Centroids Introduction • the Earth Exerts a Gravitational Force on Each of the Particles Forming a Body

Total Page:16

File Type:pdf, Size:1020Kb

Centroids Introduction • the Earth Exerts a Gravitational Force on Each of the Particles Forming a Body Centroids Introduction • The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body. • The centroid of an area is analogous to the center of gravity of a body. The concept of the first moment of an area is used to locate the centroid. 5 - 2 Centroids • Centroid of mass – (a.k.a. Center of mass) – (a.k.a. Center of weight) – (a.k.a. Center of gravity) • For a solid, the point where the distributed mass is centered • Centroid of volume, Centroid of area xM xm x dm yM ym y dm Center of Gravity of a 2D Body • Center of gravity of a plate • Center of gravity of a wire M y xW xW x dW M y yW yW y dW 5 - 7 Centroids &First Moments of Areas & Lines • Centroid of an area • Centroid of a line xW x dW xgM g x dM xW x dW M V tA) dM dV tdA x La x adL xAt x tdA xL x dL xA x dA Q y yL y dL first moment with respect to y yA y dA Q x first moment with respect to x 5 - 8 First Moments of Areas and Lines • An area is symmetric with respect to an axis BB’ if for every point P there exists a point P’ such that PP’ is perpendicular to BB’ and is divided into two equal parts by BB’. • The first moment of an area with respect to a line of symmetry is zero. • If an area possesses a line of symmetry, its centroid lies on that axis • If an area possesses two lines of symmetry, its centroid lies at their intersection. • An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA’ of equal area at (-x,-y). • The centroid of the area coincides with the center of symmetry. 5 - 9 Centroids of Common Shapes of Areas 5 - 10 Centroids of Common Shapes of Lines 5 - 11 Composite Plates and Areas • Composite weight X W xW Y W yW • Composite area X A x A Y A y A 5 - 12 Sample Problem 5.1 SOLUTION: • Divide the area into a triangle, rectangle, and semicircle with a circular cutout. • Calculate the first moments of each area with respect to the axes. • Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the For the plane area shown, determine circular cutout. the first moments with respect to the x • Compute the coordinates of the area and y axes and the location of the centroid by dividing the first moments by centroid. the total area. 5 - 13 Sample Problem 5.1 3 3 • Find the total area and first moments of the Qx 506.210 mm triangle, rectangle, and semicircle. Subtract the Q 757.7103 mm 3 area and first moment of the circular cutout. y 5 - 14 Sample Problem • Compute the coordinates of the area centroid by dividing the first moments by the total area. x A 757.7103 mm 3 X A 13.828103 mm 2 X 54.8 mm yA 506.2103 mm 3 Y A 13.828103 mm 2 Y 36.6 mm 5 - 15 Determination of Centroids by • Double integration to find the first moment xA xdA x dxdy xelIntegrationdA may be avoided by defining dA as a thin yA ydA y dxdy yel dA rectangle or strip. xA xel dA xA xel dA xA xel dA x ydx a x 2r 1 2 a xdx cos r d 2 3 2 yA yel dA yA y dA y el yA yel dA ydx 2 ya xdx 2r 1 2 sin r d 3 2 5 - 16 Sample Problem 5.4 SOLUTION: • Determine the constant k. • Evaluate the total area. • Using either vertical or horizontal strips, perform a single integration to find the first moments. Determine by direct integration the location of the centroid of a parabolic • Evaluate the centroid coordinates. spandrel. 