The Relationship Between Liquid, Supercooled and Glassy Water

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Liquid, Supercooled and Glassy Water review article The relationship between liquid, supercooled and glassy water Osamu Mishima & H. Eugene Stanley 8 ........................................................................................................................................................................................................................................................ That water can exist in two distinct `glassy' formsÐlow- and high-density amorphous iceÐmay provide the key to understanding some of the puzzling characteristics of cold and supercooled water, of which the glassy solids are more- viscous counterparts. Recent experimental and theoretical studies of both liquid and glassy water are now starting to offer the prospect of a coherent picture of the unusual properties of this ubiquitous substance. At least one `mysterious' property of liquid water seems to have been unreachable temperature Ts < 2 45 8C (refs 2, 5), at which point recognized 300 years ago1: whereas most liquids contract as tem- the entire concept of a `liquid state' becomes dif®cult to sustain. perature decreases, liquid water begins to expand when its tem- Water is a liquid, but glassy waterÐalso called amorphous iceÐ perature drops below 4 8C. A kitchen experiment demonstrates that can exist when the temperature drops below the glass transition the bottom layer of a glass of unstirred iced water remains at 4 8C temperature Tg (about 130 K at 1 bar). Although glassy water is a while colder layers `¯oat' on top; the temperature at the bottom rises solid, its structure exhibits a disordered liquid-like arrangement. only after all the ice has melted. Low-density amorphous ice (LDA) has been known to exist for The mysterious properties of liquid water become more pro- 60 years (ref. 6), and a second kind of amorphous ice, high-density nounced in the supercooled region below 0 8C (refs 2±4; Fig. 1). For amorphous ice (HDA), was discovered in 19847±9. Thus ice has example, if the coef®cient of thermal expansion, isothermal com- two different amorphous forms. This phenomenon is called pressibility, and constant-pressure speci®c heat are extrapolated polyamorphism, a term meaning that the pure material can exist below the lowest temperatures at which these properties are mea- in more than one amorphous state10,11. All amorphous solid forms surable (about -38 8C at 1 bar) they appear to become in®nite at an of H2O can be partitioned into these two low-density and high- T (°C) T (K) Superheated water (metastable) 100 TB 373 60 333 46 Stable water 319 20 Classic models? 293 4 TMD Percolation picture? 277 0 T 273 M Supercooled water Stability-limit conjecture? (metastable) -35 238 -38 TH 235 -45 Ts 228 "No man's land" Liquid-liquid phase transition hypothesis? -120 TX 150 Ultraviscous water (metastable) -140 Tg 130 Glassy water Singularity-free scenario? (metastable) Figure 1 Schematic illustration of different temperature domains, at atmospheric functions. The region between the homogeneous nucleation curve TH(P) and the pressure, of H2O. One domain is stable; the others are metastable. Indicated on crystallization curve TX(P) is a kind of `no-man's-land', as experiments on the liquid the right side of the diagram are the approximate temperature domains which phase cannot be performed. The temperatures denoted 60 8C, 46 8C, 20 8C and proposed explanations are intended to describe. All the indicated numbers are 4 8C indicate the onset of anomalies in the sound velocity, isothermal 2,3 experimentally observed (and are de®ned in the text), except the number denoted compressibility, shear viscosity, and density, respectively . TMD denotes the Ts (about -45 8C) which is a ®tting parameter that emerges from assuming the temperature of maximum density, TB the boiling temperature, TM the melting existence of a power-law singularity in measured thermodynamic response temperature, and Tg the glass transition temperature. Nature © Macmillan Publishers Ltd 1998 NATURE | VOL 396 | 26 NOVEMBER 1998 | www.nature.com 329 review article density forms, although there may be slight variations in the liquid, Whalley et al.36 predicted from thermodynamic arguments individual structures depending on the preparation method and the location of the low-temperature metastable melting line of ice 12±15 13 procedure . IhÐa prediction later con®rmed by experiments Ðwhich located LDA was originally produced by depositing water vapour onto a the ice Ih melting line above the supposed glass transition tempera- 6 cold plate or by cooling micrometre-sized droplets of liquid ture Tg. Below Tg, amorphization does not occur on the extrapola- water extremely rapidly12,16,17. It was once believed that LDA could tion of the two-phase melting line, as once believed37, but rather be nanocrystalline because of its structural resemblance to the melting is `delayed' to higher pressures13 as suggested in ref. 36 most common form of ice, ice Ih (ref. 18). Now it is agreed that (Fig. 3). This delayed melting can be interpreted as a shift from two- 19 LDA is amorphous, as it