Introduction to Time Series Analysis. Lecture 19

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Time Series Analysis. Lecture 19 Introduction to Time Series Analysis. Lecture 19. 1. Review: Spectral density estimation, sample autocovariance. 2. The periodogram and sample autocovariance. 3. Asymptotics of the periodogram. 1 Estimating the Spectrum: Outline We have seen that the spectral density gives an alternative view of • stationary time series. Given a realization x ,...,x of a time series, how can we estimate • 1 n the spectral density? One approach: replace γ( ) in the definition • · ∞ f(ν)= γ(h)e−2πiνh, h=−∞ with the sample autocovariance γˆ( ). · Another approach, called the periodogram: compute I(ν), the squared • modulus of the discrete Fourier transform (at frequencies ν = k/n). 2 Estimating the spectrum: Outline These two approaches are identical at the Fourier frequencies ν = k/n. • The asymptotic expectation of the periodogram I(ν) is f(ν). We can • derive some asymptotic properties, and hence do hypothesis testing. Unfortunately, the asymptotic variance of I(ν) is constant. • It is not a consistent estimator of f(ν). 3 Review: Spectral density estimation If a time series X has autocovariance γ satisfying { t} ∞ γ(h) < , then we define its spectral density as h=−∞ | | ∞ ∞ f(ν)= γ(h)e−2πiνh h=−∞ for <ν< . −∞ ∞ 4 Review: Sample autocovariance Idea: use the sample autocovariance γˆ( ), defined by · n−|h| 1 γˆ(h)= (x x¯)(x x¯), for n<h<n, n t+|h| − t − − t=1 as an estimate of the autocovariance γ( ), and then use · n−1 fˆ(ν)= γˆ(h)e−2πiνh h=−n+1 for 1/2 ν 1/2. − ≤ ≤ 5 Discrete Fourier transform For a sequence (x1,...,xn), define the discrete Fourier transform (DFT) as (X(ν0),X(ν1),...,X(νn−1)), where 1 n X(ν )= x e−2πiνkt, k √n t t=1 and ν = k/n (for k = 0, 1,...,n 1) are called the Fourier frequencies. k − (Think of ν : k = 0,...,n 1 as the discrete version of the frequency { k − } range ν [0, 1].) ∈ First, let’s show that we can view the DFT as a representation of x in a different basis, the Fourier basis. 6 Discrete Fourier transform Consider the space Cn of vectors of n complex numbers, with inner product a,b = a∗b, where a∗ is the complex conjugate transpose of the vector a Cn. ∈ Suppose that a set φ : j = 0, 1,...,n 1 of n vectors in Cn are { j − } orthonormal: 1 if j = k, φj,φk = 0 otherwise. Then these φ span the vector space Cn, and so for any vector x, we can { j} write x in terms of this new orthonormal basis, n−1 x = φ , x φ . (picture) j j j=0 7 Discrete Fourier transform Consider the following set of n vectors in Cn: 1 ′ e = e2πiνj , e2πi2νj ,...,e2πinνj : j = 0,...,n 1 . j √n − It is easy to check that these vectors are orthonormal: 1 n 1 n t e , e = e2πit(νk−νj ) = e2πi(k−j)/n j k n n t=1 t=1 1 if j = k, = 2πi(k−j)/n n 1 2πi(k−j)/n 1−(e ) e − otherwise n 1−e2πi(k j)/n 1 if j = k, = 0 otherwise, 8 Discrete Fourier transform n t where we have used the fact that Sn = t=1 α satisfies αS = S + αn+1 α and so S = α(1 αn)/(1 α) for α = 1. n n − n − − So we can represent the real vector x =(x ,...,x )′ Cn in terms of this 1 n ∈ orthonormal basis, n−1 n−1 x = e , x e = X(ν )e . j j j j j=0 j=0 That is, the vector of discrete Fourier transform coefficients (X(ν0),...,X(νn−1)) is the representation of x in the Fourier basis. 