5 - 17 Sample Problem 5.4 SOLUTION: • Determine the constant k. y k x2 b b k a2 k a2 b a y x2 or x y1 2 a2 b1 2 • Evaluate the total area. A dA a 3 a b 2 b x y dx x dx 2 2 3 0 a a 0 ab 3 5 - 18 Sample Problem 5.4 • Using vertical strips, perform a single integration to find the first moments. a b Q x dA xydx x x2 dx y el 2 0 a a b x4 a2b 2 4 4 a 0 2 y a 1 b Q y dA ydx x2 dx x el 2 2 0 2 a a b2 x5 ab2 4 5 10 2a 0 5 - 19 Sample Problem 5.4 • Or, using horizontal strips, perform a single integration to find the first moments. a x b a2 x2 Qy xel dA a xdy dy 2 0 2 1 b a2 a2b a2 ydy 2 0 b 4 a 1 2 Qx yel dA ya xdy ya y dy b1 2 b a ab2 ay y3 2 dy 1 2 0 b 10 5 - 20 Sample Problem 5.4 • Evaluate the centroid coordinates. xA Qy ab a2b 3 x x a 3 4 4 yA Qx ab ab2 3 y y b 3 10 10 5 - 21 Theorems of Pappus-Guldinus • Surface of revolution is generated by rotating a plane curve about a fixed axis. • Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation. A 2 yL 5 - 22 Theorems of Pappus-Guldinus • Body of revolution is generated by rotating a plane area about a fixed axis. • Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation. V 2 yA 5 - 23 Sample Problem 5.7 SOLUTION: • Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section. • Multiply by density and acceleration to get the mass and acceleration. The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is determine the mass and weight of the rim. 7.85103 kg m3 5 - 24 Sample Problem 5.7 SOLUTION: • Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section. • Multiply by density and acceleration to get the mass and acceleration. 3 3 6 3 9 3 3 m V 7.8510 kg m 7.6510 mm 10 m mm m 60.0 kg W mg 60.0 kg 9.81 m s2 W 589 N 5 - 25 Distributed Loads on Beams L • A distributed load is represented by plotting the load W wdx dA A per unit length, w (N/m) . The total load is equal to 0 the area under the load curve. OPW xdW • A distributed load can be replace by a concentrated L load with a magnitude equal to the area under the OPA xdA xA load curve and a line of action passing through the 0 area centroid. 5 - 26 Sample Problem 5.9 SOLUTION: • The magnitude of the concentrated load is equal to the total load or the area under the curve. • The line of action of the concentrated load passes through the centroid of the area under the curve. • Determine the support reactions by A beam supports a distributed load as summing moments about the beam shown. Determine the equivalent ends. concentrated load and the reactions at the supports. 5 - 27 Sample Problem 5.9 SOLUTION: • The magnitude of the concentrated load is equal to the total load or the area under the curve. F 18.0 kN • The line of action of the concentrated load passes through the centroid of the area under the curve. 63 kN m X X 3.5 m 18 kN 5 - 28 Sample Problem 5.9 • Determine the support reactions by summing moments about the beam ends. M A 0 : By 6 m 18 kN 3.5 m 0 By 10.5 kN M B 0 : Ay 6 m 18 kN 6 m 3.5 m 0 Ay 7.5 kN 5 - 29 Center of Gravity of a 3D Body: Centroid of a Volume • Center of gravity G • Results are independent of body orientation, W j W j xW xdW yW ydW zW zdW • For homogeneous bodies, rG W j r W j W V and dW dV rGW j rW j xV xdV yV ydV zV zdV W dW rGW rdW 5 - 30 Centroids of Common 3D Shapes 5 - 31 Composite 3D Bodies • Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts. X W xW Y W yW Z W zW • For homogeneous bodies, X V xV Y V yV Z V zV 5 - 32 Sample Problem 5.12 SOLUTION: • Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders. Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.
