Mouse Transferrin Receptor 1 Is the Cell Entry Receptor for Mouse Mammary Tumor Virus

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Transferrin Receptor 1 Is the Cell Entry Receptor for Mouse Mammary Tumor Virus Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus Susan R. Ross*†, Jason J. Schofield*, Christine J. Farr‡, and Maja Bucan§ *Department of Microbiology and Cancer Center, University of Pennsylvania, Philadelphia, PA 19104; ‡Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom; and §Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 Edited by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved July 23, 2002 (received for review June 14, 2002) Enveloped viruses enter cells by binding to their entry receptors mapped a receptor to mouse Chr 16 (4). We also identified a and fusing with the membrane at the cell surface or after traffick- potential MMTV receptor that mapped to Chr 19, termed ing through acidic endosomal compartments. Species-specific virus MTVR2, using virus binding as an assay for expression cloning tropism is usually determined by these entry receptors. Because (5). To determine whether the bona fide MMTV receptor mouse mammary tumor virus (MMTV) is unable to infect Chinese mapped to Chr 16, Chr 19, or elsewhere in the mouse genome, hamster cells, we used phenotypic screening of the T31 mouse͞ we screened the T31 mouse͞Chinese hamster RH cell panel (6) hamster radiation hybrid panel to map the MMTV cell entry with Moloney murine leukemia virus (MoMLV) pseudotypes receptor gene and subsequently found that it is transferrin recep- bearing the MMTV Env protein on their surface. As described tor 1. MMTV-resistant human cells that expressed mouse trans- here, we found that the receptor gene mapped to Chr 16. This ferrin receptor 1 became susceptible to MMTV infection, and placement allowed us to test bacterial artificial chromosomes treatment of mouse cells with a monoclonal antibody that down- (BACs) from the candidate region for receptor activity and then regulated cell surface expression of the receptor blocked infection. to identify mouse transferrin receptor 1 (mTfR1) as the MMTV MMTV, like vesicular stomatitis virus, depended on acid pH for cell entry receptor. infection. MMTV may use transferrin receptor 1, a membrane TfR1 is a type II, single membrane-spanning glycoprotein with protein that is endocytosed via clathrin-coated pits and traffics a short cytoplasmic domain and is the major means by which through the acidic endosomes, to rapidly get to a compartment most cells take up iron (7). The receptor has a high affinity for where acid pH triggers the conformational changes in envelope iron-loaded transferrin at neutral pH, and upon binding ligand protein required for membrane fusion. traffics to the early acidic endosome, where it releases iron, recycles back to the cell surface, and releases transferrin. The n recent years, a large number of viral receptors have been transferrin binding site has been determined by mutagenesis and Iidentified using a variety of approaches. These include the binding studies, and maps to an RGD-containing sequence in the biochemical purification of virus-binding molecules, the gener- extracellular domain that is highly conserved between species (8, ation of antibodies to cell surface proteins that block infection, 9). In addition to transferrin, peptides that bind at other sites on and the introduction of genomic or cDNA libraries from sus- TfR1 cause it to be endocytosed and traffic to the acidic ceptible into resistant cells, followed by infection with the virus endosome (10). of interest, usually engineered to encode an identifiable marker The identification of a protein that traffics to the acidic such as a drug resistance gene. Although such techniques are endosome upon ligand binding is interesting in light of a previous extremely powerful and have been successful in many cases, the observation that treatment of MMTV-infected mammary tumor identification of some virus receptors has been refractive to cells with acid pH induced cell–cell fusion (11). We show