Here One Can Enjoy Delicious Local and Greek Recipes

Total Page:16

File Type:pdf, Size:1020Kb

Here One Can Enjoy Delicious Local and Greek Recipes Metamaterials 2016 Table of Contents Sponsors 3 Foreword 5 Preface 6 Welcome Message 7 Committees 8 Location 10 Conference Venue 12 Social Events 13 Session Matrix 14 Programme th Sunday, 18 September 18 Monday, 19th September 18 Plenary Session I 18 Oral Sessions Monday 19 – Morning 18 Oral Sessions Monday 19 – Afternoon 1 23 Poster Session I 27 Oral Sessions Monday 19 – Afternoon 2 35 Tuesday, 20th September 38 Plenary Session II 38 Oral Sessions Tuesday 20 – Morning 38 Oral Sessions Tuesday 20 – Afternoon 1 43 Oral Sessions Tuesday 20 – Afternoon 2 48 1 st Wednesday, 21 September 52 Plenary Session III 52 Oral Sessions Wednesday 21 – Morning 52 Oral Sessions Wednesday 21 – Afternoon 1 56 Poster Session II 60 10th Anniversary Special Session 68 Thursday, 22nd September 70 Oral Sessions Thursday 22 – Morning 1 70 Oral Sessions Thursday 22 – Morning 2 73 Oral Sessions Thursday 22 – Afternoon 1 76 Oral Sessions Thursday 22 – Afternoon 2 80 Notes 84 . 2 Metamaterials 2016 Support, Sponsors, Exhibitors Organizational support Crete Center for Quantum Complexity and Nanotechnology http:// qcn.physics.uoc.gr Diamond sponsors Metamaterial Technologies Inc. http://www.metamaterial.com/ Metamaterial Technologies Inc. (MTI) is a smart materials and photonics company that is changing the way we use, interact and benefit from light. The company specializes in metamaterial research, nanofabrication, and computational electromagnetic; bridging the gap between the theoretical and the possible. Through applied physics and intelligent design, it has developed a new platform technology using a variety of smart materials that are capable of dramatically changing how light can be altered and harnessed. This new patented technology can block light, absorb light and enhance light. MTI has been recognized for its metaAIR™ optical filter that can provide laser protection and has been working in partnership with Airbus since 2014 to provide a solution for commercial aviation. MTI is able to develop a wide array of metamaterial applications that encompass several industries including aerospace and defense, healthcare, energy, education, and clean-tech. Its new product NanoWeb®, is an advanced transparent metal mesh conductor which is truly invisible to the human eye. This enables it to be integrated into windows, windshields, goggles, visors and display glass. It offers a superior alternative to Indium Tin Oxide (ITO), Silver Nanowire (AgNW), graphene and carbon nanotube among other ITO-alternative technologies. The company is headquartered in Halifax, Nova Scotia and has offices in London, England and Pleasanton, California. Silver sponsors American Physical Society http://journals.aps.org/ 3 Exhibitors Institue Of Physics Publishing http://ioppublishing.org/ Photon Design https://www.photond.com/ Sponsors Nature Materials http://www.nature.com/nmat/ Nature Communications http://www.nature.com/ncomms/ World Scientific http://www.worldscientific.com/ American Elements https://www.americanelements.com/ CRC Press www.crcpress.com Materials Horizons http://pubs.rsc.org/en/journals/journalissues/ mh Journal of Materials Chemistry C http://pubs.rsc.org/En/journals/journalissues/t c 4 Metamaterials 2016 Foreword It It is our great pleasure to welcome you at the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2016) in Chania, Greece. This event is co- organised by the Virtual Institute for Artificial Electromagnetic Materials and Metamaterials (METAMORPHOSE VI) and FORTH. The Congress series, initiated by the European Network of Excellence METAMORPHOSE and convened annually by the METAMORPHOSE VI, is recognised as a prime event in the metamaterial community. Owing to the multidisciplinary nature of artificial electromagnetic materials, the Congress brings together researchers and engineers working in material science and electromagnetic theory, optics and microwaves, physics of solids and acoustics, nanofabrication, chemistry, and device design. This provides a unique forum for presenting the latest results in the rapidly growing fields of metamaterials and their applications. The Congress traditions, established and nurtured by its preceding editions and predecessors, International Conferences on Complex Media and Metamaterials (Bianisotropics) and Rome International Workshops on Metamaterials and Special Materials for Electromagnetic Applications and TLC, will be further advanced in Chania. The Congress programme covers a broad range of research in artificial electromagnetic materials and surfaces for radio, microwave, terahertz, and optical frequencies, as well as in acoustic, thermal, mechanical, superconductor and quantum metamaterials and their applications. A balanced mix of plenary, invited, contributed and poster presentations, all subjected to rigorous peer review, encompasses diverse aspects of the fundamental theory, modelling, design, applications, fabrication, and measurements. The Congress is traditionally accompanied by the European Doctoral School on Metamaterials. This year school is devoted to “Metamaterials from THz to optics”. We would like to thank all our sponsors and colleagues who have helped with the Congress organisation and offered their scientific and technical contributions. The success of the conference series allows METAMORPHOSE VI, as a non-for-profit international association, to provide financial support to a number of participants and particularly students, operate European Doctoral Programme on Metamaterials (EUPROMETA) and deliver other services to the Community. Filiberto Bilotti, Geneal