transforms to a highly viscous liquid when phase melting to one-phase melting. heated to the known glass transition temperature of about 130 K Here we discuss the status of experimental knowledge of liquid 8 (refs 20±22). and glassy water in the light of recent theoretical attempts to obtain In contrast, HDA was discovered by compressing ice Ih below a a uni®ed picture of the liquid, supercooled and glassy states and the temperature of about 150 K (refs 7, 13, 23). HDAwas independently transformations between them. These theoretical proposals typi- 8,24 discovered by bombarding an ice-Ih layer with an electron beam . cally focus on the thermodynamic anomalies exhibited by super- The transformation from a crystalline phase to a (presumably cooled water, offering explanations for the singularity-like metastable) amorphous phase is called amorphization25,26 (Fig. 2). behaviour that seems to occur at about -45 8C. However, it has When compressed further at low enough temperatures, HDA proved very dif®cult to ®nd discriminating experimental tests that crystallizes and becomes a high-density crystalline ice23,27. will allow the theoretical models to be evaluated, and the matter is In addition to the original preparation methods from the vapour, still unresolved. Computer simulations are unable to resolve the liquid or crystalline phases of water, LDA can be formed directly issue either, because water is notoriously hard to simulate realistically from HDAÐand vice versa (Fig. 2). This `polyamorphic transition' and the results can be highly sensitive to the intermolecular is accompanied by a surprisingly sharp and surprisingly large potential functions used. Nonetheless, we hope to show that the volume changeÐmore than 20%Ðwhen thermodynamic param- picture is now becoming clearer, in that some experiments do seem eters such as temperature or pressure change in®nitesimally. The to lend support to speci®c theoretical models, while simulations properties of the amorphous ices change apparently dis- have elucidated interrelationships between them. In particular, we continuously at the polyamorphic transition. For example, the can start to discern the origins of water's anomalous behaviour shear modulus of LDA decreases on compression, jumps discon- within the nature of its intermolecular forces. The prospect of a tinuously at the LDA HDA transition, and then increases with uni®ed picture of water now seems to be in view. further compression28.! Therefore, the transformation between LDA and HDA appears to be a ®rst-order transition between two Hypotheses different metastable amorphous `phases', rather than a relaxation Many classic `explanations' for the mysterious behaviour of liquid phenomenon in which an unstable amorphous structure changes water have been developed38±42, including a simple two-state model continuously from LDA to HDA. Simulations also reveal such dating back to RoÈntgen43 and a clathrate model dating back to polyamorphic transitions27,29. Pauling44. Here we shall brie¯y describe three relatively recent HDA has a structure similar to that of high-pressure liquid water, hypotheses under active current discussion. suggesting that HDA is a glassy form of high-pressure water30±32. One of the popular explanations is the stability limit hypothesis45, Thus far, however, the glass transition of HDA has not been observed. which assumes that the spinodal temperature line Ts(P) in the There is a continuing discussion about whether pressure-induced pressure±temperature (P±T) phase diagram connects at negative P amorphization13,26,33,34 is conventional `two-phase melting' (crystal- to the locus of the liquid-to-gas spinodal (the limit of metastability) line solid becoming liquid) at a temperature below Tg, or is what is for superheated water (Fig. 4a). It is assumed that liquid water called `one-phase melting' (a collapse transitionÐsolid becoming cannot exist when cooled or stretched beyond the line Ts(P). 35 collapsed solid) (Fig. 3). Thus it remains unresolved whether one The data supporting the singularity at Ts are limited to tempera- considers HDA to be a glassy state of liquid water or to be a collapsed tures several degrees above Ts. Hence it is possible that functions `ill-crystalline' phase. Regarding HDA as a glass of a high-pressure have a rapid rise but that there is no singularity, behaviour predicted boiling polyamorphic T G L L condensation transition evaporation 2-phase melting 1-phase melting relaxation sublimation (collapse) melting deposition HDL freezing vitrification condensation Tg polymorphic crystallization polyamorphic ice-Ih HDA X X A A transition amorphization transition exp. Figure 2 Transitions between gas (G), liquid (L), crystal (X) and amorphous (A) phases of water. We note that the amorphous `phase' is metastable and non- ergodic (meaning a non-equilibrium state in a metastable phase), so the three P transitions to and from `A' are different from the other transitions because `A' has many local minima; thus these transitions are not true thermodynamic transitions, Figure 3 Two-phase melting contrasted with one-phase melting. T±P phase but rather depend upon the timescale and other experimental conditions.
