. In melanoma cases, for example,activatingsomatic

mutationsintheBRafprotooncogenewerediscoveredinmorethan60%ofcases(Dong

etal.,2003;Daviesetal.,2002).TCF/ βcateninhasalsobeenshowntoplayimportant rolesinmelanoma(Larueetal.,2006).TheidentificationofthedirectlinkbetweenB

RafpathwayandTCF/ βcateninpathwaysmaypavethewaytoabetterunderstandingof themechanismofmelanomaandpossiblecancertherapyforthisdisease.

RasisawellknownupstreamcomponentoftheRafkinasepathway.Afterfindingthe involvement of BRaf in the activation of TCF/ βcatenin pathways leading to the inductionofCyr61throughtheFPreceptor,weexaminedwhetherRasisinvolvedinthis induction. As shown in Fig 4.3, Ras is necessary for the activation of TCF/ βcatenin pathway and induction of Cyr61 through the FP receptor. TCF/ βcatenin pathway has beenshowntobeactivatedbyKras(Lietal.,2005).However,theinvolvementofwild typeRasintheactivationofTCF/ βcateninpathwayhasnotbeenreporteduntilnow;we arethefirstonetoreportit.ItisalsothefirstreporttoshowthatRasisnecessaryforthe inductionofCyr61.ConsideringthatbothCyr61(Menendezetal.,2003)andRasplay importantrolesinbreastcancer,itisnotsurprisingtofindthelinkbetweenthem.

TheothersmallGproteinsRhohavealsobeenshowntobeinvolvedintheactivationof

TCF/ βcateninandinductionofCyr61throughtheFPreceptor(Fujinoetal.,2002;Fig. 71

4.4).AlthoughtheinvolvementofRhointheinductionofCyr61throughtheFPreceptor hasbeenreported(Liangetal.,2003),oursisthefirstreporttoshowthisattheprotein level.Rhoiswellknowntoplayveryimportantrolesintheregulation ofthecellular cytoskeletonandhasbeenshowntobeinvolvedintheformationofactinstressfiberby the activation of the FP receptor (Pierce et al., 1999). So we began to examine the relationship between the FPstimulated actin stress fiber formation and TCF/ βcatenin pathway. As shown in Fig 4.4 A, actin stress fiber formation is necessary for the

activation of TCF/ βcatenin through the FP receptor. We also found this activation in microgliacellswheretheFPreceptorisnaturallyexpressed(Fig.4.6C).Althoughthe actincytoskeletonhasbeenimplicatedintheWntsignaling(Akiyamaetal.,2006), thisis

thefirstreportthatprovidesthedirectlinkbetweenactincellskeletonandtheactivation

ofTCF/ βcatenin.ItisaveryinterestingfindingbecauseRhoiswellknowntoplayvery

importantrolesincancer,especiallymetasis(Fritzetal.,2006).

After identification of the involvements of both Ras/BRaf and Rho/actin stress fiber pathways in the activation of TCF/ βcatenin pathways and induction of Cyr61, we

questioned the exact relationship between these two signal transduction pathways. To

answerthisquestion,weexaminedtheeffectofRafkinasespecificinhibitorBay439006

ontheFPdependentactinstressfiberformation.AsshownintheFig.4.5,Bay439006

inhibitsthisactinstressfiberformation.IthasbeenshownthatRho/Rockpathwaysand

Ras/BRafpathwaysconvergetoregulatetheactinstressfiberformation(Prichardetal.,

2004).Wethinkitisquitepossiblethatsimilarthingshappeninoursystem.Ras/BRaf 72

pathwaysareactivatedthroughtheFPreceptor.Inthesametime,agoniststimulatedFP activateRho.Thesetwopathwaysconvergetoinducetheactinstressfiberformationand actin stress fiber leads to the activation of TCF/ βcatenin pathway, which induces the

expressionofCyr61.Butbecauseofthecomplicated crosstalksbetweenRasandRho

signaltransductionpathways(BarSajietal,2000),otherpossibilitiesexist.Morestudies

areneededtoaddressthisquestion.

In the present study, we found that the activation of the Ras/BRaf pathway and Rho pathwaythroughtheFPreceptorconvergetoinducetheactinstressfiberformation.The

actinstressfiberformationinturnactivatestheTCF/ βcateninpathway,whichleadsto

the induction of Cyr61. Multiple novel crosstalks were identified. The first is the

crosstalk between the BRaf and TCF/ βcateninpathways.Thesecondisthecrosstalk between actin stress fiber formation and TCF/ βcatenin. The third is the crosstalk betweenRasandCyr61.Allthepathwaysinvolvedinthesecrosstalksplayimportant

roles in cancer, and identification of these novel crosstalks may lead to a better

understandingofcancer,especiallywithregardtotheroleofFP.

73

A Vehicle Bay439006 V P V P

Cyr61

Vincullin

B

Vehicle TCF4DN V P V P

Cyr61

Vincullin

Fig.4.1BothRafkinaseandTCF/βcateninpathwaysareinvolvedintheinductionofCyr61through theFPreceptor .A,FPcellswerepretreatedwitheithervehicleor20µMBay439006for1hourfollowed by either vehicle (V) or 1µM PGF 2α (P) for 6h at 37°C and were then immediately subjected to immunoblotanalysisunder ExperimentalProcedures .B,FPcellsweretransfectedwitheithervehicleor

TCF4dominantnegativeconstruct(TCF4DN)for16hoursfollowedbyeithervehicle(V)orPGF 2α (P) for 6h at 37°C and were then immediately subjected to immunoblot analysis under Experimental

Procedures . In the upper panels, antibody against Cyr61 is used.Theblotsintheupperpanelsarere probed with antibody against vincullin and the results are shown in the lower panels. Immunoblotting resultsarerepresentativeofthreeexperimentswitheachantibodyandcondition. *** 74 A 25 20

15

10

5 LuciferaseActivity (FoldChangeofControl) 0 V P V P Vehicle Bay439006 B * 7 6 5 4 3 2 LuciferaseActivity 1 (FoldChangeofControl) 0 V P V P Vehicle BRafDN

Fig4.2RafkinaseisinvolvedintheactivationofTCF/βcateninpathwaythroughtheFPreceptor.

A. FP cells were transfected with FOPflash or TOPflash construct for 16 hours Then, FP cells were pretreatedwitheithervehicleor10µMBay439006for1hourfollowedbytreatmentwithPGF 2α for16 hours. B.FPcellswerecotransfectedwithTOFflashorTOPflashconstructandBRafdominantnegative construct(BRafDN)for16hours.Thencellsweretreatedwitheithervehicle(V)or1µMPGF 2α(P)for

16h.Shownisonerepresentiveexperimentoutofthreeindependentexperiments.Eachpointshownisthe

SEMoftriplicate.DataarenormalizedtothevehicletreatedFPexpressingcellsas1.***,P<0.001,as comparedwithvehicletreatedFPcells.*,P<0.05,ascomparedwithvehicletransfectedFPcells.

75

*** A 6 5 4 3 2 LuciferaseActivity 1 (FoldChangeofControl) 0 V P V P Vehicle RasDN B Vehicle RasDN V P V P Cyr61 Vincullin Fig4.3RasisinvolvedintheactivationofTCF/βcateninpathwayandinductionofCyr61through the FP receptor. A, FP cells were cotransfected with either TOPflash or FOPflash construct and Ras dominantnegativeconstruct(RasDN)for16hoursfollowedbytreatmentwitheithervehicle(V)or1µM

PGF 2α (P)for16hours.Shownisonerepresentiveexperimentoutofthreeindependentexperiments.Each pointshownistheSEMoftriplicate.DataarenormalizedtovehicletranfectedFPexpressingcellsas1. ***, P<0.001, as compared with vehicletransfected FP cells. B, FP cells were transfected with either vehicle,orRasdominantnegativeconstructfor16hoursfollowedbyeithervehicle(V)orPGF 2α (P)for 6h at 37°C and were then immediately subjected to immunoblot analysis under Experimental Procedures . In the upper panel, antibody against Cyr61 was used.Theblotintheupperpanelwasre probedwithantibodyagainstvincullinandtheresultswereshowninthelowerpanels.Immunoblotting resultsarerepresentativeofthreeexperimentswitheachantibodyandcondition. 76

**

A 25 20 15 10

LuciferaseActivity 5 (FoldChangeofControl) 0 V P V P Vehicle CytoclasinD B

Vehicle ToxinB V P V P

Cyr61

Vincullin

Fig 4.4 Rho and actin stress fiber is involved in the activation of TCF/βcatenin pathway and inductionofCyr61throughtheFPreceptor.A ,FPcellsweretransfectedwithTOPflashorFOPflash construct.Then,cellswerepretreatedwitheithervehicleor2µMcytochalasinDfor1hourfollowedby treatmentwitheithervehicle(V)or1µMPGF 2α (P)for16hours.Shownisonerepresentiveexperiment outofthreeindependentexperiments.EachpointshownistheSEMoftriplicate.Dataarenormalizedto thevehicletreatedFPexpressingcellsas1.**,P<0.01,ascomparedwithvehicletreatedFPcells. B,FP cellswerepretreatedwitheithervehicle,or1ng/mlfor16hoursfollowedbyeithervehicle(V)or1µM

PGF 2α (P) for 6h at 37°C and were then immediately subjected to immunoblot analysis under ExperimentalProcedures. Intheupperpanel,antibodyagainstCyr61wasused.Theblotsintheupper panels were reprobed with antibody against vincullin and the results are shown in the lower panel.

Immunoblottingresultsarerepresentativeofthreeexperimentswitheachantibodyandcondition. 77

Vehicl e PGF 2α

A B Vehicle

C D 9006 Bay43

Fig.4.5RafkinaseinducetheformationofactinstressfiberbytheactivationofFPreceptor. FP B cellswereplatedatlowdensityonglasscoverslipsin6welldishesfor1day.Thecellswereeithernot treated(panelsAandB)orwerepretreatedwith20µMBay439006for1h(panelsCandD).Thecells weretheneitheruntreated(panelsAandC)ortreatedfor1hwith1µMPGF 2α(panelsBandD).Thecells were fixedandstained with phalloidinasdescribed under ExperimentalProcedures .Theimageswere obtainedat225×.Theseimagesarerepresentativeofthreeindependentexperiments.