here these methods. Recently, Rai and colleagues (1) showed that phenotypic that MMTV pseudovirus infection is also dependent on acidified screening of radiation hybrid panels could be used for receptor endosomes. Taken together, these results suggest that MMTV binds mTfR1 at the cell surface and then traffics to an acidic identification. These investigators tested the Stanford G3 Chi- ͞ nese hamster͞human radiation hybrid (RH) panel for infection endosomal compartment where virus cell membrane fusion with Jaagsietke sheep retrovirus (JSRV) pseudoviruses and occurs. mapped the receptor gene. Historically, somatic cell hybrid Materials and Methods panels between Chinese hamster cells, which are refractive to infection by many viruses including mouse mammary tumor Infection of the RH Panel. MMTV-Env pseudotyped Mo-MuLV virus (MMTV), and cells from different species have been used vectors were prepared as described (5). A23 hamster cells and to map receptor genes. These mapping studies resulted in the A23-derived RH clones (gifts from P. N. Goodfellow, Glaxo- chromosomal placement of the virus receptor genes, but not SmithKline Pharmaceuticals, Stevenage, U.K., and L. C. Mc- their identification. RH panels, in which the cell line from the Carthy, Glaxo Wellcome Medicines Research, Stevenage, U.K.) species of interest are X-irradiated to generate small chromo- were grown in hypoxanthine͞aminopterin͞thymidine (HAT)- somal fragments before fusion with the hamster cells, have been DMEM, supplemented with 10% fetal bovine sera. The RH cells one of the major tools used in generating high-resolution maps were plated at 5 ϫ 104 cells per well in a 6-well plate and infected of different organisms and have resulted in maps that integrate with the MMTV-Env pseudotypes the following day. After 2 genetic, physical, and expressed sequence tag (EST) data (2). days, the cells were stained for ␤-galactosidase activity. Wells The ability to precisely map the JSRV receptor gene on this RH panel in conjunction with the availability of cosmid͞P1 contig maps and genomic sequence from the region led to cloning of the This paper was submitted directly (Track II) to the PNAS office. entry receptor, HYAL2 (3). Abbreviations: MMTV, mouse mammary tumor virus; NMuMG, normal murine mammary gland; Chr, chromosome; BAC, bacterial artificial chromosome; Env, envelope; RH, radia- We undertook this approach to identify the receptor for tion hybrid; mTfR, mouse transferrin receptor; LFU, lacZ-forming units. MMTV, a betaretrovirus that causes breast carcinomas in mice. †To whom reprint requests should be addressed at: University of Pennsylvania, 313 BRBII͞ Previous work using vesicular stomatitis virus (VSV)- 6142, 421 Curie Boulevard, Philadelphia, PA 19104-6142. E-mail: [email protected]. pseudotyped with the MMTV envelope (Env) protein had upenn.edu. 12386–12390 ͉ PNAS ͉ September 17, 2002 ͉ vol. 99 ͉ no. 19 www.pnas.org͞cgi͞doi͞10.1073͞pnas.192360099 Downloaded by guest on September 30, 2021 containing greater than 25 ␤-galactosidase colonies were Table 1. BAC transfection to test for MMTV receptor activity counted as positive. Cell line BAC͞plasmid LFU͞ml LFU͞ml ϩ anti-MMTV Recombinant DNAs. BAC clones were obtained from BACPAC 293T 320J17 0 0 Resources (Oakland, CA) or Research Genetics (Birmingham, 219I11 0 0 AL) and were purified according to standard techniques. An 342H15 0 0 insert containing the mouse TFR1 cDNA (a gift from N. 248H7 1 0 Andrews, Howard Hughes Medical Institute, The Children’s 27L21 0 ND Hospital, Boston) was transferred from the pSPORT to the 121N24 0 0 pcDNA3.1 mammalian expression vector (mTfR1). Human 308K23 3 0 TFR1 in pCDM8 was a gift from M. Marks (University of 73P12 77 1 Pennsylvania) and mouse TFR2 (IMAGE clone 4196597; 322N13 84 0 pCMV-SPORT6 vector) was obtained from Research Genetics. 