9 Discrete Fourier transform An alternative way to represent the DFT is by separately considering the real and imaginary parts, 1 n X(ν )= e , x = e−2πitνj x j j √n t t=1 1 n 1 n = cos(2πtν )x i sin(2πtν )x √n j t − √n j t t=1 t=1 = X (ν ) iX (ν ), c j − s j where this defines the sine and cosine transforms, Xs and Xc, of x. 10 Periodogram The periodogram is defined as I(ν )= X(ν ) 2 j | j | 2 1 n = e−2πitνj x n t t=1 2 2 = X (νj )+ X (νj ). c s 1 n X (ν )= cos(2πtν )x , c j √n j t t=1 1 n X (ν )= sin(2πtν )x . s j √n j t t=1 11 Periodogram Since I(ν )= X(ν ) 2 for one of the Fourier frequencies ν = j/n (for j | j | j j = 0, 1,...,n 1), the orthonormality of the e implies that we can write − j ∗ n−1 n−1 x∗x = X(ν )e X(ν )e j j j j j=0 j=0 n−1 n−1 = X(ν ) 2 = I(ν ). | j | j j=0 j=0 For x¯ = 0, we can write this as 1 n 1 n−1 σˆ2 = x2 = I(ν ). x n t n j t=1 j=0 12 Periodogram This is the discrete analog of the identity 1/2 2 σx = γx(0) = fx(ν) dν. −1/2 (Think of I(νj) as the discrete version of f(ν) at the frequency νj = j/n, and think of (1/n) as the discrete version of dν.) νj · ν · 13 Estimating the spectrum: Periodogram Why is the periodogram at a Fourier frequency (that is, ν = νj ) the same as computing f(ν) from the sample autocovariance? Almost the same—they are not the same at ν = 0 when x¯ = 0. 0 But if either x¯ = 0, or we consider a Fourier frequency νj with j 1,...,n 1 , ... ∈ { − } 14 Estimating the spectrum: Periodogram 2 2 1 n 1 n I(ν )= e−2πitνj x = e−2πitνj (x x¯) j n t n t − t=1 t=1 n n 1 = e−2πitνj (x x¯) e2πitνj (x x¯) n t − t − t=1 t=1 1 1 n− = e−2πi(s−t)νj (x x¯)(x x¯)= γˆ(h)e−2πihνj , n s − t − s,t h=−n+1 n where the fact that ν = 0 implies e−2πitνj = 0 (we showed this j t=1 when we were verifying the orthonormality of the Fourier basis) has allowed us to subtract the sample mean in that case. 15 Asymptotic properties of the periodogram We want to understand the asymptotic behavior of the periodogram I(ν) at a particular frequency ν, as n increases. We’ll see that its expectation converges to f(ν). We’ll start with a simple example: Suppose that X1,...,Xn are i.i.d. N(0, σ2) (Gaussian white noise). From the definitions, 1 n 1 n X (ν )= cos(2πtν )x , X (ν )= sin(2πtν )x , c j √n j t s j √n j t t=1 t=1 we have that Xc(νj) and Xs(νj ) are normal, with EXc(νj )= EXs(νj ) = 0. 16 Asymptotic properties of the periodogram Also, σ2 n Var(X (ν )) = cos2(2πtν ) c j n j t=1 σ2 n σ2 = (cos(4πtν )+1)= . 2n j 2 t=1 2 Similarly, Var(Xs(νj )) = σ /2. 17 Asymptotic properties of the periodogram Also, σ2 n Cov(X (ν ),X (ν )) = cos(2πtν ) sin(2πtν ) c j s j n j j t=1 σ2 n = sin(4πtν ) = 0, 2n j t=1 Cov(Xc(νj),Xc(νk))=0 Cov(Xs(νj ),Xs(νk))=0 Cov(Xc(νj ),Xs(νk))=0. for any j = k. 18 Asymptotic properties of the periodogram 2 That is, if X1,...,Xn are i.i.d. N(0, σ ) 2 (Gaussian white noise; f(ν)= σ ), then the Xc(νj) and Xs(νj ) are all i.i.d. N(0, σ2/2). Thus, 2 2 I(ν )= X2(ν )+ X2(ν ) χ2. σ2 j σ2 c j s j ∼ 2 So for the case of Gaussian white noise, the periodogram has a chi-squared distribution that depends on the variance σ2 (which, in this case, is the spectral density). 19 Asymptotic properties of the periodogram Under more general conditions (e.g., normal X , or linear process X { t} { t} with rapidly decaying ACF), the Xc(νj ), Xs(νj ) are all asymptotically independent and N(0, f(νj)/2). Consider a frequency ν. For a given value of n, let νˆ(n) be the closest Fourier frequency (that is, νˆ(n) = j/n for a value of j that minimizes ν j/n ). As n increases, νˆ(n) ν, and (under the same conditions that | − | → ensure the asymptotic normality and independence of the sine/cosine (n) transforms), f(ˆν ) f(ν). (picture) → In that case, we have 2 2 d I(ˆν(n))= X2(ˆν(n))+ X2(ˆν(n)) χ2. f(ν) f(ν) c s → 2 20 Asymptotic properties of the periodogram Thus, f(ν) 2 EI(ˆν(n))= E X2(ˆν(n))+ X2(ˆν(n)) 2 f(ν) c s f(ν) E(Z2 + Z2)= f(ν), → 2 1 2 where Z1,Z2 are independent N(0, 1). Thus, the periodogram is asymptotically unbiased. 21 Introduction to Time Series Analysis. Lecture 19. 1. Review: Spectral density estimation, sample autocovariance. 2. The periodogram and sample autocovariance. 3. Asymptotics of the periodogram. 22.