A H O FP MG 2 78

FP A Recept B *** 2 1 LuciferaseActivity (FoldChangeofControl) 0 V P V P Vehicle AL8810 C *** ** 3.5 3.0 2.5 2.0 1.5 1.0

LuciferaseActivity 0.5

(FoldChangeofControl) 0.0 V P V P V P Vehicle Bay43 9006 CytoclasinD Fig.4.6ActivationofTCF/βcateninpathwaythroughtheFPreceptorinanendogenoussystem.A, As described in Experimental Procedures , primers were designed to amplify FP receptor. Lane 1, correspondingnegativecontrol;Lane2,aconstructcontainingthehumanFPcDNAwasusedastemplate; lane3,cDNApreparedfromRNAextractedfromhumanmicrogliacells.Thisresultisrepresentativeof threeindependentexperiments. B,Humanmicrogliacellswerepretreatedwitheithervehicleor10µMAL

8810for15minutesfollowedbytreatmentwitheithervehicle(V)or1µMPGF 2α(P)for16h.Shownis one representive experiment out of three independent experiments. Each point shown is the SEM of triplicate.DataarenormalizedtothevehicletreatedFPexpressingcellsas1.***,P<0.001,ascompared with vehicletreated FP cells. C, Human microglia cells were pretreated with either vehicle , 10µM Bay439006or2µMcytochalasinDfor1hourfollowedbytreatmentwitheithervehicle(V)or1µM PGF 2α(P)for16h.Shownisonerepresentiveexperimentoutofthreeindependentexperiments.Eachpoint shownistheSEMoftriplicate.DataarenormalizedtothevehicletreatedFPexpressingcellsas1.***, P<0.001,ascomparedwith vehicletreatedFPcells. **, P<0.01,ascompared withvehicletreatedFP cells. 79

PGF 2α FP Rho Ras ToxinB RasDN

Bay439006 BRaf BRafDN

Actinstressfiber CytoclasinD

TCFDN TCF/βcatenin

Cyr 61

Fig 4.7 The signal transduction pathways involved in the induction of Cyr61 through the FP receptor. TheFPreceptoriscapableofactivatingRas,which in turn leads to the activation of BRaf. ActivatedBRafconvergeswithRac/RhopathwayactivatedbytheFPreceptortoinducetheformationof actinstressfiber.TheactivationofTCF/βcateninleadstotheinductionofCyr61.

80

CHAPTERFIVE CHARACTERIZATIOOFTHESIGALIGPATHWAYS IVOLVEDITHEREGULATIOOFCTGFEXPRESSIOBY THEACTIVATIOOFFPPROSTAOIDRECEPTORS 81

5.1Introduction Connectivetissuegrowthfactor(CTGF)isamemberoftheCCN(Cyr61,CTGF,Nov) family.CCNfamilyismatricellularregulatoryfactorsinvolvedininternalandexternal cellsignalling.TherearesixmembersoftheCCNfamily,namelyCyr61(CCN1),CTGF

(CCN2),CCN3,CCN4,CCN5andCCN6(Perbaletal.,2004).Thisfamilyparticipates in angiogenesis, chondrogenesis and osteogenesis, and is probably involved in the control of cell proliferation and differentiation. The CCN family has been reported to play important role in cancer. One example is that CTGF was shown to be over expressedinpancreaticcancer,andantibodiesagainstCTGFcanattenuatetumorgrowth, metastasisandangiogenesis(Aikawaetal.,2006).Anotherexampleistheinvolvement ofCTGFintheosteolyticmetastasisofbreastcancer(Shimoetal.,2006).

ConsideringtheimportantbiologicalfunctionsofCTGF,somestudieshavebeencarried outtoelucidatethesignaltransductionpathwaysrelatedtothegeneregulationofCTGF.

Tyrosine kinase receptors have been related to the induction of CTGF. For example,

CTGFisinducedbyTGFβ,whosereceptoristyrosine kinase receptor (Beddy et al.,

2006 ). GPCRshavealsobeenreportedtobeinvolvedinthegeneregulationofCTGF.

Forexample,CTGFisinducedbyactivationoftheFPreceptor(Liangetal.,2003).For thedownstreamcomponentsofthereceptorsleadingtotheinductionofCTGF,multiple importantsignaltransductionpathwayshavebeenimplicated.OneistheWnt/βcatenin pathway(Luoetal.,2004).Rashasalsobeenshowntobeinvolvedintheinductionof

CTGF(Phanishetal.,2005),ashasanothersmallGproteinRho(Liangetal.,2003). 82

Moreinterestingly,hypoxiainducedfactor1α(HIF1α)hasbeenreportedtobenecessary fortheexpressionofCTGF(Hagginsetal.,2004).

HIF1αisatranscriptionfactoridentifiedtobeinducedinhypoxiacondition(Semenzaet al.,1992),whichhasbeenshowntoplayaveryimportantroleintumors,especiallysolid tumors.OneexampleistheoverexpressionofHIF1αinmostsolidcancers(Zhonget al.,1999).FurtherstudyhasindicatedthatHIF1αincreasestheangiogenesisofcancer

(Pughetal.,2003).BecauseoftheimportantfunctionsofHIF1α,muchefforthasbeen madetoilluminatethegeneregulationofHIF1α.Inthebeginning,proteasomalrelated degradationwasshowntoplayamajorroleingeneregulationofHIF1α(Huangetal.,

1998).Furtherstudyindicatedthattheheatingshockprotein90(HSP90)isinvolvedin this degradation (Minet et al., 1999). On the other hand, multiple important signal transductionpathways,includingRas(Hirotaetal.,2004),Raf(Limetal.,2004),Rho

(Hiyashietal.,2005)andradicaloxygenspecies(ROS)(Wangetal.,2004)havebeen showntobeinvolvedinthegeneregulationofHIF1α.Recently,theinductionofHIF1α innormoxiaconditionshasbeenreported.OneexampleisthePGE 2stimulatedinduction ofHIF1αinprostatecancers(Liuetal.,2002).

In the present study, we confirmed the induction of CTGF by activation of the FP receptor at the protein level. After this, we began to detail the signal transduction pathways leading to this induction. We found that activation of Ras through the FP

receptorcanactivatetheRafkinasepathway,whichleadstotheactivationofTCF/ β 83

catenin. The activation of TCF/ βcatenin leads to the induction of both HIF1α and

CTGF. This is the first demonstration that TCF/ βcatenin is involved in the gene

regulation of HIF1α. We also found that receptor generated ROS is involved in the

activation of TCF/ βcatenin.ThisisthefirstdemonstrationthatTCF/βcatenin can be

activatedthroughreceptorgeneratedROS.ConsideringtheimportantrolesofHIF1α

and TCF/ βcatenin in cancer, these findings may have significant impact on cancer

research.

5.2ExperimentalProcedures

Materials. Dulbecco'smodifiedEagle'smedium,bovineserumalbumin,hygromycinB,

geneticin and gentamicin were obtained from Invitrogen (Carlsbad, CA). AntiCTGF

antibodiesandantigoatIgGconjugatedwithhorseradishperoxidewereobtainedfrom

SantaCruzbiotechnology(SantaCruz,CA).AntiHIF1αantibodieswereobtainedfrom

BD bioscience (San Jose, CA). Antimouse IgG conjugated with horseradish peroxide

wasobtainedfromPromega(Madison,WI).AntirabbitIgGconjugatedwithhorseradish peroxidase, PEG conjugated SOD (PEGSOD), vincullin antibody and all other unspecified chemicals were purchased from SigmaAldrich(St. Louis, MO).Celllysis buffer was obtained from Cell Signaling (Boston, MA). PGF 2α was obtained from

CaymanChemicalCompany (AnnArbor, MI).DominantnegativeTCF4wasprovided byDr.FrearoninUniversityofMichigan(AnnHarbor,MI),Rasconstructwasprovided byDr.VallancourtinUniversityofArizona(Tucson,AZ).17AAG,MG132andToxin 84

BwereobtainedfromCalbiochem(SanDiego,CA).Bay439006wasprovidedbyDr.

Hurley at University of Arizona (Tucson, AZ). TOPflash and FOPflash luciferase constructwereobtainedfromPromega(Madison,WI).

Cell culture . FP cells were maintained at 37°C with 5% CO 2/95% air in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, 250µg/ml geneticin,

200µg/mlhygromycin B,and100µg/ml gentamicin.Microgaliacellsweremaintainedat

37°Cwith10% CO 2/90%airinEalge’sminimumessentialmedium(MEM)containing6 g/lglucose,10%fetalcalfserum(FCS),105U/lpenicillinand0.1g/lstreptomycin.

o Westernblotting .Cellswereincubatedat37 Cwith1MPGF 2α (CaymenChemical) for 6 hours. In some cases cell were pretreated with either vehicle (0.1% Me 2SO or water),20MBay439006for1hour,ToxinB10ng/mlfor24hour,93 g/mlPEGSOD

for 15 minutes, 50 M MG132 for 1 hour, 2 M 17AAG for 24 hours or 10 M

AL8810(Cayman)for1hourat37 oC.Inothercases,cellsweretransfectedwithTCF4or

Rasdominantnegativeconstructsfor16hours.Cellswerescrapedinto1xlysisbuffer

(10xbufferfromCellSignaling)containing1MPMSFandtransferredtomicrofuge

tubes.Thesampleswererotatedfor16hoursat4 oCandwerecentrifugedat16,000gfor

15minutes.Aliquotsofthesupernatantscontaining30gproteinwereelectrophoresed

on7.5%SDSpolyacrylamidegelsandtransferredtonitrocellulosemembrane(BioRad).

Membraneswereincubatedin5%nonfatmilkforonehouratroomtemperatureand

werethenincubatedat4 oCfor16hourswithprimaryantibodies.Then,themembranes 85

were washed three times and incubated with the corresponding secondary antibodies conjugatedwithhorseradishperoxidasein5%nonfatmilkatroomtemperature.After incubation with a secondary antibody, the membranes were washed three times and immunoactivitywasdetectedbySuperSignal(Pierce).Theprimaryantibodiesusedare vincullin(Sigma),CTGF(SantaCruz)andHIF1α(BDBioscience).