Recommended publications
  • Center of Mass and Centroids
    Center of Mass and Centroids Center of Mass A body of mass m in equilibrium under the action of tension in the cord, and resultant W of the gravitational forces acting on all particles of the body. -The resultant is collinear with the cord Suspend the body at different points -Dotted lines show lines of action of the resultant force in each case. -These lines of action will be concurrent at a single point G As long as dimensions of the body are smaller compared with those of the earth. - we assume uniform and parallel force field due to the gravitational attraction of the earth. The unique Point G is called the Center of Gravity of the body (CG) ME101 - Division III Kaustubh Dasgupta 1 Center of Mass and Centroids Determination of CG - Apply Principle of Moments Moment of resultant gravitational force W about any axis equals sum of the moments about the same axis of the gravitational forces dW acting on all particles treated as infinitesimal elements. Weight of the body W = ∫dW Moment of weight of an element (dW) @ x-axis = ydW Sum of moments for all elements of body = ∫ydW From Principle of Moments: ∫ydW = ӯ W Moment of dW @ z axis??? xdW ydW zdW x y z = 0 or, 0 W W W Numerator of these expressions represents the sum of the moments; Product of W and corresponding coordinate of G represents the moment of the sum Moment Principle. ME101 - Division III Kaustubh Dasgupta 2 Center of Mass and Centroids xdW ydW zdW x y z Determination of CG W W W Substituting W = mg and dW = gdm xdm ydm zdm x y z m m m In vector notations:
    [Show full text]
  • Dynamics of Urban Centre and Concepts of Symmetry: Centroid and Weighted Mean
    Jong-Jin Park Research École Polytechnique Fédérale de Dynamics of Urban Centre and Lausanne (EPFL) Laboratoire de projet urbain, Concepts of Symmetry: territorial et architectural (UTA) Centroid and Weighted Mean BP 4137, Station 16 CH-1015 Lausanne Presented at Nexus 2010: Relationships Between Architecture SWITZERLAND and Mathematics, Porto, 13-15 June 2010. [email protected] Abstract. The city is a kind of complex system being capable Keywords: evolving structure, of auto-organization of its programs and adapts a principle of urban system, programmatic economy in its form generating process. A new concept of moving centre, centroid, dynamic centre in urban system, called “the programmatic weighted mean, symmetric moving centre”, can be used to represent the successive optimization, successive appearances of various programs based on collective facilities equilibrium and their potential values. The absolute central point is substituted by a magnetic field composed of several interactions among the collective facilities and also by the changing value of programs through time. The center moves continually into this interactive field. Consequently, we introduce mathematical methods of analysis such as “the centroid” and “the weighted mean” to calculate and visualize the dynamics of the urban centre. These methods heavily depend upon symmetry. We will describe and establish the moving centre from a point of view of symmetric optimization that answers the question of the evolution and successive equilibrium of the city. In order to explain and represent dynamic transformations in urban area, we tested this programmatic moving center in unstable and new urban environments such as agglomeration areas around Lausanne in Switzerland.
    [Show full text]
  • Chapter 5 –3 Center and Centroids
    ENGR 0135 Chapter 5 –3 Center and centroids Department of Mechanical Engineering Centers and Centroids Center of gravity Center of mass Centroid of volume Centroid of area Centroid of line Department of Mechanical Engineering Center of Gravity A point where all of the weight could be concentrated without changing the external effects of the body To determine the location of the center, we may consider the weight system as a 3D parallel force system Department of Mechanical Engineering Center of Gravity – discrete bodies The total weight isWW i The location of the center can be found using the total moments 1 M Wx W x xW x yz G i i G W i i 1 M Wy W y yW y zx G i i G W i i 1 M Wz W z z W z xy G i i G W i i Department of Mechanical Engineering Center of Gravity – continuous bodies The total weight Wis dW The location of the center can be found using the total moments 1 M Wx xdW x xdW yz G G W 1 M Wy ydW y ydW zx G G W 1 M Wz zdW z zdW xy G G W Department of Mechanical Engineering Center of Mass A point where all of the mass could be concentrated It is the same as the center of gravity when the body is assumed to have uniform gravitational force Mass of particles 1 n 1 n 1 n n xC xi m i C y yi m i C z z mi i m i m m i m i m i i Continuous mass 1 1 1 x x dm yy dmz z dm m dm G m G m G m Department of Mechanical Engineering Example:Example: CenterCenter ofof discretediscrete massmass List the masses and the coordinates of their centroids in a table Compute the first moment of each mass (relative