Recommended publications
  • Kalman and Particle Filtering
    Abstract: The Kalman and Particle filters are algorithms that recursively update an estimate of the state and find the innovations driving a stochastic process given a sequence of observations. The Kalman filter accomplishes this goal by linear projections, while the Particle filter does so by a sequential Monte Carlo method. With the state estimates, we can forecast and smooth the stochastic process. With the innovations, we can estimate the parameters of the model. The article discusses how to set a dynamic model in a state-space form, derives the Kalman and Particle filters, and explains how to use them for estimation. Kalman and Particle Filtering The Kalman and Particle filters are algorithms that recursively update an estimate of the state and find the innovations driving a stochastic process given a sequence of observations. The Kalman filter accomplishes this goal by linear projections, while the Particle filter does so by a sequential Monte Carlo method. Since both filters start with a state-space representation of the stochastic processes of interest, section 1 presents the state-space form of a dynamic model. Then, section 2 intro- duces the Kalman filter and section 3 develops the Particle filter. For extended expositions of this material, see Doucet, de Freitas, and Gordon (2001), Durbin and Koopman (2001), and Ljungqvist and Sargent (2004). 1. The state-space representation of a dynamic model A large class of dynamic models can be represented by a state-space form: Xt+1 = ϕ (Xt,Wt+1; γ) (1) Yt = g (Xt,Vt; γ) . (2) This representation handles a stochastic process by finding three objects: a vector that l describes the position of the system (a state, Xt X R ) and two functions, one mapping ∈ ⊂ 1 the state today into the state tomorrow (the transition equation, (1)) and one mapping the state into observables, Yt (the measurement equation, (2)).
    [Show full text]
  • Lecture 19: Wavelet Compression of Time Series and Images
    Lecture 19: Wavelet compression of time series and images c Christopher S. Bretherton Winter 2014 Ref: Matlab Wavelet Toolbox help. 19.1 Wavelet compression of a time series The last section of wavelet leleccum notoolbox.m demonstrates the use of wavelet compression on a time series. The idea is to keep the wavelet coefficients of largest amplitude and zero out the small ones. 19.2 Wavelet analysis/compression of an image Wavelet analysis is easily extended to two-dimensional images or datasets (data matrices), by first doing a wavelet transform of each column of the matrix, then transforming each row of the result (see wavelet image). The wavelet coeffi- cient matrix has the highest level (largest-scale) averages in the first rows/columns, then successively smaller detail scales further down the rows/columns. The ex- ample also shows fine results with 50-fold data compression. 19.3 Continuous Wavelet Transform (CWT) Given a continuous signal u(t) and an analyzing wavelet (x), the CWT has the form Z 1 s − t W (λ, t) = λ−1=2 ( )u(s)ds (19.3.1) −∞ λ Here λ, the scale, is a continuous variable. We insist that have mean zero and that its square integrates to 1. The continuous Haar wavelet is defined: 8 < 1 0 < t < 1=2 (t) = −1 1=2 < t < 1 (19.3.2) : 0 otherwise W (λ, t) is proportional to the difference of running means of u over successive intervals of length λ/2. 1 Amath 482/582 Lecture 19 Bretherton - Winter 2014 2 In practice, for a discrete time series, the integral is evaluated as a Riemann sum using the Matlab wavelet toolbox function cwt.