Luciferaseassay. Cellsweresplitinto6wellplatesandthenextday weretransiently transfectedwitheither1µg/dishofthewildtypeTcf/Lefreporterplasmid TOPflashorthe mutant plasmid FOPflash. FOPflash differs from TOPflash by the mutation of its Tcf binding sites and serves to differentiate Tcf/βcateninmediated signaling from background (Upstate Biotechnology, Inc.). Then, cells were pretreated with vehicle

(1xPBS),or93g/mlPEGSOD(Sigma)for15minutesfollowedbytreatmentwith1

MPGF 2α (CaymenChemical)for16hours.Thetreatedcellswererinsedtwicewithice cold phosphatebuffered saline and extracts were prepared using the Luciferase Assay

System (Promega). Luciferase activity in the extracts (~1 µg protein/sample) was measuredusingaTurnerTD20/20luminometerandwas corrected for background by subtractionofFOPflashvaluesfromcorrespondingTOPflashvalues.

5.3Results

ThesignaltransductionpathwaysareinvolvedintheinductionofCTGFthrough theFPreceptor. TheinductionofCTGFatthemRNAlevelbyactivationofFPreceptor 86

hasbeenreported(Liangetal.,2003).However,theinductionofCTGFattheprotein levelthroughtheFPreceptorhasnotbeenreported.AsshowninFig.5.1,wefoundthat theinductionofCTGFthroughtheFPreceptorhappensattheproteinlevel.Afterthis finding, we began to identify the pathways leading to this induction. TCF/βcatenin pathwayhasalsobeenshowntobeinvolvedintheinductionofCTGFbytheactivation ofFPreceptor(Luoetal.,2004).AsshowninFig.5.1A,theinductionofCTGFin agoniststimulatedhumanFPexpressingcellsisinhibitedbythetransfectionofTCF4 dominantnegativeconstruct.RhosmallGproteinhasalsobeenshowntobeinvolvedin theinductionofCTGFthroughtheFPreceptor(Liangetal.,2003).AsshowninFig.5.1

B, Rho inhibitor Toxin B inhibits the induction of CTGF through the FP receptor.

AnothersmallGproteinRashasbeenshowntobeinvolvedintheinductionofCTGF

(Phanishetal.,2005).AsshowninFig.5.1C,transfectionofaRasdominantnegative constructinhibitstheinductionofCTGFthroughtheFPreceptor.Afteridentificationof

RasinvolvementintheinductionofCTGFthroughtheFPreceptor,wealsocheckedthe roleofRafkinase,whichisthedirectdownstreamcomponentofRas,inthisinduction.

AsshowninFig.5.1D,aRafkinasespecificinhibitorBay439006inhibitstheinduction ofCTGFthroughtheFPreceptor.Toensureequalloadingofproteins,theblotsshownin theupperpanelswerereprobedwithantibodiestovincullin,andasshown inthelower panelssimilaramountsofvincullinwerepresentthroughoutthetreatments.Theseresults

suggestthatRas,Rho,RafkinaseandTCF/ βcatenin pathways are all involved in the

inductionofCTGFthroughtheFPreceptor.

87

ThesignaltransductionpathwaysareinvolvedintheinductionofHIF1αthrough theFPreceptor. IthasbeenreportedthatHIF1αisnecessaryfortheinductionofCTGF

(Hagginsetal.,2004).So,weinvestigatedwhetherHIF1αisinducedthroughthe FP receptor.AsshowninFig.5.2,wefoundthattheinductionofHIF1αthroughtheFP receptor happens at the protein level. After this finding, we began to identify the pathwaysleadingtothisinduction.TheRafkinasepathway,whichhasbeenshowntobe

activatedthroughtheFPreceptor(Chenetal.,1998),hasbeenshowntobeinvolvedin

the induction of HIF1α (Lim et al., 2004). As presented in Fig. 5.2 A, a Raf kinase

specificinhibitorBay439006inhibitstheinductionofHIF1αthroughtheFPreceptor.

AfteridentificationofRafkinaseinvolvedinthe induction of HIF1α through the FP

receptor, we examined whether the Raf kinase direct upstream component Ras is

involved in this induction. As shown in Fig. 5.2 B, transfection of a Ras dominant

negative construct inhibits the induction of HIF1α through the FP receptor. Another

smallGproteinRhohasalsobeenshowntobeinvolved in the induction of HIF1α

(Hiyashi et al., 2005). As shown in Fig. 5.2 C, Rho inhibitor Toxin B inhibits the

induction of HIF1α in agonist stimulated FP cells. Because all the above signal

transductionpathwayshavebeenshowntobeinvolvedintheactivationofTCF/βcatenin

through the FP receptors (Fig 4.2; Fig 4.3; Fujino et al., 2002), we hypothesized that

TCF/βcateninisinvolvedintheinductionofHIF1αthroughtheFPreceptor.Asshown

inFig.5.2D,transfectionofTCF4dominantnegativeconstructinhibitstheinductionof

HIF1αthroughFPreceptor.Toensureequalloadingofproteins,theblotsshowninthe

upperpanelswerereprobedwithantibodiesagainstvincullin,andasshown inthelower 88

panels,similaramountsofvincullinwerepresentthroughoutthetreatments.Theseresults suggestthatRas,Rafkinase,RhosmallGproteinandTCF/ βcateninpathways are all involvedintheinductionofHIF1αthroughtheFPreceptor.

ProteindegradationplaysamajorroleinthegeneregulationofHIF1αthroughthe

FP receptor. Proteosomalrelateddegradationwasshowntoplay amajorroleingene regulationofHIF1α(Huangetal.,1998).FurtherstudyindicatedthatHSP90isinvolved in this degradation (Minet et al., 1999). After identification of induction of HIF1α through the FP receptor, we examined whether the protein degradation is necessary for this gene regulation. As shown in Fig. 5.3 A, a proteosome inhibitor MG132 clearly inducestheexpressionofHIF1αevenwithoutthestimulationofPGF 2α .HSP90hasalso beenshowntobeinvolvedinthegeneregulationofHIF1α(Fig.5.3B).Toensureequal loadingofproteins,theblotsshownintheupperpanelswerereprobedwithantibodies against vincullin, and as shown inthelowerpanels,similaramountsofvincullinwere presentthroughoutthetreatments.Theseresultssuggestthatproteindegradationplaysa majorroleinthegeneregulationofHIF1αthroughtheFPreceptor.

ROSisinvolvedintheactivationofTCF/βcateninpathwayandinductionofHIF1α throughtheFPreceptor. ROShasbeenshowntobeinvolvedintheinductionofHIF

1α(Wangetal.,2004).WethereforeexaminedtheroleofROSintheinductionofHIF1α throughtheFPreceptor.AsshowninFig.5.4A,superoxideionscavengerSODinhibits the induction of HIF1α through the FP receptor. The induction of CTGF, which is 89

regulatedbyHIF1α,isalsoinhibitedbySOD(Fig.5.4B).Toensureequalloadingof proteins, the blots shown in the upper panels were reprobed with antibodies against vincullin, and as shown in the lower panels, similar amounts of vincullin were present throughout the treatments. Because TCF/βcatenin isinvolvedinthegeneregulationof

HIF1α (Fig. 5.2 D), we also examined whether ROS is involved in the activation of

TCF/βcatenin. As shown in Fig. 5.4 C, SOD inhibits the activation of TCF/βcatenin pathway through the FP receptor. These results suggest that ROS is involved in the activationofTCF/βcateninpathway,whichleadstotheinductionofHIF1αandCTGF throughtheFPreceptor.

RegulationofHIF1αthroughtheFPreceptorinanendogenoussystem. Allofthe

above experiments were carried out in HEK293 cells overexpressing the human FP

receptor.Thereisaconcernthatthesamesignaltransductionpathwaysdonotexistina

cellendogenouslyexpressingFPreceptor.Toruleoutthispossibility,wechosehuman

microgliacellsthatexpresstheFPreceptor(Fig.4.6A).AsshowninFig.5.5,HIF1αis

induced in PGF 2α stimulated microglia cells, and this induction is inhibited by FP

antagonistAL8810.Toensureequalloadingofproteins,theblotshownintheupper panelwasreprobedwithantibodiesagainstvincullin,andasshown inthelowerpanel, similaramountsofvincullinwerepresentthroughoutthetreatments.

5.4Discussion

90

CTGFhasbeenshowntoplayimportantrolesinmultiplecancers(Aikawaetal.,2006).

However,thesignaltransductionpathwaysregulatingthegeneexpressionofCTGFhave not been well established. In the present study, we dissected the signal transduction pathwaysleadingtothegeneregulationofCTGFthroughthe FPreceptorsandfound somenovelsignaltransductionpathways.

CTGFhasbeenreportedtoberegulatedbyTCF/ βcateninpathways(Luoetal.,2004).

Inthatstudy,Luoetal.reportedtheinductionofCTGFinacelllineoverexpressingβ cateninorWnt3A.However,itispossiblethatpathwaysotherthanthecanonicalWnt pathway activated by the overexpression of βcatenin or Wnt3A are involved in the induction of CTGF. Herein, a TCF4 dominant negative construct was used and successfullyinhibitedtheinductionofCTGFthroughtheFPreceptor(Fig.5.1A).Thisis the first report to provide a direct link between CTGF and canonical Wnt signaling pathway. BecauseRhosmallGproteinisinvolvedin the activation of TCF/ βcatenin pathwaythroughtheFPreceptor(Fujinoetal.,2002),wealsoexamineifRhoisinvolved intheinductionofCTGFthroughtheFPreceptor.AsshowninFig.5.1B,Rhoinhibitor

ToxinBcaninhibittheinduction.Thisresultcorroborates the conclusion that TCF/ β cateninpathwayisinvolvedintheinductionofCTGFthroughtheFPreceptor.

RashasbeenshowntobeinvolvedinthegeneregulationofCTGF(Phanishetal.,2005).