Recommended publications
  • Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice
    Structural transformation in supercooled water controls the crystallization rate of ice. Emily B. Moore and Valeria Molinero* Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0580, USA. Contact Information for the Corresponding Author: VALERIA MOLINERO Department of Chemistry, University of Utah 315 South 1400 East, Rm 2020 Salt Lake City, UT 84112-0850 Phone: (801) 585-9618; fax (801)-581-4353 Email: [email protected] 1 One of water’s unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature T H≈232 K, yet the mechanism of ice crystallization—including the size and structure of critical nuclei—has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at T s≈225 K,1,2 so there may be a link between water’s thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T H. And while atomistic studies have captured water crystallization3, the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model4 in the supercooled regime around T H, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation.
    [Show full text]
  • TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # M3/Kg Kj/Kg Kj/Kg Kj/Kg K Sat
    720 Tables in SI Units TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # m3/kg kJ/kg kJ/kg kJ/kg K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Temp. Press. Liquid Vapor Liquid Vapor Liquid Evap. Vapor Liquid Vapor Temp. Њ v ϫ 3 v Њ C bar f 10 g uf ug hf hfg hg sf sg C O 2 .01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01 H 4 0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514 4 5 0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257 5 6 0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003 6 8 0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501 8 10 0.01228 1.0004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008 10 11 0.01312 1.0004 99.857 46.20 2390.5 46.20 2475.4 2521.6 0.1658 8.8765 11 12 0.01402 1.0005 93.784 50.41 2391.9 50.41 2473.0 2523.4 0.1806 8.8524 12 13 0.01497 1.0007 88.124 54.60 2393.3 54.60 2470.7 2525.3 0.1953 8.8285 13 14 0.01598 1.0008 82.848 58.79 2394.7 58.80 2468.3 2527.1 0.2099 8.8048 14 15 0.01705 1.0009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814 15 16 0.01818 1.0011 73.333 67.18 2397.4 67.19 2463.6 2530.8 0.2390 8.7582 16 17 0.01938 1.0012 69.044 71.38 2398.8 71.38 2461.2 2532.6 0.2535 8.7351 17 18 0.02064 1.0014 65.038 75.57 2400.2 75.58 2458.8 2534.4 0.2679 8.7123 18 19 0.02198 1.0016 61.293 79.76 2401.6 79.77 2456.5 2536.2 0.2823 8.6897 19 20 0.02339 1.0018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672 20 21 0.02487 1.0020
    [Show full text]
  • Spinodal Lines and Equations of State: a Review
    10 l Nuclear Engineering and Design 95 (1986) 297-314 297 North-Holland, Amsterdam SPINODAL LINES AND EQUATIONS OF STATE: A REVIEW John H. LIENHARD, N, SHAMSUNDAR and PaulO, BINEY * Heat Transfer/ Phase-Change Laboratory, Mechanical Engineering Department, University of Houston, Houston, TX 77004, USA The importance of knowing superheated liquid properties, and of locating the liquid spinodal line, is discussed, The measurement and prediction of the spinodal line, and the limits of isentropic pressure undershoot, are reviewed, Means are presented for formulating equations of state and fundamental equations to predict superheated liquid properties and spinodal limits, It is shown how the temperature dependence of surface tension can be used to verify p - v - T equations of state, or how this dependence can be predicted if the equation of state is known. 1. Scope methods for making simplified predictions of property information, which can be applied to the full range of Today's technology, with its emphasis on miniaturiz­ fluids - water, mercury, nitrogen, etc. [3-5]; and predic­ ing and intensifying thennal processes, steadily de­ tions of the depressurizations that might occur in ther­ mands higher heat fluxes and poses greater dangers of mohydraulic accidents. (See e.g. refs. [6,7].) sending liquids beyond their boiling points into the metastable, or superheated, state. This state poses the threat of serious thermohydraulic explosions. Yet we 2. The spinodal limit of liquid superheat know little about its thermal properties, and cannot predict process behavior after a liquid becomes super­ heated. Some of the practical situations that require a 2.1. The role of the equation of state in defining the spinodal line knowledge the limits of liquid superheat, and the physi­ cal properties of superheated liquids, include: - Thennohydraulic explosions as might occur in nuclear Fig.