    [Show full text]
  • Centroids by Composite Areas.Pptx
    Centroids Method of Composite Areas A small boy swallowed some coins and was taken to a hospital. When his grandmother telephoned to ask how he was a nurse said 'No change yet'. Centroids ¢ Previously, we developed a general formulation for finding the centroid for a series of n areas n xA ∑ ii i=1 x = n A ∑ i i=1 2 Centroids by Composite Areas Monday, November 12, 2012 1 Centroids ¢ xi was the distance from the y-axis to the local centroid of the area Ai n xA ∑ ii i=1 x = n A ∑ i i=1 3 Centroids by Composite Areas Monday, November 12, 2012 Centroids ¢ If we can break up a shape into a series of smaller shapes that have predefined local centroid locations, we can use this formula to locate the centroid of the composite shape n xA ∑ ii i=1 x = n A ∑ i 4 Centroids by Composite Areas i=1 Monday, November 12, 2012 2 Centroid by Composite Bodies ¢ There is a table in the back cover of your book that gives you the location of local centroids for a select group of shapes ¢ The point labeled C is the location of the centroid of that shape. 5 Centroids by Composite Areas Monday, November 12, 2012 Centroid by Composite Bodies ¢ Please note that these are local centroids, they are given in reference to the x and y axes as shown in the table. 6 Centroids by Composite Areas Monday, November 12, 2012 3 Centroid by Composite Bodies ¢ For example, the centroid location of the semicircular area has the y-axis through the center of the area and the x-axis at the bottom of the area ¢ The x-centroid would be located at 0 and the y-centroid would be located
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Archimedes and the Arbelos1 Bobby Hanson October 17, 2007
    Archimedes and the Arbelos1 Bobby Hanson October 17, 2007 The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. — G.H. Hardy, A Mathematician’s Apology ACBr 1 − r Figure 1. The Arbelos Problem 1. We will warm up on an easy problem: Show that traveling from A to B along the big semicircle is the same distance as traveling from A to B by way of C along the two smaller semicircles. Proof. The arc from A to C has length πr/2. The arc from C to B has length π(1 − r)/2. The arc from A to B has length π/2. ˜ 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/BMC6/ps0506/ArbelosBMC.pdf . 1 2 If we draw the line tangent to the two smaller semicircles, it must be perpendicular to AB. (Why?) We will let D be the point where this line intersects the largest of the semicircles; X and Y will indicate the points of intersection with the line segments AD and BD with the two smaller semicircles respectively (see Figure 2). Finally, let P be the point where XY and CD intersect. D X P Y ACBr 1 − r Figure 2 Problem 2. Now show that XY and CD are the same length, and that they bisect each other.
    [Show full text]
  • Lesson 20: Composite Area Problems
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 20 7•3 Lesson 20: Composite Area Problems Student Outcomes . Students find the area of regions in the coordinate plane with polygonal boundaries by decomposing the plane into triangles and quadrilaterals, including regions with polygonal holes. Students find composite areas of regions in the coordinate plane by decomposing the plane into familiar figures (triangles, quadrilaterals, circles, semicircles, and quarter circles). Lesson Notes In Lessons 17 through 20, students learned to find the areas of various regions, including quadrilaterals, triangles, circles, semicircles, and those plotted on coordinate planes. In this lesson, students use prior knowledge to use the sum and/or difference of the areas to find unknown composite areas. Classwork Example 1 (5 minutes) Scaffolding: For struggling students, display Example 1 posters around the room displaying the visuals and the Find the composite area of the shaded region. Use ퟑ. ퟏퟒ for 흅. formulas of the area of a circle, a triangle, and a quadrilateral for reference. Allow students to look at the problem and find the area independently before solving as a class. What information can we take from the image? Two circles are on the coordinate plane. The diameter of the larger circle is 6 units, and the diameter of MP.1 the smaller circle is 4 units. How do we know what the diameters of the circles are? We can count the units along the diameter of the circles, or we can subtract the coordinate points to find the length of the diameter. Lesson 20: Composite Area Problems 283 This work is derived from Eureka Math ™ and licensed by Great Minds.