WealsoidentifiedthatRasisinvolvedintheinductionofCTGFthroughtheFPreceptor

(Fig.5.1C).Afterthisidentification,wetriedtoestablishtherelationshipbetweenRaf 91

kinaseandCTGF.Thishypothesisisbasedontwopoints.First,Rafkinaseisthedirect downstream component of Ras. Second, Ras has been shown to be involved in the activation of TCF/βcatenin pathway through the FP receptor (Fig. 4.3), which is necessary for the induction of CTGF (Fig. 5.1 A). In our study, Raf kinase specific inhibitorBay439006hasbeenshowntoinhibittheinductionofCTGFthroughtheFP receptorattheproteinlevel(Fig.5.1D).Thisisthefirstdemonstrationofthedirectlink betweenRafkinaseandCTGF.

HIF1αwaswellknowntobeinvolvedintheinductionofCTGF(Hagginsetal.,2004).

AfteridentificationoftheinductionofCTGFthroughtheFPreceptor,weexaminedif

HIF1αisinvolvedintheinductionofCTGFthroughtheFPreceptor.AsshowninFig.

5.2,HIF1αisinducedinagoniststimulatedhumanFPcells.Toruleoutthepossibilityof artificialeffectinHEK293overexpressing FPreceptor,westimulatedmicrogliacells, where FP is endogenously expressed, with PGF 2α and FP antagonist and got similar

results (Fig. 5.5). This is the first report that HIF1α can be induced by certain prostaglandin receptors. PGE2, a member of prostaglandin family, has been shown to

induce the expression of HIF1α (Liu et al., 2002). However, it is unknown which prostaglandinreceptorisresponsibleforthisinductionbecausemultiplePGE2receptors

express in the cell line used. After finding the induction of HIF1α through the FP

receptor, we examined whether the signal transduction pathways involved in the

induction of CTGF are involved in the induction of HIF1α by the activation of FP

receptor.ThefirstistheTCF/βcateninpathway.AsshownintheFig5.2A,transfection 92

ofTCF4dominantnegativeconstructinhibitstheinduction of HIF1α through the FP receptor.ThisisthefirstreportthatTCF/βcateninpathwayisnecessaryfortheinduction of HIF1α. Both pathways are very important in cancer, especially colon cancer. The discoveryofthiscrosstalkmayleadtoabetterunderstandingofcancer,maybeanovel drugtargetforthecancertherapy.Moreinterestingly,itisrecentlyreportedthatHIF1α can interact with βcatenin and inhibit the transcription activity of βcatenin/TCF complex(Kaitietal.,2007).Thismayindicatethecomplicatedcrosstalksbetweenthese two pathways, and further studies are necessary to address this question. After the identificationoftheinvolvementofTCF/βcateninpathwaysintheinductionofHIF1α, wealsoexaminedtheinvolvementofthepathwaysnecessaryforTCF/βcateninthrough theFPreceptorintheinductionofHIF1α.AsshowninFig.5.2B,RhosmallGprotein, which has been shown to be necessary for the activation of TCF/βcatenin pathway throughtheFPreceptor(Fujinoetal.,2002),isinvolvedinthisinduction.Thisresult, whichissimilartopreviousfindings(deGooyeretal.,2006),furthercorroboratesthat

TCF/βcateninisnecessaryfortheinductionofHIF1α.Ras/Rafpathways,whichhave beenalsoshowntobenecessaryforinductionofTCF/βcatenin(Fig.4.3;Fig.4.4),have alsobeenshowntobeinvolvedintheinductionofHIF1αthroughtheFPreceptor(Fig.

5.2C;Fig.5.2D).TheseresultsalsocorroboratethatTCF/βcateninisnecessaryforthe inductionofHIF1αthroughtheFPreceptor.

AnothersignaltransductionpathwayinvolvedintheinductionofHIF1αisROS(Wang etal.,2004).Recently,increasingevidencesuggeststhatROS,generatedbymembrane 93

NADPH oxidase (NOX), can work as signal transduction molecules. Moreover, activationofangiotensinIIreceptor,aGqcoupledreceptor,cangenerateROSleadingto theinductionofMCP1(Tanifijietal.,2005).SoafteridentificationofinductionofHIF

1αthroughtheFPreceptor,whichisalsoaGqreceptor,weexaminedwhetherROSis involvedinthisinduction.AsshowninFig.5.4A,SOD,ascavengerofsuperoxideion, inhibitstheinductionofHIF1αthroughtheFPreceptor.SODalsoinhibitstheinduction ofCTGF,whichisregulatedbyHIF1α,throughtheFPreceptor(Fig.5.4B).Because

TCF/βcateninhasbeenshowntobeinvolvedintheinductionofHIF1αthroughtheFP receptor(Fig.5.2A),weexaminedifROSisalsoinvolvedintheactivationofTCF/β cateninthroughtheFPreceptor.AsshowninFig.5.4C,SODinhibitstheactivationof

TCF/βcateninthroughtheFP receptor. IthasbeenreportedthatROScanactivatethe

TCF/βcatenin(Futanoetal.,2006).However,aconcernarisesinthispaper.Hydrogen peroxide at 50 mM was used to stimulate the TCF/βcatenin pathway, but hydrogen peroxide at this concentration may be toxic to the cells (Iannone et al., 1993). It is possiblethathydrogenperoxideactivatesTCF/βcateninthroughsecondarytoxiceffect causedbyhydrogenperoxide,ratherthandirectlyfromROS.Howeverinourstudy,we demonstratedinthefirsttimethatROS,possiblysuperoxideiongeneratedfromanature receptor,canactivatetheTCF/βcateninpathway.

After identification of the role of ROS and NOX in the activation of TCF/βcatenin pathway through the FP receptor, a question was raisedabouttherelationshipofROS withtheothersignaltransductionpathwaysinvolvedintheactivationofTCF/βcatenin 94

pathway.IthasbeenreportedthatRac,amemberofRhosubfamily,isnecessaryforthe activationofNOX(Takeyaetal.,2006).ItwasreportedthatRhoproteinisinvolvedin the activation of TCF/βcatenin through the FP receptor (Fujino et al., 2002) and this pathway may converge with Ras/BRaf pathway to regulate the actin stress fiber formationandleadtotheactivationofTCF/βcateninpathwaythroughtheFPreceptor

(Fig4.7).Moreover,RacproteinhasalsobeenreportedtobeupstreamofRho,anditis necessary for the actin stress fiber formation (Guo et al., 2006; Kjoller et al., 1999).

However, Rac induced ROS was shown not to be involved in the actin stress fiber formation(vanWeteringetal.,2002).ItisquitepossiblethatactivationofRacstimulates

NOXandgeneratesROS;atthesametime,RacactivatesRho,whichinturnconverges with Ras/BRaf pathways to induce actin stress fiber formation. Ros converging with actinstressfiberformationactivateTCF/βcateninpathway.

In the present study, we found that the agonist stimulated FP activates Ras pathway, which stimulates Rafkinase. In the same time, agonist stimulated FP activates Rho subfamily,probablyRac,tostimulatetheNOXandgenerateROS.Thesetwopathways convergetoinducethestressfiberformation,whichleadstotheinductionofactivation of the TCF/βcatenin pathway. The activation of TCF/ βcatenin pathway induces the expressionofHIF1αandCTGF.AllthesearesummarizedintheFig5.6.Duringthe dissectionofthesepathways,twonovelcrosstalks between pathways were identified.

ThefirstistheinvolvementofTCF/ βcateninpathwayintheinductionofHIF1α.The other is the activation of TCF/βcatenin by ROS generated from the activation of FP 95

receptor.Consideringtheimportantrolesofthesepathwaysincancer,theidentification of these crosstalks may lead to a better understanding of the role of FP receptor in cancer.

96

A B Vehicle TCF4DN Vehicle ToxinB

V P V P V P V P CTGF

Vincullin

C Vehicle Bay439006 D Vehicle RasDN V P V P V P V P

CTGF

Vincullin

Fig. 5.1 The signal transduction pathways involved in the induction of CTGF through the FP receptor . FP cells were treated with vehicle (V) or 1µM PGF 2α (P) for 6h at 37°C and were then immediately subjected to immunoblot analysis under Experimental Procedures. In some cases, the cells werepretreatedwitheithervehicle,20µMBay439006for1houror1ng/mlToxinBfor16hours( A,D ). Inothercases,thecellsweretransfectedwithvehicle,Rasdominantnegativeconstruct(RasDN)orTCF4 dominantnegativeconstruct(TCF4DN)for16hours( B,C )beforeaddingPGF 2α .Inthetheupperpanels, antibodyagainstCTGFisused.Theblotsintheupperpanelsarereprobedwithantibodyagainstvincullin and the results are shown in the lower panels. Immunoblotting results are representative of three experimentswitheachantibodyandcondition.

97

A B Vehicle Bay439006 Vehicle RasDN V P V P V P V P

HIF1α

Vincullin C D Vehicle ToxinB Vehicle TCF4DN V P V P V P V P HIF1α

Vincullin

Fig 5.2 The signal transduction pathways involved in the induction of HIF1α through the FP receptor.A,FPcellsweretreatedwithvehicle(V)or1µM PGF 2α (P)for6hat37°Candwerethen immediatelysubjectedtoimmunoblotanalysisunderExperimentalProcedures. Insomecases,thecells werepretreatedwitheithervehicle,20µMBay439006for1houror1ng/mlToxinBfor16hours( A,D ). Inothercases,thecellsweretransfectedwithvehicle,Rasdominantnegativeconstruct(RasDN)orTCF dominantnegativeconstruct(TCFDN)for16hours(B,C )beforeaddingPGF 2α .Inupperpanels,antibody againstHIF1αisused.Theblotsintheupperpanelsarereprobedwithantibodyagainstvincullinandthe resultsareshowninthelowerpanels.Immunoblottingresultsarerepresentativeofthreeexperimentswith eachantibodyandcondition.