    [Show full text]
  • Subcritical Water Extraction
    Chapter 17 Subcritical Water Extraction A. Haghighi Asl and M. Khajenoori Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54993 1. Introduction Extraction always involves a chemical mass transfer from one phase to another. The principles of extraction are used to advantage in everyday life, for example in making juices, coffee and others. To reduce the use of organic solvent and improve the extraction methods of constituents of plant materials, new methods such as microwave assisted extraction (MAE), supercritical fluid extraction (SFE), accelerated solvent extraction (ASE) or pressurized liquid extraction (PLE) and subcritical water extraction (SWE), also called superheated water extraction or pressurized hot water extraction (PHWE), have been introduced [1-3]. SWE is a new and powerful technique at temperatures between 100 and 374oC and pressure high enough to maintain the liquid state (Fig.1) [4]. Unique properties of water are namely its disproportionately high boiling point for its mass, a high dielectric constant and high polarity [4]. As the temperature rises, there is a marked and systematic decrease in permittivity, an increase in the diffusion rate and a decrease in the viscosity and surface tension. In conse‐ quence, more polar target materials with high solubility in water at ambient conditions are extracted most efficiently at lower temperatures, whereas moderately polar and non-polar targets require a less polar medium induced by elevated temperature [5]. Based on the research works published in the recent years, it has been shown that the SWE is cleaner, faster and cheaper than the conventional extraction methods.
    [Show full text]
  • Source Term Models for Superheated Releases of Hazardous Materials
    Source Term Models for Superheated Releases of Hazardous Materials Thesis submitted for the Degree of Doctor of Philosophy of the University of Wales Cardiff by Vincent Martin Cleary BEng (Hons) September 2008 UMI Number: U585126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585126 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Chapter 1 Introduction Abstract Source terms models for superheated releases of hazardous liquefied chemicals such as LPG have been developed, governing both upstream and downstream conditions. Water was utilised as the model fluid, not least for reasons of safety, but also for its ability to be stored at conditions that ensure it is superheated on release to atmosphere. Several studies have found that at low superheat jet break-up is analogous to mechanical break-up under sub-cooled conditions. Hence, a non-dimensionalised SMD correlation for sub-cooled liquid jets in the atomisation regime has been developed, based on data measured using a Phase Doppler Anemometry (PDA) system, for a broad range of initial conditions. Droplet SMD has been found to correlate with the nozzle aspect ratio and two non- dimensionalised groups i.e.
    [Show full text]
  • Rapid Evaporation at the Superheat Limit of Methanol, Ethanol, Butanol and N-Heptane on Platinum films Supported by Low-Stress Sin Membranes ⇑ Eric J
    International Journal of Heat and Mass Transfer 101 (2016) 707–718 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes ⇑ Eric J. Ching a,1, C. Thomas Avedisian a, , Richard C. Cavicchi b, Do Hyun Chung a,2, Kyupaeck J. Rah a,3, Michael J. Carrier b a Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA b Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA article info abstract Article history: The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on Received 30 December 2015 stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the Received in revised form 3 April 2016 membranes for times ranging from 1 lsto10ls. The results show that the nucleation temperatures Accepted 3 April 2016 increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 108 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater mem- Keywords: branes were found to be robust for millions of pulse cycles, which suggests their potential in applications Homogeneous nucleation for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable Boiling Superheat limit liquids. Bubble nucleation Ó 2016 Published by Elsevier Ltd.
    [Show full text]
  • Subcritical Water As a Tunable Solvent for Particle Engineering
    SUBCRITICAL WATER AS A TUNABLE SOLVENT FOR PARTICLE ENGINEERING By Adam Carr, B.E. (Chemical Engineering) A thesis submitted to the School of Chemical Engineering in partial fulfillment of the requirements of the degree: Doctor of Philosophy (PhD) The University of New South Wales May 2010 ABSTRACT In the research described in this thesis, an environmentally friendly technique for engineering the morphology of particles was developed. Active pharmaceutical ingredients (APIs) were used as model compounds to explore the potential of the new particle engineering technology. APIs were chosen because tuning the size and shape of drug particles can have pharmacokinetic benefits. The new technology used subcritical water (SBCW) as a solvent to dissolve APIs. By rapidly cooling a SBCW-API solution, the dissolved drug was rapidly precipitated, often with a narrow particle size distribution. Furthermore, it was shown that the morphology of the precipitated particles can be changed by altering several process variables. In order to develop a new precipitation technology, fundamental solubility data were required. Solubility data were collected for the model APIs; budesonide, griseofulvin, naproxen and pyrimethamine in SBCW from 100°C to 200°C. To ensure that the solubility results were reliable, data were also collected for anthracene, which were compared to published SBCW solubility data. The solubility of budesonide in SBCW was low. Organic solvents were added to the SBCW-budesonide solution to increase the solubility of the API. A model that correlated the solubility of the solute in SBCW with the dielectric constant of the solvent was developed. Model outputs were within 5% of the experimental solubility values.