Chair Andrea Alù, General Co-Chair 5 Metamaterials 2016 Preface Research on metamaterials and metasurfaces is developing and expanding fast. Artificial materials with engineered properties are created and studied not only for the whole electromagnetic spectrum, but also for acoustics and mechanics. Although the term “metamaterial” appeared only about 15 years ago, research on artificial electromagnetic materials started very soon after J.C. Maxwell wrote his equations. The history of this congress goes back to 1993, when the first workshops on complex media electromagnetics were initiated. This edition of the congress is a special one, celebrating the tenth anniversary of the congress series in its present format. The selection of papers for the focused program with only three parallel sessions from over 350 submitted abstracts was a difficult task. The program includes 174 oral presentations (15 min), 39 invited talks (30 min) and 3 extended oral presentations, upgraded based on the submitted abstracts (30 min). More than 100 posters will be discussed in two interactive sessions. I would like to thank all the members of the Technical Program Committee and our great team of 63 reviewers who have helped to form the program. The names of the reviewers can be found on the conference web site. We hope that constructive review comments will be helpful for you also in future work. Traditionally, the plenary talks are highlights of the congress. This year, the three speakers will talk about nonreciprocal and nonlinear metasurfaces, topological principles, and science and applications of microwave metasurfaces. Three special sessions will focus on seismic metamaterials, bio-inspired advanced materials, and on commercialization of metamaterials. To celebrate the Congress anniversary, we have organized a special evening event. I hope that you will enjoy the presentations, interactions, and return with many new ideas for your future work. I wish you a wonderful stay on Crete! Sergei Tretyakov, Chair of the Technical Programme Committee 6 Metamaterials 2016 Welcome message Dear Friends and Colleagues, We are happy to welcome you in Crete for the 10th Edition of the International Congress on Advanced Electromagnetic Materials in Microwaves and Optics – Metamaterials 2016. The conference takes place in West Crete, close to the picturesque town of Chania, in a place that combines rich history, high quality education and research, and a unique natural environment composed of beautiful beaches, wild gorges, and green and wild mountains. The conference is co-organized by the Foundation for Research and Technology – Hellas (FORTH), one of the biggest and most successful research centres in Greece, and in particular by its Institute of Electronic Structure and Laser (IESL), which is an internationally recognized center of excellence in Lasers and Applications, Microelectronics and Devices, Materials Science and Theoretical and Computational Physics. Besides FORTH, Crete has other Institutions, with more recognized the University of Crete, centered at Heraklion, which was classified among the top 100 young (less than 50 years old) Universities worldwide, as well as the Technical University of Crete, located in Chania, with emphasis in Engineering Sciences. All these institutions are characterized by high quality research and education, making Crete a place that combines a glorious past with an inspiring present. We are happy for another reason too: this year’s conference is the 10th anniversary of the Metamaterials Conference, a conference series that we followed from its first steps and which we believe is started and it continues to be among the highest quality conferences in the fascinating area of Metamaterials. We wish and hope that you will enjoy the conference, you will have the chance to have fruitful discussions with colleagues and friends and to stay updated with the latest important
Recommended publications
  • Deliverable 5.4: SECOND ADVISORY REPORT of THE
    Deliverable 5.4: SECOND ADVISORY REPORT OF THE IAC Project no. 316165 Project acronym: CCQCN Project full title: Crete Center for Quantum Complexity and Nanotechnology REGPOT-2012-2013-1 SEVENTH FRAMEWORK PROGRAMME Deliverable 5.4 Second Advisory Report of the IAC Due date of deliverable: M30 Dissemination level: PU Second Advisory Report of the IAC Crete Center for Quantum Complexity and Nanotechnology Executive Summary Deliverable 5.4 comprises the Second Advisory Report of the International Advisory Committee (IAC) of the Crete Center for Quantum Complexity and Nanotechnology (CCQCN), an EC-supported FP7-REGPOT-2012-2013-1 project (project number: 316165), which is located at the Physics Department of the University of Crete and started its operation on September 1, 2013. The International Advisory Committee comprises three senior scientists (namely, Professors Zaanen, Buchner, and Saxena) and is a complementary body that assists the Management Committee of CCQCN in the research directions, hirings, twinning and workshops. More precisely, the scope of the IAC is to monitor the progress made during the implementation of the CCQCN project, and advice toward the most beneficial implementation of the project and on all aspects of the Center activities. The IAC assesses the evolution, achievements, success and/or possible problems of the project. The 2nd Advisory Report of the IAC takes into account the evolution, achievements, success and/or possible problems of CCQCN as revealed in the M13-M30 (M30=February 2016) period of the lifetime of the project. IAC members have visited the CCQCN on September 2013 (Prof. Zaanen and Prof. Saxena, attended the CCQCN Kick-off Meeting), September 2014 (Prof.