98

A Vehicle MG132 V P V P HIF1α

Vincullin

B Vehicle 17AAG V P V P HIF1α

Vincullin

Fig 5.3 Protein degradation plays a major role in the gene regulation of HIF1α through the FP receptor. FP cells were treated with vehicle (V) or 1µM PGF 2α (P) for 6h at 37°C and were then immediatelysubjectedtoimmunoblotanalysisunderExperimentalProcedures. Insomecases,thecells werepretreatedwitheithervehicle,50µMMG132for1houror1µM17AAGfor16hours( A,B ).In upperpanels,antibodyagainstHIF1αisused.Theblotsintheupperpanelsarereprobedwithantibody againstvincullinandtheresultsareshowninthelowerpanels.Immunoblottingresultsarerepresentative ofthreeexperimentswitheachantibodyandcondition.

99

*** A 9 * 8 7 6 5 4 3 2 LuciferaseActivity 1

(FoldChangeofControl) 0 V P V P Vehicle PEGSOD B C Vehicle PEGSOD Vehicle PEGSOD V PV P V P V P HIF1α CTGF Vincullin Vincullin Fig5.4 ROSisinvolvedintheactivationofTCF/βcateninpathwayandinductionofHIF1αthrough theFPreceptor.A ,FPcellswerepretreatedwitheithervehicleor83µg/mlPEGconjugatedSOD(PEG SOD)for15minutesfollowedbytreatmentwitheithervehicle(V)or1µMPGF 2α (P)for16h.Shownis one representive experiment out of three independent experiments. Each point shown is the SEM of triplicate.DataarenormalizedtothevehicletreatedFPexpressingcellsas1.***,P<0.001,ascompared with vehicletreated FP cells. B, FP cells were pretreated with 93µg/ml PEGSOD for 15 minutes followed by treatment with vehicle (V) or 1µM PGF 2α (P) for 6h at 37°C. The cells lysates were subjectedtoimmunoblotanalysisunder ExperimentalProcedures. Intheupperpanels,antibodyagainst HIF1αisused.Theblotsintheupperpanelsarereprobedwithantibodyagainstvincullinandtheresults areshowninthelowerpanels.C,assameasB,theonlydifferenceisthatantiCTGFantibodyisused insteadofHIF1α.Immunoblottingresultsarerepresentativeofthreeexperimentswitheachantibodyand condition.

100

Vehicle AL8810 V PV P HIF1α

Vincullin

Fig.5.5RegulationofHIF1αthroughtheFPreceptorinanendogenoussystem. Human microglia cellswerepretreatedwith10MAL8810for15minutesfollowedbytreatmentwithvehicle(V)or1µM PGF 2α (P)for3hat37°C.Thecellslysatesweresubjectedtoimmunoblotanalysisunder Experimental Procedures. Inupperpanels,antibodyagainstHIF1αisused.Theblotsintheupperpanelsarereprobed withantibodyagainstvincullinandtheresultsareshowninthelowerpanels.

101

PGF 2α

FP

Rho Rac Ras ToxinB RasDN

Bay439006 BRaf

SOD ROS Actinstress fiber

TCF4DN TCF/βcatenin

HIF1α

CTGF

Fig5.6ThesignaltransductionpathwaysinvolvedintheinductionofCTGFbytheactivationofthe FPreceptor. TheFPreceptoriscapableofactivatingRas,whichinturnactivatesBRaf.Inthesametime, RasactivatesRac,whichactivatesRho.ActivatedBRafconvergeswithRac/Rhopathwaytoinducethe formationofactinstressfiber.Inthesametime,RacactivatesNOX,whichgeneratesROS.ROSconverge with actin stress fiber to activate TCF/βcatenin pathway. The activation of TCF/βcatenin leads to the inductionofHIF1αandCTGF.

102

CHAPTERSIX

COCLUSIOSADFUTURESTUDIES

103

6.1Conclusions

FP receptor, which is a member of the GPCR super family, has important biological functions.Becauseofitsimportantbiologicalfunctions,FPhasbeenadrugtarget.To furtherexploittheFPasadrugtarget,itisnecessarytoelucidatethesignaltransduction pathwaysinitiatedfromFPreceptors.Someofthesesignaltransductionpathwayshave been identified. But overall, the signal transduction pathways through the FP receptor havenotbeenwellcharacterized,especiallythesignaltransductionpathwaysleadingto generegulation.

Inthepresentstudy,wetriedtoidentifysomesignaltransductionpathwaysleadingtothe generegulationthroughtheFPreceptors.Inthebeginning,weusedcDNAmicroarrayto identifythegeneregulatedbytheagoniststimulatedFPreceptor.Thenweconfirmedthe results from cDNA microarray analysis using Northernblot analysisandWesternblot analysis.Aftertheconfirmation,threegenes,EGR1,Cyr61andCTGF,werechosenfor dissection of signal transduction pathways leading to their induction through the FP receptor.Duringthisprocess,wefoundthatRaswasactivatedthroughtheFPreceptor.

TheactivationofRasleadstothreedifferentdownstreamsignaltransductionpathways.

ThefirstistheactivationoftheCRafkinase.ActivatedCRafactivatesMAPK,which leadstotheinductionofEGR1.ThesecondistheactivationofBRaf.Thethirdisthe activationofRac,whichactivatesRho.Rhoconverges with BRaf to induce the actin stress fiber formation. The Rac also activates NOX, which leads to the generation of 104

ROS.TheformationofactinstressfiberconvergingwithROSleadstotheactivationof

TCF/βcateninpathway.TheactivationofTCF/βcatenininducestheCyr61andHIF1α, whichupregulatestheexpressionofCTGF.Allthesignaltransductionpathwaysthrough theFPreceptoridentifiedinthisstudyaresummarizedinFig.6.1.Identificationofthese signaltransductionpathwaysandcrosstalksthroughtheFPreceptors,someofwhichare novel,mayprovideabetterunderstandingoftheroleofFPinthediseases,specifically, cancerandheartdisease.

TheFPreceptorhasbeenfoundinmultiplecancers,includinglungcancer(Fangetal.,

2004), endometrial adenocarcinoma (Sales et al., 2004) and skin cancer (Muller et al.,

2000). However, the role of FP in cancer is not wellestablished. The only work concerning the roles of FP in cancer was carried out in endometrial adenocarcinoma

(Jabbouretal.,2005).Inthepresentstudy,weidentifiedmultipleinducedproteinsand signal transduction pathways leading to these inductions activated through the FP receptor. CTGF (Aikawa et al., 2006), Cyr61 (Menendez et al., 2003) and HIF1α

(Kimbroetal.,2006),whichareidentifiedtobeinducedthroughtheFPreceptor,allplay importantrolesincancer.Thesignaltransductionpathwaysinvolvedintheinductionof theseproteins,includingTCF/βcatenin,RassmallGprotein,RhosmallGproteinandB

Raf, is also wellknown cancerrelated signal transduction pathway. Moreover, the mechanisms revealed about the generegulation through the FP receptor provide some cluestohowtheFPreceptormaybeinvolvedincancer.Forexample,CTGF,Cyr61and

HIF1αcanbeinduced inhypoxiaandare allinvolved in the angiogenesis of cancer 105

tissue(Changetal.,2006;Kimbroetal.,2006;Menendezetal.,2003).Besidestheroles oftheseproteinsincancerangiogenesis,these proteinsmaybeinvolvedinapositive feedbacklooptoamplify thesignaltransductionfor cancer. Cyr61, a secreted protein whosereceptorisanintergrin,canactivatetheTCF/βcateninpathway(Menendezetal.,

2003). Considering the activation of TCF/βcatenin pathway through the FP receptor

(Fujinoetal.,2001),theinductionofCyr61throughtheFPreceptormayfurtheramplify the TCF/βcatenin pathway, a wellknown pathway leading to the tumorigenesis. The other example is that HIF1α can upregulate the expression of COX2 (Kaiti et al.,

2006), which is responsible for the production of PGF 2α . PGF 2α stimulates the FP receptor and induces HIF1α, which may induce the expression of COX2 and lead to moreproductionofPGF 2α .Thispositivefeedbackloopmaybecrucialfortumorigenesis.

Accordingtotheseresults,FPmayplayimportantroles in cancer. Further studies are

necessarytoaddressthisquestion,whichwillprobablyleadtoanewcancertherapeutic

target.

FPreceptorhasalsobeenshowntobeinvolvedinthehearthypertrophy(Adamsetal.,

1996;Kunapulietal.,1998).However,alltheseexperimentswerecarriedoutinrats.We

demonstratedtheinductionofEGR1andRAS/Rafkinase/MEK1/2pathwaysleadingto

the induction of EGR1 through human FP receptor. EGR1 and all these signal

transductionpathwayshavebeeninvolvedinhearthypertrophy (Buitrago et al., 2005;

Proudetal.,2004;Xiaoetal.,2001).Moreover,ROS,probablysuperoxideion,awell

known inducer of hypertrophy (Maccarthy et al., 2001), was found to be generated 106

throughthehumanFPreceptor.AlltheseresultssuggestamechanismforFPdependent hearthypertrophyandthepossibilityofPGF 2α inducedhearthypertrophyinhumans.

Heart disease and cancer are the two leading causes of death in the US. Our study

indicatesthepotentialrolesoftheFPreceptorinthecausesofthesetwodeadlydiseases.

FurtherstudymayleadtouseoftheFPasthetherapeutictarget.Actually,FPmaybea

verygoodtherapeutictargetbecauseallthedrugstargetingFPreceptorhavelowtoxicity.

Forexample,FPreceptoragonistPGF 2αhasbeenwidelyusedforinducinglaborinclinic

(Kellyetal.,2001).TheotherFPreceptoragonistBimatoprosthasalsobeensuccessfully

used to treat glaucoma in clinic. Moreover, COX inhibitors, which can inhibit the productionofPGF 2α ,havebeenwidelyusedinclinicandproventobesafeinmostcases.

Basedontheseresults,wespeculatethatmanipulationoftheFPreceptor,probablyusing anantagonist,ismostlikelylowtoxicity.Moreinterestingly,COXinhibitorshavebeen tried in clinic to prevent heart disease (Sawanyawisuth et al., 2005) and cancer

(Bertagnolli et al., 2006). However, heart complications of rofecoxib (Vioxx) raise questionsofthesafetyofCOX,especiallyCOX2inhibitors.Wethinkthattheproblem isthebroadtargetingofCOX2inhibitors.Forexample,PGI 2canbeinhibitedbyCOX inhibitorsandPGI 2inhibitionresultsinhypercalemia.PGE 2inhibitionresultsinsodium retention,whichleadstohypertension,peripheraledemaandpotentially,exacerbationof heart failure (Sanghi et al., 2006). More specific inhibition of prostaglandin receptors, suchastheFPantagonist,providessaferalternatives.