    [Show full text]
  • NOTES Centroids Constructed Graphically
    NOTES CentroidsConstructed Graphically TOM M. APOSTOL MAMIKON A. MNATSAKANIAN Project MATHEMATICS! California Instituteof Technology Pasadena, CA 91125-0001 [email protected] [email protected] The centroid of a finite set of points Archimedes (287-212 BC), regarded as the greatest mathematician and scientist of ancient times, introduced the concept of center of gravity. He used it in many of his works, including the stability of floating bodies, ship design, and in his discovery that the volume of a sphere is two-thirds that of its cir- cumscribing cylinder. It was also used by Pappus of Alexandria in the 3rd century AD in formulating his famous theorems for calculating volume and surface area of solids of revolution. Today a more general concept, center of mass, plays an important role in Newtonian mechanics. Physicists often treat a large body, such as a planet or sun, as a single point (the center of mass) where all the mass is concentrated. In uniform symmetric bodies it is identified with the center of symmetry. This note treats the center of mass of a finite number of points, defined as follows. Given n points rl, r2, ..., rn, regarded as position vectors in Euclidean m-space, rela- tive to some origin 0, let wl, w2, ..., Wnbe n positive numbers regarded as weights attached to these points. The center of mass is the position vector c defined to be the weighted average given by 1 n C=- wkrk, (1) n k=1 where Wnis the sum of the weights, n Wn= wk. (2) k=l When all weights are equal, the center of mass c is called the centroid.
    [Show full text]
  • Chapter 6 the Arbelos
    Chapter 6 The arbelos 6.1 Archimedes’ theorems on the arbelos Theorem 6.1 (Archimedes 1). The two circles touching CP on different sides and AC CB each touching two of the semicircles have equal diameters AB· . P W1 W2 A O1 O C O2 B A O1 O C O2 B Theorem 6.2 (Archimedes 2). The diameter of the circle tangent to all three semi- circles is AC CB AB · · . AC2 + AC CB + CB2 · We shall consider Theorem ?? in ?? later, and for now examine Archimedes’ wonderful proofs of the more remarkable§ Theorems 6.1 and 6.2. By synthetic reasoning, he computed the radii of these circles. 1Book of Lemmas, Proposition 5. 2Book of Lemmas, Proposition 6. 602 The arbelos 6.1.1 Archimedes’ proof of the twin circles theorem In the beginning of the Book of Lemmas, Archimedes has established a basic proposition 3 on parallel diameters of two tangent circles. If two circles are tangent to each other (internally or externally) at a point P , and if AB, XY are two parallel diameters of the circles, then the lines AX and BY intersect at P . D F I W1 E H W2 G A O C B Figure 6.1: Consider the circle tangent to CP at E, and to the semicircle on AC at G, to that on AB at F . If EH is the diameter through E, then AH and BE intersect at F . Also, AE and CH intersect at G. Let I be the intersection of AE with the outer semicircle. Extend AF and BI to intersect at D.
