mathematics Article An Introduction to Space–Time Exterior Calculus Ivano Colombaro 1,* , Josep Font-Segura 1 and Alfonso Martinez 1 1 Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
[email protected] (J.F.-S.);
[email protected] (A.M.) * Correspondence:
[email protected]; Tel.: +34-93-542-1496 Received: 21 May 2019; Accepted: 18 June 2019; Published: 21 June 2019 Abstract: The basic concepts of exterior calculus for space–time multivectors are presented: Interior and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces, circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior derivatives with circulation and flux, respectively, are derived. As an application, it is shown how the exterior-calculus space–time formulation of the electromagnetic Maxwell equations and Lorentz force recovers the standard vector-calculus formulations, in both differential and integral forms. Keywords: exterior calculus, exterior algebra, electromagnetism, Maxwell equations, differential forms, tensor calculus 1. Introduction Vector calculus has, since its introduction by J. W. Gibbs [1] and Heaviside, been the tool of choice to represent many physical phenomena. In mechanics, hydrodynamics and electromagnetism, quantities such as forces, velocities and currents are modeled as vector fields in space, while flux, circulation, divergence or curl describe operations on the vector fields themselves. With relativity theory, it was observed that space and time are not independent but just coordinates in space–time [2] (pp. 111–120). Tensors like the Faraday tensor in electromagnetism were quickly adopted as a natural representation of fields in space–time [3] (pp.