107

6.2FutureStudies

According to our study and previous literature (Adams et al., 1996; Kunapuli et al.,

1998), we propose that EGR1 is the potential mechanism of PGF 2αinduced heart

hypertrophy.Infuturestudy,wewouldliketotestthehypothesisinmicebecausethis

modelismorephysiologicalrelevantinhearthypertrophy.

First,wewouldliketotestthishypothesisinFPknockoutmice.FPknockoutmiceare

healthyexceptthedefectinparturition(Sugimotoetal.,1997).Thereisalsoamethod

calledtransverseaorticconstriction(TAC)toinducethehearthypertrophyinmiceand

TACinducedhearthypertrophyisdecreasedinEGR1knockoutmice(Buitragoetal.,

2005).WewillcomparetheTACinducedhearthypertrophyinFPknockoutandwild

typemice.TheexpectedresultsarethatTACinducedhearthypertrophyisdecreasedin

FPknockoutmicecomparedtothatinwildtype.

Second,wewouldliketotestthishypothesisinEGR1knockoutmice.EGR1knockout

miceareviable(Buitragoetal.,2005).AFPagonistfluprostenolhasbeensuccessfullyto

inducethehearthypertrophyinrat(Laietal.,1996).Wewilltrytousethesamedrugto

inducethehearthypertrophyinmice.Then,wewillcomparethefluprostenolinduced

hearthypertrophyinEGR1knockoutmiceandwildtypemice.Theexpectedresultsare

thatfluprostenolinducedhearthypertrophyisdecreasedinEGR1knockoutmice. 108

TheaboveexperimentswillprovidetheevidenceoftheroleofFPinhearthypertrophy.

ThismaypavethewaytothestudyofuseFPasadrug target for treatment of heart hypertrophy.

109

PGF 2α FP

NOX Rho Rac Ras

BRaf CRaf

Actinstressfiber

TCF/ βcatenin MEK1/2

HIF1α EGR1 Cyr61 CTGF

Fig6.1ThenovelsignaltransductionpathwaysbytheactivationoftheFPreceptor. TheFPreceptor iscapableofactivatingRas,whichinturnleadstotheactivationofCRafandMEK1/2.Theactivationof MEK1/2inducestheEGR1,whichmaybenecessaryforthePGF 2α dependenthearthypertrophy.Rasalso activates BRaf. Moreover, Ras can activate Rac, which activate Rho. Activated BRaf converges with Rac/Rhopathwaytoinducetheformationofactinstressfiber.Inthesametime,RacactivatesNOX,which generatesROS.ROSconvergewithactinstressfibertoactivateTCF/βcateninpathway.Theactivationof TCF/βcateninleadstotheinductionofCyr61,HIF1αandCTGF.Theinductionofthesegenesmaycause cancer.

110

REFERECES

Abramovitz,M.,Boie, Y.,Nguyen,T.,Rushmore,T.H., Bayne, M.A., Metters, K.M.,

Slipetz,D.M.,andGrygorczyk,R.(1994).Cloningand expression of a cDNA for the humanprostanoidFPreceptor.TheJournalofbiologicalchemistry 269 ,26322636.

Adams,J.W.,Migita,D.S.,Yu,M.K.,Young,R.,Hellickson,M.S.,CastroVargas,F.E.,

Domingo,J.D.,Lee,P.H.,Bui,J.S.,andHenderson,S.A.(1996).ProstaglandinF2alpha stimulateshypertrophicgrowthofculturedneonatalratventricularmyocytes.TheJournal ofbiologicalchemistry 271 ,11791186.

Aikawa,T.,Gunn,J.,Spong,S.M.,Klaus,S.J.,andKorc,M.(2006).Connectivetissue

growthfactorspecificantibodyattenuatestumorgrowth,metastasis,andangiogenesisin

anorthotopicmousemodelofpancreaticcancer.Molecularcancertherapeutics 5 ,1108

1116.

Akiyama, T., and Kawasaki, Y. (2006). Wnt signalling and the actin cytoskeleton.

Oncogene 25 ,75387544.

Anthony,T.L.,Pierce, K.L.,Stamer,W.D.,andRegan, J.W. (1998). Prostaglandin F2

alphareceptorsinthehumantrabecularmeshwork.Investigativeophthalmology&visual

science 39 ,315321.

BarSagi,D.,andHall,A.(2000).RasandRhoGTPases: a family reunion. Cell 103 ,

227238.

Beddy, D., Mulsow, J., Watson, R.W., Fitzpatrick, J.M., and O'Connell, P.R. (2006).

Expression and regulation of connective tissue growth factor by transforming growth 111

factor beta and tumour necrosis factor alpha in fibroblasts isolated from strictures in patientswithCrohn'sdisease.TheBritishjournalofsurgery 93 ,12901296.

Bertagnolli, M.M., Eagle, C.J., Zauber, A.G., Redston, M., Solomon, S.D., Kim, K.,

Tang, J., Rosenstein, R.B., Wittes, J., Corle, D. , et al. (2006). Celecoxib for the preventionofsporadiccolorectaladenomas.TheNewEnglandjournalofmedicine 355 ,

873884.

Braddock,M.(2001).ThetranscriptionfactorEgr1:apotentialdruginwoundhealing andtissuerepair.Annalsofmedicine 33 ,313318.

Buitrago,M., Lorenz,K.,Maass,A.H.,OberdorfMaass,S.,Keller, U., Schmitteckert,

E.M., Ivashchenko, Y., Lohse, M.J., and Engelhardt, S. (2005). The transcriptional

repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature

medicine 11 ,837844.

Chang,C.C.,Lin,M.T.,Lin,B.R.,Jeng,Y.M.,Chen,S.T.,Chu,C.Y.,Chen,R.J.,Chang,

K.J.,Yang,P.C.,andKuo,M.L.(2006).Effectofconnective tissue growth factor on

hypoxiainducible factor 1alpha degradation and tumor angiogenesis. Journal of the

NationalCancerInstitute 98 ,984995.

Chen, D.B., Westfall, S.D., Fong, H.W., Roberson, M.S., and Davis, J.S. (1998).

Prostaglandin F2alpha stimulates the Raf/MEK1/mitogenactivated protein kinase

signalingcascadeinbovinelutealcells.Endocrinology 139 ,38763885.

Chen, X., Shevtsov, S.P., Hsich, E., Cui, L., Haq, S., Aronovitz, M., Kerkela, R.,

Molkentin, J.D., Liao, R., Salomon, R.N. , et al. (2006). The betacatenin/Tcell 112

factor/lymphocyteenhancerfactorsignalingpathwayisrequiredfornormalandstress inducedcardiachypertrophy.Molecularandcellularbiology 26 ,44624473.

Chong,H.,Lee,J.,andGuan,K.L.(2001).PositiveandnegativeregulationofRafkinase activityandfunctionbyphosphorylation.TheEMBOjournal 20 ,37163727.

Chung,K.C.,andAhn,Y.S.(1998).Expressionofimmediateearlygenecyr61duringthe

differentiation of immortalized embryonic hippocampal neuronal cells. Neuroscience

letters 255 ,155158.

Coleman, R.A., Smith, W.L., and Narumiya, S. (1994). International Union of

Pharmacology classification of prostanoid receptors: properties, distribution, and

structureofthereceptorsandtheirsubtypes.Pharmacologicalreviews 46 ,205229.

Danesch,U.,Weber,P.C.,andSellmayer,A.(1994). Arachidonic acid increases cfos andEgr1mRNAin3T3fibroblastsbyformationofprostaglandinE2andactivationof proteinkinaseC.TheJournalofbiologicalchemistry 269 ,2725827263.

Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J.,

Woffendin,H.,Garnett,M.J.,Bottomley,W. , et al. (2002).MutationsoftheBRAFgene inhumancancer.Nature 417 ,949954.

deGooyer,T.E.,Stevenson,K.A.,Humphries,P.,Simpson,D.A.,Curtis,T.M.,Gardiner,

T.A., and Stitt, A.W. (2006). Rod photoreceptor loss in Rho/ mice reduces retinal

hypoxia and hypoxiaregulated gene expression. Investigative ophthalmology & visual

science 47 ,55535560. 113

Dong,J.,Phelps,R.G.,Qiao,R.,Yao,S.,Benard, O., Ronai, Z., and Aaronson, S.A.

(2003). BRAF oncogenic mutations correlate with progression rather than initiation of humanmelanoma.Cancerresearch 63 ,38833885.

Fang, K.M., Shu, W.H., Chang, H.C., Wang, J.J., and Mak, O.T. (2004). Study of prostaglandinreceptorsinmitochondriaonapoptosisofhumanlungcarcinomacellline

A549.BiochemicalSocietytransactions 32 ,10781080.

Fritz, G., and Kaina, B. (2006). Rho GTPases: promising cellular targets for novel anticancerdrugs.Currentcancerdrugtargets 6 ,114.

Fujino, H., and Regan, J.W. (2001). FP prostanoid receptor activation of a Tcell factor/betacateninsignalingpathway.TheJournalofbiologicalchemistry 276 ,12489

12492.

Fujino, H., and Regan, J.W. (2003). Prostaglandin F(2alpha) stimulation of cyclooxygenase2promoteractivitybytheFP(B)prostanoidreceptor.Europeanjournal ofpharmacology 465 ,3941.

Fujino, H., and Regan, J.W. (2004). Prostaglandin F2alpha amplifies tumor necrosis factoralpha promoter activity by the FPB prostanoid receptor. Biochemical and biophysicalresearchcommunications 317 ,11141120.