    [Show full text]
  • Barycentric Coordinates in Triangles
    Computational Geometry Lab: BARYCENTRIC COORDINATES IN TRIANGLES John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/∼jburkardt/presentations/cg lab barycentric triangles.pdf August 28, 2018 1 Introduction to this Lab In this lab we investigate a natural coordinate system for triangles called the barycentric coordinate system. The barycentric coordinate system gives us a kind of standard chart, which applies to all triangles, and allows us to determine the positions of points independently of the particular geometry of a given triangle. Our path to this coordinate system will identify a special reference triangle for which the standard (x; y) coordinate system is essentially identical to the barycentric coordinate system. We begin with some simple geometric questions, including determining whether a point lies to the left or right of a line. If we can answer that question, we can also determine if a point lies inside or outside a triangle. Once we are comfortable determining the (signed) distances of a point from each side of the triangle, we will discover that the relative distances can be used to form the barycentric coordinate system. This barycentric coordinate system, in turn, will provide the correspondence or mapping that allows us to establish a 1-1 and onto relationship between two triangles. The barycentric coordinate system is useful when defining the basis functions used in the finite element method, which is the subject of a separate lab. 2 Signed Distance From a Line In order to understand the geometry of triangles, we are going to need to take a small detour into the simple world of points and lines.
    [Show full text]
  • Affine Invariant Points
    Affine invariant points. ∗ Mathieu Meyer, Carsten Sch¨uttand Elisabeth M. Werner y Abstract We answer in the negative a question by Gr¨unbaum who asked if there exists a finite basis of affine invariant points. We give a positive answer to another question by Gr¨unbaum about the \size" of the set of all affine invariant points. Related, we show that the set of all convex bodies K, for which the set of affine invariant points n is all of R , is dense in the set of convex bodies. Crucial to establish these results, are new affine invariant points, not previously considered in the literature. 1 Introduction. A number of highly influential works (see, e.g., [8, 10, 12], [14]-[18], [20]-[31], [37, 44, 51, 52, 58]) has directed much of the research in the theory of convex bodies to the study of the affine geometry of these bodies. Even questions that had been considered Euclidean in nature, turned out to be affine problems - among them the famous Busemann-Petty Problem (finally laid to rest in [6, 9, 56, 57]). The affine structure of convex bodies is closely related to the symmetry structure of the bodies. From an affine point of view, ellipsoids are the most symmetric convex bodies, and simplices are considered to be among the least symmetric ones. This is reflected in many affine invariant inequalities (we give examples below) where ellipsoids and simplices are the extremal cases. However, simplices have many affine symmetries. Therefore, a more systematic study for symmetry of convex bodies is needed. Gr¨unbaum, in his seminal paper [13], initiated such a study.
    [Show full text]
  • Barycentric Coordinates in Olympiad Geometry
    Barycentric Coordinates in Olympiad Geometry Max Schindler∗ Evan Cheny July 13, 2012 I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abstract In this paper we present a powerful computational approach to large class of olympiad geometry problems{ barycentric coordinates. We then extend this method using some of the techniques from vector computations to greatly extend the scope of this technique. Special thanks to Amir Hossein and the other olympiad moderators for helping to get this article featured: I certainly did not have such ambitious goals in mind when I first wrote this! ∗Mewto55555, Missouri. I can be contacted at igoroogenfl[email protected]. yv Enhance, SFBA. I can be reached at [email protected]. 1 Contents Title Page 1 1 Preliminaries 4 1.1 Advantages of barycentric coordinates . .4 1.2 Notations and Conventions . .5 1.3 How to Use this Article . .5 2 The Basics 6 2.1 The Coordinates . .6 2.2 Lines . .6 2.2.1 The Equation of a Line . .6 2.2.2 Ceva and Menelaus . .7 2.3 Special points in barycentric coordinates . .7 3 Standard Strategies 9 3.1 EFFT: Perpendicular Lines . .9 3.2 Distance Formula . 11 3.3 Circles . 11 3.3.1 Equation of the Circle . 11 4 Trickier Tactics 12 4.1 Areas and Lines . 12 4.2 Non-normalized Coordinates . 13 4.3 O, H, and Strong EFFT . 13 4.4 Conway's Formula . 14 4.5 A Few Final Lemmas . 15 5 Example Problems 16 5.1 USAMO 2001/2 .
    [Show full text]