324J8 1 0 342H15 4 0 Transfection of 293T Cells and Pseudovirus Infection. Two micro- mTfR1 7,300 0 grams of BAC or plasmid DNA was transiently transfected into hTfR1 0 ND 293T cells plated in 6-well dishes, using calcium phosphate — 00 precipitation. Twenty-four hours after transfection, the cells A23 — 0ND were infected with MMTV pseudotypes containing the lacZ NMuMG — 3,461 0 gene under the control of the MoMLV long terminal repeat (pHIT60) (12) and the cells were stained for LacZ activity 48 hr 293T cells were transfected by the CaPO4 method in duplicate with 2 ug of later as described (5). Normal murine mammary gland each DNA in 6-well dishes. Twenty-four hours after transfection, the cells were (NMuMG) cells were infected as positive controls. A20 cells infected with MMTV Env-pseudotyped Mo-MLV vectors in the absence or ␮ presence of goat polyclonal anti-MMTV antisera (ϩ anti-MMTV) (Quality were infected with 100 l of pseudovirus stock in 96-well dishes Biotech, Camden, NJ). The normal murine mammary gland cell line, NMuMG, ϫ 5 at 1 10 cells per well for 2 hr; five wells for each treatment served as a positive control for MMTV infection (13). Shown are the lacZ- ϫ 6 (1 10 cells in total) were pooled and diluted to 5 ml final forming units (LFU) per milliliter of virus supernatant. ND, not determined. volume with media. Two days after infection, cell extracts were made and ␤-galactosidase assays were performed using a com- mercial kit, according to the manufacturer’s instructions (Pro- (ES) cells (6). We first established that A23 cells were resistant mega). Data are presented as milliunits͞␮g protein. In some to infection by MMTV pseudotypes (Table 1); we did not have cases, duplicate wells were treated with 1 ␮l͞ml goat anti- the 129 ES cell line available, but we have found that all tested MMTV antisera (13) at the time of infection or 1 ␮g͞ml rat murine tissue culture lines were susceptible (13). We then anti-mouse CD71 monoclonal antibody C2 (MOPC-315; RDI, screened 98͞100 T31 RH panel cell lines for infection by these Flanders, NJ) for 10 min at room temperature before the pseudotypes.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • An Endocytosis Pathway Initiated Through Neuropilin-1 and Regulated by Nutrient Availability
    ARTICLE Received 18 Apr 2014 | Accepted 2 Aug 2014 | Published 3 Oct 2014 DOI: 10.1038/ncomms5904 An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability Hong-Bo Pang1, Gary B. Braun1,2, Tomas Friman1,2, Pedro Aza-Blanc1, Manuel E. Ruidiaz1, Kazuki N. Sugahara1,3, Tambet Teesalu1,4 & Erkki Ruoslahti1,2 Neuropilins (NRPs) are trans-membrane receptors involved in axon guidance and vascular development. Many growth factors and other signalling molecules bind to NRPs through a carboxy (C)-terminal, basic sequence motif (C-end Rule or CendR motif). Peptides with this motif (CendR peptides) are taken up into cells by endocytosis. Tumour-homing CendR peptides penetrate through tumour tissue and have shown utility in enhancing drug delivery into tumours. Here we show, using RNAi screening and subsequent validation studies, that NRP1-mediated endocytosis of CendR peptides is distinct from known endocytic pathways. Ultrastructurally, CendR endocytosis resembles macropinocytosis, but is mechanistically different. We also show that nutrient-sensing networks such as mTOR signalling regulate CendR endocytosis and subsequent intercellular transport of CendR cargo, both of which are stimulated by nutrient depletion. As CendR is a bulk transport pathway, our results suggest a role for it in nutrient transport; CendR-enhanced drug delivery then makes use of this natural pathway. 1 Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA. 2 Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106-9610, USA. 3 Department of Surgery, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
    [Show full text]
  • VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin Retro,"Backwards”
    VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retroviruses Viral RNA Viral DNA Viral mRNA, genome (integrated into host genome) Reverse (retro) transfer of genetic information Usually, well adapted to their hosts Endogenous retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection. 3. The virion has cone-shaped, icosahedral core, Structure containing the major capsid protein 4.
