bioRxiv preprint doi: https://doi.org/10.1101/178863; this version posted August 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Heterogeneity Within the Frontoparietal Control Network and its Relationship to the Default and Dorsal Attention Networks Matthew L Dixona,*, Alejandro De La Vegab, Caitlin Millsa, Jessica Andrews-Hannac, R. Nathan Sprengd,e, Michael W. Colef, & Kalina Christoffa,g, * aDepartment of Psychology, University of British Columbia, Vancouver, British Columbia. bDepartment of Psychology, University of Texas, Austin, Texas c Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado. d Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal QC, Canada e Human Neuroscience Institute, Department of Human Development, Cornell University, Ithaca, New York. fCenter for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey. gCentre for Brain Health, University of British Columbia, Vancouver, British Columbia. *To whom correspondence should be addressed. E-mail:
[email protected];
[email protected] ABSTRACT The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, in order to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC the default network (DN) and the dorsal attentional network (DAN).