    [Show full text]
  • Spectrum Estimation Using Periodogram, Bartlett and Welch
    Spectrum estimation using Periodogram, Bartlett and Welch Guido Schuster Slides follow closely chapter 8 in the book „Statistical Digital Signal Processing and Modeling“ by Monson H. Hayes and most of the figures and formulas are taken from there 1 Introduction • We want to estimate the power spectral density of a wide- sense stationary random process • Recall that the power spectrum is the Fourier transform of the autocorrelation sequence • For an ergodic process the following holds 2 Introduction • The main problem of power spectrum estimation is – The data x(n) is always finite! • Two basic approaches – Nonparametric (Periodogram, Bartlett and Welch) • These are the most common ones and will be presented in the next pages – Parametric approaches • not discussed here since they are less common 3 Nonparametric methods • These are the most commonly used ones • x(n) is only measured between n=0,..,N-1 • Ensures that the values of x(n) that fall outside the interval [0,N-1] are excluded, where for negative values of k we use conjugate symmetry 4 Periodogram • Taking the Fourier transform of this autocorrelation estimate results in an estimate of the power spectrum, known as the Periodogram • This can also be directly expressed in terms of the data x(n) using the rectangular windowed function xN(n) 5 Periodogram of white noise 32 samples 6 Performance of the Periodogram • If N goes to infinity, does the Periodogram converge towards the power spectrum in the mean squared sense? • Necessary conditions – asymptotically unbiased: – variance
    [Show full text]
  • Alternative Tests for Time Series Dependence Based on Autocorrelation Coefficients
    Alternative Tests for Time Series Dependence Based on Autocorrelation Coefficients Richard M. Levich and Rosario C. Rizzo * Current Draft: December 1998 Abstract: When autocorrelation is small, existing statistical techniques may not be powerful enough to reject the hypothesis that a series is free of autocorrelation. We propose two new and simple statistical tests (RHO and PHI) based on the unweighted sum of autocorrelation and partial autocorrelation coefficients. We analyze a set of simulated data to show the higher power of RHO and PHI in comparison to conventional tests for autocorrelation, especially in the presence of small but persistent autocorrelation. We show an application of our tests to data on currency futures to demonstrate their practical use. Finally, we indicate how our methodology could be used for a new class of time series models (the Generalized Autoregressive, or GAR models) that take into account the presence of small but persistent autocorrelation. _______________________________________________________________ An earlier version of this paper was presented at the Symposium on Global Integration and Competition, sponsored by the Center for Japan-U.S. Business and Economic Studies, Stern School of Business, New York University, March 27-28, 1997. We thank Paul Samuelson and the other participants at that conference for useful comments. * Stern School of Business, New York University and Research Department, Bank of Italy, respectively. 1 1. Introduction Economic time series are often characterized by positive
    [Show full text]
  • Time Series: Co-Integration
    Time Series: Co-integration Series: Economic Forecasting; Time Series: General; Watson M W 1994 Vector autoregressions and co-integration. Time Series: Nonstationary Distributions and Unit In: Engle R F, McFadden D L (eds.) Handbook of Econo- Roots; Time Series: Seasonal Adjustment metrics Vol. IV. Elsevier, The Netherlands N. H. Chan Bibliography Banerjee A, Dolado J J, Galbraith J W, Hendry D F 1993 Co- Integration, Error Correction, and the Econometric Analysis of Non-stationary Data. Oxford University Press, Oxford, UK Time Series: Cycles Box G E P, Tiao G C 1977 A canonical analysis of multiple time series. Biometrika 64: 355–65 Time series data in economics and other fields of social Chan N H, Tsay R S 1996 On the use of canonical correlation science often exhibit cyclical behavior. For example, analysis in testing common trends. In: Lee J C, Johnson W O, aggregate retail sales are high in November and Zellner A (eds.) Modelling and Prediction: Honoring December and follow a seasonal cycle; voter regis- S. Geisser. Springer-Verlag, New York, pp. 364–77 trations are high before each presidential election and Chan N H, Wei C Z 1988 Limiting distributions of least squares follow an election cycle; and aggregate macro- estimates of unstable autoregressive processes. Annals of Statistics 16: 367–401 economic activity falls into recession every six to eight Engle R F, Granger C W J 1987 Cointegration and error years and follows a business cycle. In spite of this correction: Representation, estimation, and testing. Econo- cyclicality, these series are not perfectly predictable, metrica 55: 251–76 and the cycles are not strictly periodic.