Fujino,H.,Srinivasan,D.,andRegan,J.W.(2002).Cellularconditioningandactivation of betacatenin signaling by the FPB prostanoid receptor. The Journal of biological chemistry 277 ,4878648795. 114

Funato, Y., Michiue, T., Asashima, M., and Miki, H. (2006). The thioredoxinrelated redoxregulating protein nucleoredoxin inhibits Wntbetacatenin signalling through dishevelled.Naturecellbiology 8 ,501508.

Graves,P.E.,Pierce,K.L.,Bailey,T.J.,Rueda,B.R.,Gil,D.W.,Woodward,D.F.,Yool,

A.J.,Hoyer,P.B.,andRegan,J.W.(1995).Cloning of a receptor for prostaglandin F2

alphafromtheovinecorpusluteum.Endocrinology 136 ,34303436.

Guha,M.,O'Connell,M.A.,Pawlinski,R.,Hollis,A.,McGovern,P.,Yan,S.F.,Stern,

D., and Mackman, N. (2001). Lipopolysaccharide activation of the MEKERK1/2 pathwayinhumanmonocyticcellsmediatestissuefactorandtumornecrosisfactoralpha

expression by inducing Elk1 phosphorylation and Egr1 expression. Blood 98 , 1429

1439.

Guo,F.,Debidda,M.,Yang,L.,Williams,D.A.,andZheng,Y.(2006).Geneticdeletion ofRac1GTPaserevealsitscriticalroleinactinstressfiberformationandfocaladhesion complexassembly.TheJournalofbiologicalchemistry 281 ,1865218659.

Hall,A.(1994).SmallGTPbindingproteinsandtheregulationoftheactincytoskeleton.

Annualreviewofcellbiology 10 ,3154.

Harris,I.S.,Zhang,S.,Treskov,I.,Kovacs,A.,Weinheimer,C.,andMuslin,A.J.(2004).

Raf1kinaseisrequiredforcardiachypertrophyandcardiomyocytesurvivalinresponse topressureoverload.Circulation 110,718723.

Hayashi,M.,Sakata,M.,Takeda,T.,Tahara,M.,Yamamoto,T.,Minekawa,R.,Isobe,

A.,Tasaka,K.,andMurata,Y.(2005).Hypoxiaupregulateshypoxiainduciblefactor 115

1alphaexpressionthroughRhoAactivationintrophoblastcells.TheJournalofclinical endocrinologyandmetabolism 90 ,17121719.

Higgins,D.F.,Biju,M.P.,Akai,Y.,Wutz,A.,Johnson,R.S.,andHaase,V.H.(2004).

HypoxicinductionofCtgfisdirectlymediatedbyHif1.Americanjournalofphysiology

287 ,F12231232.

Hirota,K.,Fukuda,R.,Takabuchi,S.,KizakaKondoh,S.,Adachi,T.,Fukuda,K.,and

Semenza, G.L. (2004). Induction of hypoxiainducible factor 1 activity by muscarinic acetylcholinereceptorsignaling.TheJournalofbiologicalchemistry 279 ,4152141528.

Hirst, J.J., Parkington, H.C., Young, I.R., Palliser, H.K., Peri, K.G., and Olson, D.M.

(2005).DelayofpretermbirthinsheepbyTHG113.31,aprostaglandinF2alphareceptor antagonist.Americanjournalofobstetricsandgynecology 193 ,256266.

Huang,L.E.,Gu,J.,Schau,M.,andBunn,H.F.(1998).Regulationofhypoxiainducible factor 1alpha is mediated by an O2dependent degradation domain via the ubiquitin proteasomepathway.ProceedingsoftheNationalAcademy of Sciences of the United

StatesofAmerica 95,79877992.

Iannone, A., Marconi, A., Zambruno, G., Giannetti, A., Vannini, V., and Tomasi, A.

(1993).Freeradicalproductionduringmetabolismoforganichydroperoxidesbynormal

humankeratinocytes.TheJournalofinvestigativedermatology 101 ,5963.

Ishii, Y., and Sakamoto, K. (2001). Suppression of protein kinase C signaling by the novel isoform for bovine PGF(2alpha) receptor. Biochemical and biophysical research communications 285 ,18. 116

Jabbour,H.N.,Sales,K.J.,Boddy,S.C.,Anderson,R.A.,andWilliams,A.R.(2005).A positive feedback loop that regulates cyclooxygenase2 expression and prostaglandin

F2alphasynthesisviatheFseriesprostanoidreceptorandextracellularsignalregulated kinase1/2signalingpathway.Endocrinology 146 ,46574664.

Kaidi, A., Qualtrough, D., Williams, A.C., and Paraskeva, C. (2006). Direct

transcriptional upregulation of cyclooxygenase2 by hypoxiainducible factor (HIF)1 promotes colorectal tumor cell survival and enhances HIF1 transcriptional activity

duringhypoxia.Cancerresearch 66 ,66836691.

Kaidi, A., Williams, A.C., and Paraskeva, C. (2007). Interaction between betacatenin andHIF1promotescellularadaptationtohypoxia.Naturecellbiology 9 ,210217.

Kelly, A.J., Kavanagh, J., and Thomas, J. (2001). Vaginal prostaglandin (PGE2 and

PGF2a) for induction of labour at term. Cochrane database of systematic reviews

(Online),CD003101.

Khachigian, L.M. (2006). Early growth response1 in cardiovascular pathobiology.

Circulationresearch 98 ,186191.

Kimbro,K.S.,andSimons,J.W.(2006).Hypoxiainduciblefactor1inhumanbreastand prostatecancer.Endocrinerelatedcancer 13 ,739749.

Kjoller,L.,andHall,A.(1999).SignalingtoRhoGTPases.Experimentalcellresearch

253 ,166179.

Kunapuli,P.,Lawson,J.A.,Rokach,J.A.,Meinkoth,J.L.,andFitzGerald,G.A.(1998).

ProstaglandinF2alpha(PGF2alpha)andtheisoprostane,8,12isoisoprostaneF2alpha 117

III, induce cardiomyocyte hypertrophy. Differential activation of downstream signaling pathways.TheJournalofbiologicalchemistry 273 ,2244222452.

Kunz,M.,Moeller,S.,Koczan,D.,Lorenz,P.,Wenger,R.H.,Glocker,M.O.,Thiesen,

H.J.,Gross,G.,andIbrahim,S.M.(2003).Mechanismsofhypoxic generegulationof

angiogenesisfactorCyr61inmelanomacells.TheJournalofbiologicalchemistry 278 ,

4565145660.

Lai,J.,Jin,H.,Yang,R.(1996).ProstaglandinF2αinducescardiacmyocytehypertrophy

invitroandcardiacgrowthinvivo.AmJPhysiol271 ,H2197–H2208.

Larue,L.,andDelmas,V.(2006).TheWNT/Betacateninpathwayinmelanoma.Front

Biosci 11 ,733742.

Li,J.,Mizukami,Y.,Zhang,X.,Jo,W.S.,andChung, D.C. (2005). Oncogenic Kras

stimulates Wnt signaling in colon cancer through inhibition of GSK3beta.

Gastroenterology 128 ,19071918.

Liang,Y.,Li,C.,Guzman,V.M.,Evinger,A.J.,3rd,Protzman,C.E.,Krauss,A.H.,and

Woodward, D.F. (2003). Comparison of prostaglandin F2alpha, bimatoprost

(prostamide),andbutaprost(EP2agonist)onCyr61andconnectivetissuegrowthfactor

geneexpression.TheJournalofbiologicalchemistry 278 ,2726727277.

Lim, J.H., Lee, E.S., You, H.J., Lee, J.W., Park, J.W., and Chun, Y.S. (2004). Ras dependent induction of HIF1alpha785 via the Raf/MEK/ERK pathway: a novel mechanismofRasmediatedtumorpromotion.Oncogene 23 ,94279431.

Liu,C.,Rangnekar,V.M.,Adamson,E.,andMercola,D.(1998).Suppressionofgrowth

andtransformationandinductionofapoptosisbyEGR1.Cancergenetherapy 5 ,328. 118

Liu,X.H.,Kirschenbaum,A.,Lu,M.,Yao,S.,Dosoretz,A.,Holland,J.F.,andLevine,

A.C.(2002).ProstaglandinE2induceshypoxiainduciblefactor1alphastabilizationand nuclear localization in a human prostate cancer cell line. The Journal of biological chemistry 277 ,5008150086.

Luo,Q.,Kang,Q.,Si,W.,Jiang,W.,Park,J.K.,Peng,Y.,Li,X.,Luu,H.H.,Luo,J.,

Montag,A.G. , et al. (2004).Connectivetissuegrowthfactor(CTGF)isregulatedbyWnt

andbonemorphogeneticproteinssignalinginosteoblastdifferentiationofmesenchymal

stemcells.TheJournalofbiologicalchemistry 279 ,5595855968.

MacCarthy,P.A.,Grieve,D.J.,Li,J.M.,Dunster,C.,Kelly,F.J.,andShah,A.M.(2001).

Impairedendothelialregulationofventricularrelaxationincardiachypertrophy:roleof reactiveoxygenspeciesandNADPHoxidase.Circulation 104 ,29672974.

Menendez,J.A.,Mehmi,I.,Griggs,D.W.,andLupu,R.(2003).The angiogenic factor

CYR61inbreastcancer:molecularpathologyandtherapeuticperspectives.Endocrine relatedcancer 10 ,141152.

Miller, J.R., Hocking, A.M., Brown, J.D., and Moon, R.T. (1999). Mechanism and function of signal transduction by the Wnt/betacatenin and Wnt/Ca2+ pathways.

Oncogene 18 ,78607872.

Minet,E.,Mottet,D.,Michel,G.,Roland, I.,Raes,M.,Remacle,J.,andMichiels,C.

(1999). Hypoxiainduced activation of HIF1: role of HIF1alphaHsp90 interaction.

FEBSletters 460 ,251256. 119

Mukhopadhyay,P.,Bhattacherjee,P.,Andom,T.,Geoghegan,T.E.,Andley,U.P.,and

Paterson,C.A.(1999).ExpressionofprostaglandinreceptorsEP4andFPinhumanlens epithelialcells.Investigativeophthalmology&visualscience 40 ,105112.