    [Show full text]
  • Thermal Properties of Water
    Forschungszentrum Karlsruhe Technik und Umwelt issenscnatiiK FZKA 5588 Thermal Properties of Water K. Thurnay Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung Juni 1995 Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 5588 Thermal Properties of Water K.Thurnay Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung Forschungszentrum Karlsruhe GmbH, Karlsruhe 1995 Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe ISSN 0947-8620 Abstract The report describes AQUA, a code developed in the Forschungszentrum Karlsruhe to calculate thermal properties of the water in steam explosions. AQUA bases on the H.G.K, water code, yet supplies - besides of the pressure and heat capacity functions - also the thermal conductivity, viscosity and the surface tension. AQUA calculates in a new way the thermal properties in the two phase region, which is more realistic as the one used in the H.G.K, code. AQUA is equipped with new, fast runnig routines to convert temperature-density dependent states into temperature-pressure ones. AQUA has a version to be used on line and versions adapted for batch calculations. A complete description of the code is included. Thermische Eigenschaften des Wassers. Zusammenfassung. Der Bericht befaßt sich mit dem Code AQUA. AQUA wurde im Forschungszentrum Karlsruhe entwickelt um bei der Untersuchung von Dampfexplosionen die thermischen Eigenschaften des Wassers zu liefern. AQUA ist eine Fortentwicklung des H.G.K.-Wassercodes, aber er berechnet - neben Druck- und Wärmeeigenschaften - auch die Wärmeleitfähigket, die Viskosität und die Oberflächenspannung. Im Zweiphasenge• biet beschreibt AQUA die thermischen Eigenschaften mit einer neuen Methode, die real• istischer ist, als das in der H.G.K.-Code dargebotene Verfahren.
    [Show full text]
  • Surface Boiling of Superheated Liquid
    o CH9700139 CO CD PAUL SCHERRER INSTITUT PSI Bericht Nr. 97-01 a Januar1997 ISSN 1019-0643 Labor fur Thermohydraulik Surface Boiling of Superheated Liquid Peter Reinke Paul Scherrer Institut CH - 5232 Villigen PSI Telefon 056 310 21 11 10 Telefax 056 310 21 99 PSI Bericht Nr. 97-01 Surface Boiling of Superheated Liquid Peter Reinke Januar1997 Surface Boiling of Superheated Liquid Peter Reinke This research work has been performed in-coope ration with Nuclear Engineering Laboratory of Energy Technique Institute ETH Zurich and Thermalhydraulics Laboratory of PSI, Wurenlingen and Villigen, and partially funded by a grant from the Swiss National Research Foundation. This report has been submitted in May 1996 to Mechanical Engineering Department of ETH Zurich, to fullfill the requirements for PH.D. Degree (Diss. ETHZ Nr. 11598) Prof. Dr. G. Yadigaroglu, examiner Prof. Dr. S. Banerjee, co-examiner Table of Contents Abstract ......... iv Kurzzusammenfassung ....... vi List of Figures ........ viii List of Tables ........ xii Nomenclature . xiii 1. Introduction ....... 1 2. Background and Motivation ..... 4 2.1 Thermodynamics of Superheated Liquids .... 4 2.2 Liquid-Vapor Phase-Change ..... 7 2.2.1 Classical Theory of Single Bubble Growth .... 8 2.2.2 Explosive Boiling at Limit of Superheat . 10 2.2.3 Various Hashing Phenomena . 12 2.2.4 Boiling Front Propagation in Bubbly Liquid . 13 2.2.5 Boiling Front Propagation without Bulk Nucleation . 14 2.3 Motivation for Studying Unconfined Releases . 17 2.4 Integral Studies of Unconfined Releases .... 20 2.5 Summary of Previous Findings . 21 2.6 Outline of Present Work ...... 22 3. Experimental Equipment, Methods and Fluids ..