    [Show full text]
  • An Information Theoretic Algorithm for Finding Periodicities in Stellar Light Curves Pablo Huijse, Student Member, IEEE, Pablo A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 1, NO. 1, JANUARY 2012 1 An Information Theoretic Algorithm for Finding Periodicities in Stellar Light Curves Pablo Huijse, Student Member, IEEE, Pablo A. Estevez*,´ Senior Member, IEEE, Pavlos Protopapas, Pablo Zegers, Senior Member, IEEE, and Jose´ C. Pr´ıncipe, Fellow Member, IEEE Abstract—We propose a new information theoretic metric aligned to Earth. Periodic drops in brightness are observed for finding periodicities in stellar light curves. Light curves due to the mutual eclipses between the components of the are astronomical time series of brightness over time, and are system. Although most stars have at least some variation in characterized as being noisy and unevenly sampled. The proposed metric combines correntropy (generalized correlation) with a luminosity, current ground based survey estimations indicate periodic kernel to measure similarity among samples separated that 3% of the stars varying more than the sensitivity of the by a given period. The new metric provides a periodogram, called instruments and ∼1% are periodic [2]. Correntropy Kernelized Periodogram (CKP), whose peaks are associated with the fundamental frequencies present in the data. Detecting periodicity and estimating the period of stars is The CKP does not require any resampling, slotting or folding of high importance in astronomy. The period is a key feature scheme as it is computed directly from the available samples. for classifying variable stars [3], [4]; and estimating other CKP is the main part of a fully-automated pipeline for periodic light curve discrimination to be used in astronomical survey parameters such as mass and distance to Earth [5].
    [Show full text]
  • Generating Time Series with Diverse and Controllable Characteristics
    GRATIS: GeneRAting TIme Series with diverse and controllable characteristics Yanfei Kang,∗ Rob J Hyndman,† and Feng Li‡ Abstract The explosion of time series data in recent years has brought a flourish of new time series analysis methods, for forecasting, clustering, classification and other tasks. The evaluation of these new methods requires either collecting or simulating a diverse set of time series benchmarking data to enable reliable comparisons against alternative approaches. We pro- pose GeneRAting TIme Series with diverse and controllable characteristics, named GRATIS, with the use of mixture autoregressive (MAR) models. We simulate sets of time series using MAR models and investigate the diversity and coverage of the generated time series in a time series feature space. By tuning the parameters of the MAR models, GRATIS is also able to efficiently generate new time series with controllable features. In general, as a costless surrogate to the traditional data collection approach, GRATIS can be used as an evaluation tool for tasks such as time series forecasting and classification. We illustrate the usefulness of our time series generation process through a time series forecasting application. Keywords: Time series features; Time series generation; Mixture autoregressive models; Time series forecasting; Simulation. 1 Introduction With the widespread collection of time series data via scanners, monitors and other automated data collection devices, there has been an explosion of time series analysis methods developed in the past decade or two. Paradoxically, the large datasets are often also relatively homogeneous in the industry domain, which limits their use for evaluation of general time series analysis methods (Keogh and Kasetty, 2003; Mu˜nozet al., 2018; Kang et al., 2017).