    [Show full text]
  • Microrna-320A Inhibits Tumor Invasion by Targeting Neuropilin 1 and Is Associated with Liver Metastasis in Colorectal Cancer
    ONCOLOGY REPORTS 27: 685-694, 2012 microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer YUJUN ZHANG1, XIANGJUN HE1, YULAN LIU1,2, YINGJIANG YE3, HUI ZHANG3, PEIYING HE1, QI ZHANG1, LINGYI DONG3, YUJING LIU1 and JIANQIANG DONG1 1Institute of Clinical Molecular Biology, and Departments of 2Gastroenterology and 3General Surgery, Peking University, People's Hospital, Beijing 100044, P.R. China Received September 13, 2011; Accepted October 26, 2011 DOI: 10.3892/or.2011.1561 Abstract. MicroRNAs (miRNAs) have been implicated Introduction in regulating diverse cellular pathways. Although there is emerging evidence that various miRNAs function as onco- Colorectal cancer (CRC) is the second most common cause genes or tumor suppressors in colorectal cancer (CRC), the role of cancer-related death worldwide (1). Approximately 50% of of miRNAs in mediating liver metastasis remains unexplored. patients diagnosed with CRC die as a result of complications The expression profile of miRNAs in liver metastasis and from distant metastases, which occur mainly in the liver. The primary CRC tissues was analyzed by miRNA microarrays occurrence of liver metastasis ranges from 20% in stage II to and verified by real-time polymerase chain reaction (PCR). 70% in stage IV CRC patients, according to the UICC stage In 62 CRC patients, the expression levels of miR-320a were guidelines. Of all patients who die of advanced colorectal determined by real-time PCR, and the effects on migration and cancer (ACRC), 60-70% display liver metastasis (2). Metastasis invasion of miR-320a were determined using a transwell assay. to the liver is the major cause of death in CRC patients (3).
    [Show full text]
  • Transcription Factor IRF4 Promotes CD8 T Cell Exhaustion and Limits
    Article Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory- like T Cells during Chronic Infection Graphical Abstract Authors Kevin Man, Sarah S. Gabriel, Yang Liao, ..., Mark A. Febbraio, Wei Shi, Axel Kallies Correspondence [email protected] In Brief During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, loss of effector function, and metabolic impairments. Man et al. have identified a transcriptional module consisting of the TCR-induced transcription factors IRF4, BATF, and NFATc1 that drives T cell exhaustion and impairs memory T cell development. Highlights d High IRF4 mediates T cell exhaustion including expression of inhibitory receptors d TCR-responsive transcription factors IRF4, BATF, and NFAT form a transcriptional circuit d Low IRF4 reduces T cell exhaustion and promotes formation of TCF1+ memory-like T cells Man et al., 2017, Immunity 47, 1129–1141 December 19, 2017 Crown Copyright ª 2017 Published by Elsevier Inc. https://doi.org/10.1016/j.immuni.2017.11.021 Immunity Article Transcription Factor IRF4 Promotes CD8+ TCell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection Kevin Man,1,2,10,11 Sarah S. Gabriel,1,8,9,10 Yang Liao,1,2 Renee Gloury,1,8,9 Simon Preston,1,2 Darren C. Henstridge,3 Marc Pellegrini,1,2 Dietmar Zehn,4 Friederike Berberich-Siebelt,5,6 Mark A. Febbraio,7 Wei Shi,1,2 and Axel Kallies1,8,9,12,* 1The Walter and Eliza Hall Institute of Medical Research, 1G Royal
    [Show full text]
  • Ovine Pulmonary Adenocarcinoma Is Caused by a Virus That Can Be Transmitted Adenocarcinoma Between Sheep in Respiratory Secretions Or Milk
    Ovine Pulmonary Importance Ovine pulmonary adenocarcinoma is caused by a virus that can be transmitted Adenocarcinoma between sheep in respiratory secretions or milk. Infections result in fatal pulmonary neoplasia in some animals, while others remain subclinically infected for life. The Ovine Pulmonary Adenomatosis, economic impact can be significant: 30-80% of the flock may be lost on first exposure Ovine Pulmonary Carcinoma, to the virus, with continuing annual losses that can be as high as 20% in some flocks, although 1-5% is more usual. Excluding this disease from a flock is difficult, in part Jaagsiekte, because no diagnostic test can reliably detect animals in the preclinical stage. No Sheep Pulmonary Adenomatosis effective treatment or vaccine is available, and eradication is challenging. Ovine pulmonary adenocarcinoma occurs in most sheep-raising areas of the world, with the exception of a few countries such as New Zealand and Australia. Iceland is the only Last Updated: March 2019 country known to have successfully eradicated this disease. Etiology Ovine pulmonary adenocarcinoma results from infection by jaagsiekte sheep retrovirus (JSRV), a member of the genus Betaretrovirus in the Retroviridae. JSRV is also known as the pulmonary adenomatosis virus. It has never been cultured from infected animals, which must be identified with viral nucleic acids or antigens. However, infectious virus has been constructed from molecular clones of JSRV, and these viruses can cause tumors in experimentally infected sheep. Species Affected Ovine pulmonary adenocarcinoma mainly affects sheep. Cases have also been reported in captive mouflon (Ovis musimon) and rarely in goats. Zoonotic potential Some authors have speculated that JSRV or a related human virus might be involved in the pathogenesis of certain types of lung cancer in people.