    [Show full text]
  • Experimental Superheating of Water and Aqueous Solutions Kirill Shmulovich, Lionel Mercury, Régis Thiery, Claire Ramboz, Mouna El Mekki
    Experimental superheating of water and aqueous solutions Kirill Shmulovich, Lionel Mercury, Régis Thiery, Claire Ramboz, Mouna El Mekki To cite this version: Kirill Shmulovich, Lionel Mercury, Régis Thiery, Claire Ramboz, Mouna El Mekki. Experimental superheating of water and aqueous solutions. Geochimica et Cosmochimica Acta, Elsevier, 2009, 73, pp.2457-2470. 10.1016/j.gca.2009.02.006. insu-00371852 HAL Id: insu-00371852 https://hal-insu.archives-ouvertes.fr/insu-00371852 Submitted on 30 Mar 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Experimental superheating of water and aqueous solutions Kirill I. Shmulovicha Lionel Mercury b, c, Régis Thiéryd Claire Rambozb and Mouna El Mekkib aInstitute of Experimental Mineralogy, Russian Academy of Science, 142432 Chernogolovka, Russia bInstitut des Sciences de la Terre d’Orléans, UMR 6113 CNRS/Universités Orléans-Tours, 1A rue de la Férollerie, 45071 Orléans Cedex, France cUMR-CNRS 8148 “IDES”, Université Paris-Sud, bat. 504, 91405 Orsay, France dLaboratoire Magmas et Volcans, UMR 6524, CNRS/Clermont Université, 5 rue Kessler, 63038 Clermont-Ferrand Cedex, France Abstract The metastable superheated solutions are liquids in transitory thermodynamic equilibrium inside the stability domain of their vapor (whatever the temperature is).
    [Show full text]
  • THERMODYNAMICS PROPERTIES of PURE SUBSTANCES Pure Substance a Substance That Has a Fixed Chemical Composition Throughout Is Called Pure Substance
    Thermodynamics THERMODYNAMICS PROPERTIES OF PURE SUBSTANCES Pure Substance A substance that has a fixed chemical composition throughout is called pure substance. Water, helium carbon dioxide, nitrogen are examples. It does not have to be a single chemical element just as long as it is homogeneous throughout, like air. A mixture of phases of two or more substance is can still a pure substance if it is homogeneous, like ice and water (solid and liquid) or water and steam (liquid and gas). Vapor Vapor Liquid Liquid Water Air (Pure substance) (Not a pure substance because the composition of liquid air is different from the composition of vapor air) Phases of a Pure Substance There are three principle phases – solid, liquid and gas, but a substance can have several other phases within the principle phase. Examples include solid carbon (diamond and graphite) and iron (three solid phases). Nevertheless, thermodynamics deals with the primary phases only. In general: - Solids have strongest molecular bonds. - Solids are closely packed three dimensional crystals. - Their molecules do not move relative to each other - Intermediate molecular bond strength - Liquid molecular spacing is comparable to solids but their molecules can float about in groups. - There is molecular order within the groups - Weakest molecular bond strength. - Molecules in the gas phases are far apart, they have no ordered structure - The molecules move randomly and collide with each other. - Their molecules are at higher energy levels, they must release large amounts of energy to condense or freeze. THERMODYNAMICS 1 PROPERTIES OF PURE SUBSTANCES Thermodynamics Phase – Change Processes Of Pure Substances At this point, it is important to consider the liquid to solid phase change process.
    [Show full text]
  • Extreme Liquid Superheating and Homogeneous Bubble Nucleation in a Solid State Nanopore
    Extreme Liquid Superheating and Homogeneous Bubble Nucleation in a Solid State Nanopore The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Levine, Edlyn Victoria. 2016. Extreme Liquid Superheating and Homogeneous Bubble Nucleation in a Solid State Nanopore. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493497 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Extreme Liquid Superheating and Homogeneous Bubble Nucleation in a Solid State Nanopore a dissertation presented by Edlyn Victoria Levine to The School of Engineering and Applied Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Applied Physics Harvard University Cambridge, Massachusetts April 2016 ©2016 – Edlyn Victoria Levine all rights reserved. Thesis advisor: Professor Jene A. Golovchenko Author: Edlyn Victoria Levine Extreme Liquid Superheating and Homogeneous Bubble Nucleation in a Solid State Nanopore Abstract This thesis explains how extreme superheating and single bubble nucleation can be achieved in an electrolytic solution within a solid state nanopore. A highly focused ionic current, induced to flow through the pore by modest voltage biases, leads to rapid Joule heating of the electrolyte in the nanopore. At sufficiently high current densities, temperatures near the thermodynamic limit of superheat are achieved, ultimately leading to nucleation of a vapor bubble within the nanopore.
    [Show full text]