    [Show full text]
  • Metamaterials 2012 St
    17th-22nd September Metamaterials 2012 St. Petersburg, Russia th 6 International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Programme http://congress2012.metamorphose-vi.org St.St. Petersburg,Petersburg, RussiaRussia Table of Contents Foreword.......................................................................................................................................................4 Preface.........................................................................................................................................................5 Welcome Message......................................................................................................................................6 Committee................................................................................................................................................7 Location.......................................................................................................................................................8 Conference Venue.......................................................................................................................................9 St. Petersburg Attractions........................................................................................................................10 Programme Monday, 17th September Optical and UV Metamaterials...............................................................................12 Microwave Metamaterials......................................................................................13
    [Show full text]
  • 6Th IC4N Book of Abstracts
    IC4N SPONSORS 2019 BOOK OF ABSTRACTS 6th International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems Edited by: Efstathios I. Meletis CORFU, GREECE • JUNE 30 – JULY 3 This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/) It can be accessed in the University of Texas at Arlington’s institutional repository, ResearchCommons, at: http://hdl.handle.net/10106/28271 Publication Design and Formatting by Brittany Griffiths Cover Design by Brittany Griffiths Published and made openly accessible by: University of Texas at Arlington Libraries 702 Planetarium Pl. Arlington, TX 76019 Published in 2019 ISBN 978-0-9898878-6-1 Mavs Open Press 2019 University of Texas at Arlington BOOK OF ABSTRACTS 6th IC4N • 2019 Table of Contents xiii Foreword xv Conference Symposia Plenary Lecture xviii Radical Molecular Nanotechnology Sir Fraser Stoddart Keynote Lectures xx Artificial Magnetic Atoms Björgvin Hjörvarsson, Vassilios Kapaklis xxi Chemistry and Devices from Halide Perovskites Semiconductors Mercouri G. Kanatzidis Conference Abstracts 2 Impact of Nanoparticles on Amyloid Peptide and Protein Aggregation T. John, H.J. Risselada, B. Abel 3 Mechanistics of Spectrum Manipulation, Energy and Electron Transfer Reaction in Hybrid Materials Maria Abrahamsson, Elin Sundin, Deise Barbosa de Mattos, Mark Johnstone, Ambra Dreos, Henrik Sundén 4 From Carbon-Rich Molecules to Carbon-Rich Materials Igor Alabugin 5 Preparation and Characterization of Nanostructured AgNiO Thin Films A. Stamatelatos, N. Kanistras, D. I. Anyfantis, E. Violatzi, D. Geralis, S. Grammatikopoulos, M. Tsarmpopoulou, M.M. Sigalas, P. Poulopoulos 6 Responsive Self-Assembled Peptide Biomaterials and Applications Chrysanthi Pinelopi Apostolidou, Anna Mitraki i ii TABLE OF CONTENTS 7 Coexistence of Ferroelectricity and Two-Dimensional Electron Gas at an Oxide Interface A.