    [Show full text]
  • Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.014752 Article Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation Dah-Jing Jwo1, *, Wei-Yeh Chang1 and I-Hua Wu2 1Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung, 202-24, Taiwan 2Innovative Navigation Technology Ltd., Kaohsiung, 801, Taiwan *Corresponding Author: Dah-Jing Jwo. Email: [email protected] Received: 01 October 2020; Accepted: 08 November 2020 Abstract: This paper revisits the characteristics of windowing techniques with various window functions involved, and successively investigates spectral leak- age mitigation utilizing the Welch method. The discrete Fourier transform (DFT) is ubiquitous in digital signal processing (DSP) for the spectrum anal- ysis and can be efciently realized by the fast Fourier transform (FFT). The sampling signal will result in distortion and thus may cause unpredictable spectral leakage in discrete spectrum when the DFT is employed. Windowing is implemented by multiplying the input signal with a window function and windowing amplitude modulates the input signal so that the spectral leakage is evened out. Therefore, windowing processing reduces the amplitude of the samples at the beginning and end of the window. In addition to selecting appropriate window functions, a pretreatment method, such as the Welch method, is effective to mitigate the spectral leakage. Due to the noise caused by imperfect, nite data, the noise reduction from Welch’s method is a desired treatment. The nonparametric Welch method is an improvement on the peri- odogram spectrum estimation method where the signal-to-noise ratio (SNR) is high and mitigates noise in the estimated power spectra in exchange for frequency resolution reduction.
    [Show full text]
  • Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage
    E3S Web of Conferences 94, 03001 (2019) https://doi.org/10.1051/e3sconf/20199403001 ISGNSS 2018 Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage Dah-Jing Jwo 1,*, I-Hua Wu 2 and Yi Chang1 1 Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University 2 Pei-Ning Rd., Keelung 202, Taiwan 2 Bison Electronics, Inc., Neihu District, Taipei 114, Taiwan Abstract. This paper investigates the windowing design and performance assessment for mitigation of spectral leakage. A pretreatment method to reduce the spectral leakage is developed. In addition to selecting appropriate window functions, the Welch method is introduced. Windowing is implemented by multiplying the input signal with a windowing function. The periodogram technique based on Welch method is capable of providing good resolution if data length samples are selected optimally. Windowing amplitude modulates the input signal so that the spectral leakage is evened out. Thus, windowing reduces the amplitude of the samples at the beginning and end of the window, altering leakage. The influence of various window functions on the Fourier transform spectrum of the signals was discussed, and the characteristics and functions of various window functions were explained. In addition, we compared the differences in the influence of different data lengths on spectral resolution and noise levels caused by the traditional power spectrum estimation and various window-function-based Welch power spectrum estimations. 1 Introduction knowledge. Due to computer capacity and limitations on processing time, only limited time samples can actually The spectrum analysis [1-4] is a critical concern in many be processed during spectrum analysis and data military and civilian applications, such as performance processing of signals, i.e., the original signals need to be test of electric power systems and communication cut off, which induces leakage errors.
    [Show full text]
  • Understanding the Lomb-Scargle Periodogram
    Understanding the Lomb-Scargle Periodogram Jacob T. VanderPlas1 ABSTRACT The Lomb-Scargle periodogram is a well-known algorithm for detecting and char- acterizing periodic signals in unevenly-sampled data. This paper presents a conceptual introduction to the Lomb-Scargle periodogram and important practical considerations for its use. Rather than a rigorous mathematical treatment, the goal of this paper is to build intuition about what assumptions are implicit in the use of the Lomb-Scargle periodogram and related estimators of periodicity, so as to motivate important practical considerations required in its proper application and interpretation. Subject headings: methods: data analysis | methods: statistical 1. Introduction The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982) is a well-known algorithm for de- tecting and characterizing periodicity in unevenly-sampled time-series, and has seen particularly wide use within the astronomy community. As an example of a typical application of this method, consider the data shown in Figure 1: this is an irregularly-sampled timeseries showing a single ob- ject from the LINEAR survey (Sesar et al. 2011; Palaversa et al. 2013), with un-filtered magnitude measured 280 times over the course of five and a half years. By eye, it is clear that the brightness of the object varies in time with a range spanning approximately 0.8 magnitudes, but what is not immediately clear is that this variation is periodic in time. The Lomb-Scargle periodogram is a method that allows efficient computation of a Fourier-like power spectrum estimator from such unevenly-sampled data, resulting in an intuitive means of determining the period of oscillation.