Muller, K., Krieg, P., Marks, F., and Furstenberger, G. (2000). Expression of

PGF(2alpha)receptormRNAinnormal,hyperplasticandneoplasticskin.Carcinogenesis

21 ,10631066.

Noguchi, K., Tominaga, Y., Matsushita, K., Izumi, Y., Endo, H., Kondo, H., and

Ishikawa, I. (2001). Upregulation of matrix metalloproteinase1 production by prostaglandinF2alphainhumangingivalfibroblasts.Journalofperiodontalresearch 36 ,

334339.

Olofsson, J., and Leung, P.C. (1994). Auto/paracrine role of prostaglandins in corpus luteumfunction.Molecularandcellularendocrinology 100 ,8791.

Perbal,B.(2004).CCNproteins:multifunctionalsignallingregulators.Lancet 363 ,62

64.

Peri,K.G.,Quiniou,C.,Hou,X.,Abran,D.,Varma,D.R.,Lubell,W.D.,andChemtob,S.

(2002).THG113:anovelselectiveFPantagonistthatdelayspretermlabor.Seminarsin perinatology 26 ,389397.

Phanish, M.K., Wahab, N.A., Hendry, B.M., and Dockrell, M.E. (2005). TGFbeta1 induced connective tissue growth factor (CCN2) expression in human renal proximal tubuleepithelialcellsrequiresRas/MEK/ERKandSmadsignalling.Nephron 100 ,e156

165. 120

Pierce, K.L., Bailey, T.J., Hoyer, P.B., Gil, D.W., Woodward, D.F., and Regan, J.W.

(1997). Cloning of a carboxylterminal isoform of the prostanoid FP receptor. The

Journalofbiologicalchemistry 272 ,883887.

Pierce, K.L., Fujino, H., Srinivasan, D., and Regan, J.W. (1999). Activation of FP prostanoidreceptorisoformsleadstoRhomediatedchangesincellmorphologyandin

thecellcytoskeleton.TheJournalofbiologicalchemistry 274 ,3594435949.

Pierce KL, R.J. (1998). Prostanoi receptor heterogeneity through alternative mRNA

splicing.LifeSciences 62 ,14791483.

Pritchard,C.A.,Hayes,L.,Wojnowski,L.,Zimmer,A.,Marais,R.M.,andNorman,J.C.

(2004).BRafactsviatheROCKII/LIMK/cofilinpathwaytomaintainactinstressfibers infibroblasts.Molecularandcellularbiology 24 ,59375952.

Proud, C.G. (2004). Ras, PI3kinase and mTOR signaling in cardiac hypertrophy.

Cardiovascularresearch 63 ,403413.

Pugh,C.W.,andRatcliffe,P.J.(2003).Regulationofangiogenesisbyhypoxia:roleofthe

HIFsystem.Naturemedicine 9 ,677684.

Sakamoto,K.,Ezashi,T.,Miwa,K.,OkudaAshitaka,E.,Houtani,T.,Sugimoto,T.,Ito,

S.,andHayaishi,O.(1994).MolecularcloningandexpressionofacDNAofthebovine prostaglandinF2alphareceptor.TheJournalofbiologicalchemistry 269 ,38813886.

Sales,K.J.,List,T.,Boddy,S.C.,Williams,A.R.,Anderson,R.A.,Naor,Z.,andJabbour,

H.N.(2005).AnovelangiogenicroleforprostaglandinF2alphaFPreceptorinteraction inhumanendometrialadenocarcinomas.Cancerresearch 65 ,77077716. 121

Sales, K.J., Milne, S.A., Williams, A.R., Anderson, R.A., and Jabbour, H.N. (2004).

Expression, localization, and signaling of prostaglandin F2 alpha receptor in human endometrial adenocarcinoma: regulation of proliferationbyactivationoftheepidermal growth factor receptor and mitogenactivated protein kinase signaling pathways. The

Journalofclinicalendocrinologyandmetabolism 89 ,986993.

Sampath, D., Winneker, R.C., and Zhang, Z. (2002). The angiogenic factor Cyr61 is induced by the progestin R5020 and is necessary for mammary adenocarcinoma cell growth.Endocrine 18 ,147159.

Sanghi,S.,MacLaughlin,E.J.,Jewell,C.W.,Chaffer,S.,Naus,P.J.,Watson,L.E.,and

Dostal, D.E. (2006). Cyclooxygenase2 inhibitors: a painful lesson. Cardiovascular &

hematologicaldisordersdrugtargets 6 ,85100.

Sawanyawisuth, K., Limpawattana, P., Bumrerraj, S., Thongmee, A., Kosakarn, J.,

Choenrungroj,T.,Pradit,P.,Naranunn,P.,Punyamee,S.,andPremgamone,A.(2005).

Aspirintherapy asprimarypreventioninhypertensivepatientsatSrinagarindhospital.

JournaloftheMedicalAssociationofThailand=Chotmaihetthangphaet 88 ,17971801.

Semenza,G.L.,andWang,G.L.(1992).Anuclearfactorinducedbyhypoxiaviadenovo proteinsynthesisbindstothehumanerythropoietingeneenhanceratasiterequiredfor

transcriptionalactivation.Molecularandcellularbiology 12 ,54475454.

Shimo,T.,Kubota,S.,Yoshioka,N.,Ibaragi,S.,Isowa,S.,Eguchi,T.,Sasaki,A.,and

Takigawa,M.(2006).Pathogenicroleofconnectivetissuegrowthfactor(CTGF/CCN2)

inosteolyticmetastasisofbreastcancer.JBoneMinerRes 21 ,10451059. 122

Si,W.,Kang,Q.,Luu,H.H.,Park,J.K.,Luo,Q.,Song,W.X.,Jiang,W.,Luo,X.,Li,X.,

Yin,H. , et al. (2006).CCN1/Cyr61isregulatedbythecanonicalWntsignalandplaysan

importantroleinWnt3Ainducedosteoblastdifferentiationofmesenchymalstemcells.

Molecularandcellularbiology 26 ,29552964.

Sugimoto, Y., Hasumoto, K., Namba, T., Irie, A., Katsuyama, M., Negishi, M.,

Kakizuka,A.,Narumiya,S.,andIchikawa,A.(1994).CloningandexpressionofacDNA

formouseprostaglandinFreceptor.TheJournalofbiologicalchemistry 269 ,13561360.

Sugimoto, Y., Yamasaki, A., Segi, E., Tsuboi, K., Aze, Y., Nishimura, T., Oida, H.,

Yoshida, N., Tanaka, T., Katsuyama, M. , et al. (1997). Failure of parturition in mice

lackingtheprostaglandinFreceptor.Science 277 ,681683.

Takano, H., Zou, Y., Hasegawa, H., Akazawa, H., Nagai, T., and Komuro, I. (2003).

Oxidativestressinducedsignaltransductionpathwaysincardiacmyocytes:involvement

ofROSinheartdiseases.Antioxidants&redoxsignaling 5 ,789794.

Takeya, R., and Sumimoto, H. (2006). Regulation of novel superoxideproducing

NAD(P)Hoxidases.Antioxidants&redoxsignaling 8 ,15231532.

Tanifuji,C.,Suzuki,Y.,Geot,W.M.,Horikoshi,S.,Sugaya,T.,RuizOrtega,M.,Egido,

J., and Tomino, Y. (2005). Reactive oxygen speciesmediated signaling pathways in

angiotensin IIinduced MCP1 expression of proximal tubular cells. Antioxidants &

redoxsignaling 7 ,12611268.

Tsai, J.C., Liu, L., Guan, J., and Aird, W.C. (2000). The Egr1 gene is induced by

epidermalgrowthfactorinECV304cellsandprimaryendothelial cells.AmJPhysiol

CellPhysiol 279 ,C14141424. 123

vanWetering,S.,vanBuul,J.D.,Quik,S.,Mul,F.P.,Anthony,E.C.,tenKlooster,J.P.,

Collard,J.G.,andHordijk,P.L.(2002).Reactiveoxygen species mediate Racinduced lossofcellcelladhesioninprimaryhumanendothelialcells.Journalofcellscience 115 ,

18371846.

Vane, J.R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for

aspirinlikedrugs.Nature:Newbiology 231 ,232235.

Wang,F.S.,Wang,C.J.,Chen,Y.J.,Chang,P.R.,Huang,Y.T.,Sun,Y.C.,Huang,H.C.,

Yang, Y.J., and Yang, K.D. (2004). Ras induction of superoxide activates ERK

dependentangiogenictranscriptionfactorHIF1alphaandVEGFAexpressioninshock

wavestimulatedosteoblasts.TheJournalofbiologicalchemistry 279 ,1033110337.

Watts,G.S.,Futscher,B.W.,Isett,R.,GleasonGuzman,M.,Kunkel,M.W.,andSalmon,

S.E. (2001). cDNA microarray analysis of multidrug resistance: doxorubicin selection producesmultipledefectsinapoptosissignalingpathways.TheJournalofpharmacology

andexperimentaltherapeutics 299 ,434441.

Williams, C.S., Luongo, C., Radhika, A., Zhang, T., Lamps, L.W., Nanney, L.B.,

Beauchamp,R.D.,andDuBois,R.N.(1996).Elevated cyclooxygenase2levelsinMin

mouseadenomas.Gastroenterology 111 ,11341140.

Willoughby,D.A.,Moore,A.R.,ColvilleNash,P.R.,andGilroy,D.(2000).Resolution ofinflammation.Internationaljournalofimmunopharmacology 22 ,11311135.

Xiao,L.,Pimental,D.R.,Amin,J.K.,Singh,K.,Sawyer,D.B.,andColucci,W.S.(2001).

MEK1/2ERK1/2 mediates alpha1adrenergic receptorstimulated hypertrophy in adult ratventricularmyocytes.Journalofmolecularandcellularcardiology 33 ,779787. 124

Zhong,H.,DeMarzo,A.M.,Laughner,E.,Lim,M.,Hilton,D.A.,Zagzag,D.,Buechler,

P.,Isaacs,W.B.,Semenza,G.L.,andSimons,J.W.(1999).Overexpressionofhypoxia induciblefactor1alphaincommonhumancancersandtheirmetastases.Cancerresearch

59 ,58305835.