    [Show full text]
  • Final Accreditation Report Physics University of Crete Copy
    ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ HELLENIC REPUBLIC A ΔΙΠ HQA ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ HELLENIC QUALITY ASSURANCE ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ AND ACCREDITATION AGENCY Physics Institution: University of Crete Date: 13 October 2019 ΑΡΙΣΤΕΙΔΟΥ 1 & ΕΥΡΙΠΙΔΟΥ, 105 59 ΑΘΗΝΑ 1, ARISTIDOU ST., 105 59 ATHENS, GREECE Τηλ.: +30 210 9220944, FAX: +30 210 9220143 Tel.: +30 210 9220944, Fax: +30 210 9220143 Ηλ. Ταχ.: [email protected], Ιστότοπος: http://www.hqa.gr Email: [email protected], Website: www.hqa.gr Report of the Panel appointed by the HQA to undertake the review of the Undergraduate Study Programme of Physics of the University of Crete for the purposes of granting accreditation Accreditation Report_Physics_University of Crete 2 TABLE OF CONTENTS Part A: Background and Context of the Review ................................................................................. 4 I. The Accreditation Panel .................................................................................................................. 4 II. Review Procedure and Documentation .......................................................................................... 5 III. Study Programme Profile ................................................................................................................ 8 Part B: Compliance with the Principles ............................................................................................. 9 Principle 1: Academic Unit Policy for Quality Assurance ........................................................................
    [Show full text]
  • An Introduction to Quantum Physics
    An Introduction to Quantum Physics An Introduction to Quantum Physics A First Course for Physicists, Chemists, Materials Scientists, and Engineers Stefanos Trachanas Authors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Stefanos Trachanas editors, and publisher do not warrant the Foundation for Research & Technology– information contained in these books, Hellas (FORTH) including this book, to be free of errors. Crete University Press Readers are advised to keep in mind that 100 Nikolaou Plastira statements, data, illustrations, procedural Vassilika Vouton details or other items may inadvertently 70013 Heraklion be inaccurate. Greece Library of Congress Card No.: applied for and University of Crete British Library Cataloguing-in-Publication Department of Physics Data P.O. Box 2208 A catalogue record for this book is 71003 Heraklion available from the British Library. Greece Bibliographic information published by Manolis Antonoyiannakis the Deutsche Nationalbibliothek The American Physical Society The Deutsche Nationalbibliothek Editorial Office lists this publication in the Deutsche 1ResearchRoad Nationalbibliografie; detailed Ridge, NY 11961 bibliographic data are available on the United States Internet at <http://dnb.d-nb.de>. and © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Columbia University Germany Department of Applied Physics & Applied Mathematics All rights reserved (including those of 500 W. 120th Street translation into other languages). No part New York, NY 10027 of this book may be reproduced in any United States form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language Leonidas Tsetseris without written permission from the National Technical University of Athens publishers. Registered names, trademarks, Department of Physics etc.usedinthisbook,evenwhennot Zografou Campus specifically marked as such, are not to be 15780 Athens considered unprotected by law.
    [Show full text]
  • Bending the Laws of Optics with Metamaterials: an Interview With
    National Science Review INTERVIEW 5: 200–202, 2018 doi: 10.1093/nsr/nwx118 Advance access publication 20 September 2017 Special Topic: Metamaterials Bending the laws of optics with metamaterials: an interview with John Pendry By Philip Ball Downloaded from https://academic.oup.com/nsr/article/5/2/200/4209243 by guest on 23 September 2021 Metamaterials show us that nature’s laws might not always be as fixed as they seem to be. One of the laws of optics, for example, statesthat a light ray passing from one transparent medium to another—air to water or glass, say—is bent at the interface by an amount that depends on the so-called refractive indices of the two media. And all transparent materials have a refractive index greater thanthatofa vacuum (or, roughly speaking, of air), which is set equal to 1. Or do they? In the 1960s, the Russian physicist Victor Veselago explained what would be needed, in theory, for a material to have a refractive index that is not only less than 1 but in fact negative, so that itbends light the ‘wrong way’. Veselago’s idea was all but forgotten until it was unearthed in the late 1990s by electrical engineer David Smith. He was wondering ifit might be possible to make a ‘scaled-up’ version of such a material, built from ‘artificial atoms’ and later called a metamaterial, which could show this effect at longer wavelengths than those of light, in the microwave part of the spectrum. By happy coincidence, physicist SirJohn Pendry of Imperial College London, UK, had already come up with a prescription for making a similar structure from loops of wire.