    [Show full text]
  • Monte Carlo Smoothing for Nonlinear Time Series
    Monte Carlo Smoothing for Nonlinear Time Series Simon J. GODSILL, Arnaud DOUCET, and Mike WEST We develop methods for performing smoothing computations in general state-space models. The methods rely on a particle representation of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular, novel techniques are presented for generation of sample realizations of historical state sequences. This is carried out in a forward-filtering backward-smoothing procedure that can be viewed as the nonlinear, non-Gaussian counterpart of standard Kalman filter-based simulation smoothers in the linear Gaussian case. Convergence in the mean squared error sense of the smoothed trajectories is proved, showing the validity of our proposed method. The methods are tested in a substantial application for the processing of speech signals represented by a time-varying autoregression and parameterized in terms of time-varying partial correlation coefficients, comparing the results of our algorithm with those from a simple smoother based on the filtered trajectories. KEY WORDS: Bayesian inference; Non-Gaussian time series; Nonlinear time series; Particle filter; Sequential Monte Carlo; State- space model. 1. INTRODUCTION and In this article we develop Monte Carlo methods for smooth- g(yt+1|xt+1)p(xt+1|y1:t ) p(xt+1|y1:t+1) = . ing in general state-space models. To fix notation, consider p(yt+1|y1:t ) the standard Markovian state-space model (West and Harrison 1997) Similarly, smoothing can be performed recursively backward in time using the smoothing formula xt+1 ∼ f(xt+1|xt ) (state evolution density), p(xt |y1:t )f (xt+1|xt ) p(x |y ) = p(x + |y ) dx + .
    [Show full text]
  • Optimal and Adaptive Subband Beamforming
    Optimal and Adaptive Subband Beamforming Principles and Applications Nedelko Grbi´c Ronneby, June 2001 Department of Telecommunications and Signal Processing Blekinge Institute of Technology, S-372 25 Ronneby, Sweden c Nedelko Grbi´c ISBN 91-7295-002-1 ISSN 1650-2159 Published 2001 Printed by Kaserntryckeriet AB Karlskrona 2001 Sweden v Preface This doctoral thesis summarizes my work in the field of array signal processing. Frequency domain processing comprise a significant part of the material. The work is mainly aimed at speech enhancement in communication systems such as confer- ence telephony and handsfree mobile telephony. The work has been carried out at Department of Telecommunications and Signal Processing at Blekinge Institute of Technology. Some of the work has been conducted in collaboration with Ericsson Mobile Communications and Australian Telecommunications Research Institute. The thesis consists of seven stand alone parts: Part I Optimal and Adaptive Beamforming for Speech Signals Part II Structures and Performance Limits in Subband Beamforming Part III Blind Signal Separation using Overcomplete Subband Representation Part IV Neural Network based Adaptive Microphone Array System for Speech Enhancement Part V Design of Oversampled Uniform DFT Filter Banks with Delay Specifica- tion using Quadratic Optimization Part VI Design of Oversampled Uniform DFT Filter Banks with Reduced Inband Aliasing and Delay Constraints Part VII A New Pilot-Signal based Space-Time Adaptive Algorithm vii Acknowledgments I owe sincere gratitude to Professor Sven Nordholm with whom most of my work has been conducted. There have been enormous amount of inspiration and valuable discussions with him. Many thanks also goes to Professor Ingvar Claesson who has made every possible effort to make my study complete and rewarding.
    [Show full text]