    [Show full text]
  • Association Between Tfh and PGA in Children with Henoch–Schönlein Purpura
    Open Medicine 2021; 16: 986–991 Research Article Miao Meihua, Li Xiaozhong, Wang Qin, Zhu Yunfen, Cui Yanyan, Shao Xunjun* Association between Tfh and PGA in children with Henoch–Schönlein purpura https://doi.org/10.1515/med-2021-0318 in the HSP group showed no statistical difference com- received May 30, 2019; accepted June 7, 2021 pared with that in the acute respiratory infection and the (P < ) Abstract surgery control 0.05 . Conclusion ‒ Objective ‒ The aim of this study was to investigate the Increased activity of Tfh cells, which is roles of follicular helper CD4+ T cells (Tfh) and serum closely related to mucosal immunity, may be a major contributor in the elevation of PGA-IgA, and Tfh cells anti-α-1,4-D-polygalacturonic acid (PGA) antibody in the - pathogenesis of Henoch–Schönlein purpura (HSP). and PGA IgA are closely related to the occurrence of HSP. Methods ‒ ELISA was performed to determine serum Keywords: Henoch–Schönlein purpura, follicular helper - - + PGA IgA and PGA IgG. Flow cytometry was utilized to CD4 T cells, α-1,4-D-polygalacturonic acid, immunity determine the peripheral CD4+ CXCR5+ and CD4+ CXCR5+ ICOS+ Tfh cells. Real-time PCR was conducted to deter- mine the expression of Bcl-6 gene. Then the change of Tfh cells was analyzed, together with the association 1 Introduction with the anti-PGA antibody as well as the roles in the – ( ) pathogenesis of HSP. Henoch Schönlein purpura HSP , now known as IgA Results ‒ Compared with the cases with acute respira- vasculitis, is a common systemic disease in children. A tory
    [Show full text]
  • Noncanonical Role of Transferrin Receptor 1 Is Essential for Intestinal Homeostasis
    Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis Alan C. Chena, Adriana Donovanb, Renee Ned-Sykesc, and Nancy C. Andrewsa,d,1 aDepartment of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27705; bDivision of Pharmacology and Preclinical Biology, Scholar Rock, Cambridge, MA 02142; cDivision of Laboratory Systems, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA 30333; and dDepartment of Pediatrics, Duke University School of Medicine, Durham, NC 27705 Contributed by Nancy C. Andrews, August 4, 2015 (sent for review June 16, 2015; reviewed by Jerry Kaplan and Ramesh A. Shivdasani) Transferrin receptor 1 (Tfr1) facilitates cellular iron uptake through Surprisingly, the mice showed marked induction of genes asso- receptor-mediated endocytosis of iron-loaded transferrin. It is ex- ciated with epithelial–mesenchymal transition in IECs, suggest- pressed in the intestinal epithelium but not involved in dietary iron ing that Tfr1 normally acts to suppress this cell fate change. absorption. To investigate its role, we inactivated the Tfr1 gene There was also abnormal accumulation of lipids, similar to mice selectively in murine intestinal epithelial cells. The mutant mice had lacking transcription factor Plagl2, and increased expression of severe disruption of the epithelial barrier and early death. There stem cell markers. was impaired proliferation of intestinal epithelial cell progenitors, aberrant lipid handling, increased mRNA expression of stem cell Results markers, and striking induction of many genes associated with Conditional Deletion of Tfr1 in IECs. We developed Tfr1fl/fl mice epithelial-to-mesenchymal transition. Administration of parenteral carrying loxP sites flanking Tfr1 exons 3–6(Fig.