    [Show full text]
  • Tough Times for Greek Science
    interview Tough times for Greek science The recent economic crisis has drastically affected research and development in Greece, but competitive research goes on, says Eleftherios Economou, a founder of the Foundation of Research and Technology Hellas (FORTH) research centre in Greece, and former General Secretary for research and technology. ■■ Why did you decide to study physics? Studies is located in the town of Rethymnon During my undergraduate years at in Crete. However, the part of the Institute the Technical University of Athens I of Molecular Biology & Biotechnology that was very lucky to have had inspiring focuses on medical applications is located at mathematics professors. In particular, the campus of the University of Ioannina in one of them recommended some English northern Greece. textbooks on advanced electromagnetism FORTH is administratively independent and introductory books on quantum of the universities, but is able to offer joint mechanics. I was thrilled to discover faculty appointments and allows graduate intellectual treasures in them. Then, in the students to conduct their research in its early 1960s, the newly established research facilities. This type of cooperation, which by centre ‘Demokritos’ organized unofficial the way is available to all research centres in courses on modern physics, taught by Greece, has proved very beneficial to both researchers who had just returned after the University of Crete and FORTH. completing their PhD in the US or UK. FORTH has been quite successful Several colleagues of mine followed these in competing within the Framework courses and, as a result, they were set on a Programme of the European Union path to study physics abroad, in the USA, © E.
    [Show full text]
  • David R. Smith Shares Descartes Award for Material That Reverses Light’S Properties 2 December 2005
    David R. Smith Shares Descartes Award for Material that Reverses Light’s Properties 2 December 2005 David R. Smith, a physicist formerly at the The unusual property of left-handed metamaterials University of California, San Diego, has been is its ability to reverse many of the physical awarded the European Union’s Descartes Prize properties that govern the behavior of ordinary for Excellence in Scientific Research for materials. One such property is the Doppler effect, developing at UCSD a new class of composite which makes a train whistle sound higher in pitch materials with unusual physical properties that as it approaches and lower in pitch as it recedes. scientists theorized might be possible, but had According to Maxwell's equations, which describe never before been able to produce in nature. the relationship between magnetic and electric fields, microwave radiation or light would show the Smith, now an associate professor at Duke opposite effect in this new class of materials, University’s Pratt School of Engineering, shared shifting to lower frequencies as a source with four European researchers the €1.1 million approaches and to higher frequencies as it euro prize — equivalent to $1.29 million U.S. dollars recedes. — for their contributions to the development of a new class of materials known as “left-handed Similarly, Maxwell's equations further suggest that metamaterials.” lenses that would normally disperse electromagnetic radiation would instead focus it The five scientists, whose achievements created a within this composite material. This is because new sub-discipline of physics, will be presented Snell's law, which describes the angle of refraction with the Descartes Prize, named in honor of the caused by the change in velocity of light and other French mathematician, scientist and philosopher waves through lenses, water and other types of Rene? Descartes, at a ceremony held at the Royal ordinary material, is expected to be exactly Society in London on December 2.
    [Show full text]
  • Manipulating Scattering Features by Metamaterials
    EPJ Appl. Metamat. 2016, 3,3 Ó C. Lu et al., Published by EDP Sciences, 2016 DOI: 10.1051/epjam/2016005 Available online at: http://epjam.edp-open.org RESEARCH ARTICLE OPEN ACCESS Manipulating scattering features by metamaterials Cui Lu1, Zhong Lei Mei1,*, Wen Xuan Tang2,3, and Tie Jun Cui2,3,* 1 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, P.R. China 2 School of Information Science and Engineering, Southeast University, Nanjing 210096, P.R. China 3 State Key Laboratory of Millimetre Waves, Southeast University, Nanjing 210096, P.R. China Received 31 March 2016 / Accepted 30 May 2016 Abstract – We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, man- tle cloaks based on scattering cancellation, ‘‘skin’’ cloaks using phase compensation, scattering controls with coding/ programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted. Key words: matematerials, scattering manipulation, cloak, illusion device, transformation optics. 1 Introduction Goos-Hanchen shift [5], evanescent wave amplification [6], perfect lens effect [7], etc. Metamaterial is a kind of artificially structured material With the rapid developments of metamaterial technologies, with exotic properties which are not found in nature. The effec- the term ‘‘metamaterial’’ has gone far beyond left-handed or tive medium property of metamaterial is not only relevant to negative refractive index materials. At present, it has been the constitute material, but also decided by the microscopic widely accepted that metamaterials may contain all artificial structures.