    [Show full text]
  • Transcriptome Profiling and Differential Gene Expression In
    G C A T T A C G G C A T genes Article Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis Dominique J. Wiener 1,* ,Kátia R. Groch 1 , Magdalena A.T. Brunner 2,3, Tosso Leeb 2,3 , Vidhya Jagannathan 2 and Monika M. Welle 3,4 1 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; [email protected] (M.A.T.B.); [email protected] (T.L.); [email protected] (V.J.) 3 Dermfocus, Vetsuisse Faculty, University Hospital of Bern, 3010 Bern, Switzerland; [email protected] 4 Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland * Correspondence: [email protected]; Tel.: +1-979-862-1568 Received: 30 June 2020; Accepted: 3 August 2020; Published: 4 August 2020 Abstract: The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction.
    [Show full text]
  • Identification of Cell-Surface Proteins Endocytosed by Human Brain
    pharmaceutics Article Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro Shingo Ito 1,2,3, Mariko Oishi 2, Seiryo Ogata 3, Tatsuki Uemura 3, Pierre-Olivier Couraud 4, Takeshi Masuda 1,2,3 and Sumio Ohtsuki 1,2,3,* 1 Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; [email protected] (S.I.); [email protected] (T.M.) 2 Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; [email protected] 3 Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; [email protected] (S.O.); [email protected] (T.U.) 4 Institut Cochin, Universite de Paris, Inserm U1016, CNRS UMR8104, 22 rue Méchain, 75014 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +81-96-371-4323 Received: 30 April 2020; Accepted: 18 June 2020; Published: 23 June 2020 Abstract: Cell-surface proteins that can endocytose into brain microvascular endothelial cells serve as promising candidates for receptor-mediated transcytosis across the blood–brain barrier (BBB). Here, we comprehensively screened endocytic cell-surface proteins in hCMEC/D3 cells, a model of human brain microvascular endothelial cells, using surface biotinylation methodology and sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry (SWATH-MS)-based quantitative proteomics. Using this method, we identified 125 endocytic cell-surface proteins from hCMEC/D3 cells.
    [Show full text]
  • Activatio of Ovel Sig Al Tra Sductio Pathways by Fp Receptors
    Activation of Novel Signal Transduction Pathways by FP Receptors: The G-Protein Coupled Receptors for Prostaglandin F2alpha Item Type text; Electronic Dissertation Authors Xu, Wei Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 06:48:12 Link to Item http://hdl.handle.net/10150/195223 ACTIVATIO OF OVEL SIGAL TRASDUCTIO PATHWAYS BY FP RECEPTORS: THE GPROTEI COUPLED RECEPTORS FOR PROSTAGLADI F2Α by WeiXu ADissertationSubmittedtothe Facultyofthe DEPARTMETOF PHARMACOLOGY & TOXICOLOGY InPartial FulfillmentoftheRequirements For theDegreeof DOCTOROF PHILOSOPHY IntheGraduateCollege THEUIVERSITYOFARIZOA 2007 2 THEUNIVERSITY OF ARIZONA® GRADUATECOLLEGE Asmembersofthe Final ExaminationCommittee,wecertifythatwehavereadthe dissertationpreparedby WeiXu_______________________________________________ Entitled: Activation of Novel Signal Transduction Pathways by FP Receptors: the G-Protein Coupled Receptors for Prostaglandin F2α and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________ Apr.12th,2007 John W.Regan Date _______________________________________________ Apr.12th,2007 John W.Bloom Date _______________________________________________
    [Show full text]