    [Show full text]
  • Manolis Antonoyiannakis Editor, Physical Review LeErs Ling Miao (缪凌) Editor, Physical Review X
    Editors’ Session Manolis Antonoyiannakis Editor, Physical Review Le;ers Ling Miao (缪凌) Editor, Physical Review X Outline • Physical Review X • The editors’ point of view: • Editors’ role and challenges • What papers we are looking for • Some key quesHons in the field • Editorial standards: do they evolve? • Top-quality papers: fast-tracking, highlighHng • Unsuitable papers: editorial rejecHon • Impact stasHcs Why PR High Profile Gold Open Access Commercial Society NJP Nature Physics (good quality, well regarded) Nature Materials PRL P Nature Photonics R Nature AIP Advances Nanotechnology (For publicaon: only technical correctness) Physical Review X • all areas of physics • highly selective standards: eXceptional in originality, quality & substance, significance • eXpress editorial/review process • well-informed, responsible editorial judgment • no length limit • online only; integrated multimedia • eXpanded access h;p://prx.aps.org Highlighted in Physics Today Physical Review X Editorial Board Broad, International, Distinguished Marcela Carena, Theoretical particle physics Fermilab/University of Chicago To Learn More Visit PRX’s Website at http://prx.aps.org The editors and the Editorial Board invite you to submit your eXceptional work to PRX The APS Editorial Office • Editor in Chief : Research areas: Gene D. Sprouse Nuclear Physics Atomic Physics Stony Brook Univ. • In-house editors: 42 (predominantly for PRL, PRB) • Remote editors (mostly acHve researchers): 61 PRA, PRC, PRD, PRE, and RMP • Technical supporHng staff: 100 37,000 papers A
    [Show full text]
  • 5 Creating Illusion Effects Using Transformation Optics
    This is the Pre-Published Version 5 Creating Illusion Effects Using Transformation Optics Yun Lai1, Jack Ng2 and C.T. Chan2* 1School of Physical Science and Technology, Soochow University, Suzhou, China 2Department of Physics, Hong Kong University of Science and Technology, Hong Kong Abstract: In this chapter, we show how to create illusion effects using metamaterials. We will see that a passive metamaterial device can be designed such that when it is placed next to or covering an object, the scattered fields of the object and the device together will changed to be exactly the same as the scattered fields due to another object. Simply put, we can turn an object optically and stereoscopically into another one. An apple can be made to look like a banana. If we make a measurement of the electromagnetic fields at the designed frequency, there is no way to distinguish optically between the true object and the illusion. Invisibility can be regarded as a special case of the illusion effect, in which case the object is turned optically to a volume of free space. The metamaterial does not need to encircle the object to create the illusion effect. If we use this method to implement invisibility, the cloaked object will not be blinded by the cloak. The design is based on the replacement of optical spaces and the material parameters are determined using the technique of transformation optics. One route to achieve illusion effects is to employ the idea of “complementary media”. The materials designed using “complementary media” typically contain negative refractive index components and no extreme values of constitutive parameters are needed.
    [Show full text]
  • Organizing Institutions Metamaterials 2017 Table of Contents
    Organizing Institutions Metamaterials 2017 Table of Contents The Virtual Institute for Artificial Electromagnetic Materials and Metamaterials, in short the "METAMORPHOSE VI AISBL", is a non- Marseille, France, 28 August–2 September 2017 for-profit International Association, whose purposes are the research, the study and the promotion of artificial electromagnetic materials and http://congress2017.metamorphose-vi.org metamaterials. The Association has been established in 2007 by the partners of the FP-6 Network of Excellence "METAMaterials ORganized for radio, millimeter wave, and PHOtonic Superlattice Engineering" - METAMORPHOSE NoE - funded by the European Commission in 2004-2008. Sponsors 3 The METAMORPHOSE VI is an active network integrating, managing, and coordinating several researches and spreading activities in the field of Artificial Electromagnetic Materials Foreword 5 and Metamaterials. In order to achieve his purposes, the METAMORPHOSE VI AISBL pursues the following activities: Preface 6 • Integrate, manage, coordinate, and monitor research projects in the field of Artificial Electromagnetic Materials and Metamaterials; Welcome Message 7 • Spread excellence in this field, in particular, by organizing scientific conferences and creating specialized journals; Committees 8 • Create and manage research programmes in this field; Location 10 • Activate and manage training programmes (including PhD and training programmes for students and industrial partners); Conference Venue 1 1 • Provide information on Artificial Electromagnetic Materials and Metamaterials; • Transfer new technologies in this field to the Industry; Social Events 12 • Offer advice and services related to Artificial Electromagnetic Materials and Metamaterials to industries, producers, distributors, potential users, service suppliers and to the like in Session Matrix 13 Europe and worldwide. Among the other activities, the Association owns and organizes the Metamaterials Congress Series and the Doctoral Programmes on Metamaterials.
    [Show full text]