Metamaterials 2012 St

Total Page:16

File Type:pdf, Size:1020Kb

Metamaterials 2012 St 17th-22nd September Metamaterials 2012 St. Petersburg, Russia th 6 International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Programme http://congress2012.metamorphose-vi.org St.St. Petersburg,Petersburg, RussiaRussia Table of Contents Foreword.......................................................................................................................................................4 Preface.........................................................................................................................................................5 Welcome Message......................................................................................................................................6 Committee................................................................................................................................................7 Location.......................................................................................................................................................8 Conference Venue.......................................................................................................................................9 St. Petersburg Attractions........................................................................................................................10 Programme Monday, 17th September Optical and UV Metamaterials...............................................................................12 Microwave Metamaterials......................................................................................13 Acoustic Metamaterials I........................................................................................15 Nonlinear Metamaterials I.....................................................................................16 Extraordinary Transmission....................................................................................18 Acoustic Metamaterials II.......................................................................................19 Nonlinear Metamaterials II.....................................................................................20 Antenna Applications of Metamaterials..................................................................22 Acoustic and Other Metamaterials.........................................................................23 Poster session I: Optical, Nonlinear, Tunable Metamaterials............................................................24 Nonlinear and Tunable Metamaterials..................................................................33 RF and Microwave Metamaterials I.......................................................................34 Transformation Optics I..........................................................................................36 Tuesday, 18th September Transformation Optics and Cloaking......................................................................37 Homogenization I....................................................................................................39 Tunable Metamaterials...........................................................................................40 Poster session II: Microwave and Terahertz Metamaterials................................................................42 Metamaterial Based Sensors I...............................................................................50 RF and Microwave Metamaterials II.......................................................................51 Quantum Aspects of Metamaterials I......................................................................53 Transformation Optics II.........................................................................................55 Homogenization II..................................................................................................56 Quantum Aspects of Metamaterials II.....................................................................58 Metamaterial Based Sensors II..............................................................................59 THz and Microwave Metamaterials I......................................................................60 Chiral Metamaterials I............................................................................................62 1 Metamaterials 2012 Table of Contents Wednesday, 19th September Imaging Using Metamaterials.................................................................................63 THz and Microwave Metamaterials II....................................................................65 Novel Concepts I...................................................................................................66 Graphene-Based Metamaterials............................................................................67 THz and Microwave Metamaterials III...................................................................69 Slow Light and 3D Metamaterials...........................................................................70 Optical Metamaterials I..........................................................................................72 THz and Microwave Metamaterials IV...................................................................73 Transformation Optics III.......................................................................................75 Plenary sessions....................................................................................................76 Thursday, 20th September Plasmonic Metamaterials.......................................................................................77 Chiral Metamaterials II...........................................................................................78 Unconventional Metamaterials..............................................................................79 Poster session III: Towards Applications.............................................................................................80 Active and Low-Loss Metamaterials I....................................................................87 Chiral Metamaterials III..........................................................................................88 Novel Concepts II..................................................................................................90 Active and Low-Loss Metamaterials II....................................................................91 Quantum and Chiral Metamaterials.......................................................................93 Complex Electromagnetic Materials.......................................................................94 Optical Metamaterials II.........................................................................................96 Plasmonic Components and Devices.....................................................................97 Novel Concepts III.................................................................................................98 Venue Map................................................................................................................................................101 Session Matrix.........................................................................................................................................102 2 St.St. Petersburg,Petersburg, RussiaRussia Sponsors and Exhibitors International Union of Radio Science www.ursi.org Rohde & Schwarz Institute of Electrical www.rohde-schwarz.ru and Electronics Engineers www.ieee.org IEEE Antennas and Propagation IOP Publishing Society www.publishing.iop.org www.ieeeaps.org European Physical Society www.eps.org Offi ce of Naval Research Global www.onr.navy.mil Optical Society of America www.osa.org Imperial College Press Elsevier www.icpress.co.uk www.elsevier.com Cambridge University Press Foundation Dynasty www.cambridge.org www.dynastyfdn.com The Ministry of education AIST-NT and science www.aist-nt.com of The Russian Federation www.mon.gov.ru OPTEC American Elements www.optecgroup.com www.americanelements.com 3 Metamaterials 2012 Foreword With our great pleasure we welcome you to the 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2012) in the great Russian city of St. Petersburg. This event is organised by the Virtual Institute for Artifi cial Electromagnetic Materials and Metamaterials (Metamorphose VI) jointly with the National Research University of Information Technologies, Mechanics and Optics (ITMO) and St. Petersburg Electrotechnical University (ETU). The Congress series, initiated by the European Network of Excellence Metamorphose, is widely recognised as the prime event in the metamaterial community. Owing to the multidisciplinary nature of artifi cial electromagnetic materials, the Congress brings together researchers and engineers working in material science and electromagnetic theory, optics and microwaves, physics of solids and acoustics, nanofabrication and device design. This provides a unique forum for presenting the latest results in the explosively expanding fi elds of metamaterials and their applications. The good traditions of the Congress, established by its preceding editions, held in Rome (2007), Pamplona (2008), London (2009), Karlsruhe (2010) and Barcelona (2011), will be further strengthened and developed by the St. Petersburg event. The Congress programme covers a broad range of research in artifi cial electromagnetic materials and surfaces for radio, microwave, terahertz, and optical frequencies. The progress in acoustic, superconductor
Recommended publications
  • Deliverable 5.4: SECOND ADVISORY REPORT of THE
    Deliverable 5.4: SECOND ADVISORY REPORT OF THE IAC Project no. 316165 Project acronym: CCQCN Project full title: Crete Center for Quantum Complexity and Nanotechnology REGPOT-2012-2013-1 SEVENTH FRAMEWORK PROGRAMME Deliverable 5.4 Second Advisory Report of the IAC Due date of deliverable: M30 Dissemination level: PU Second Advisory Report of the IAC Crete Center for Quantum Complexity and Nanotechnology Executive Summary Deliverable 5.4 comprises the Second Advisory Report of the International Advisory Committee (IAC) of the Crete Center for Quantum Complexity and Nanotechnology (CCQCN), an EC-supported FP7-REGPOT-2012-2013-1 project (project number: 316165), which is located at the Physics Department of the University of Crete and started its operation on September 1, 2013. The International Advisory Committee comprises three senior scientists (namely, Professors Zaanen, Buchner, and Saxena) and is a complementary body that assists the Management Committee of CCQCN in the research directions, hirings, twinning and workshops. More precisely, the scope of the IAC is to monitor the progress made during the implementation of the CCQCN project, and advice toward the most beneficial implementation of the project and on all aspects of the Center activities. The IAC assesses the evolution, achievements, success and/or possible problems of the project. The 2nd Advisory Report of the IAC takes into account the evolution, achievements, success and/or possible problems of CCQCN as revealed in the M13-M30 (M30=February 2016) period of the lifetime of the project. IAC members have visited the CCQCN on September 2013 (Prof. Zaanen and Prof. Saxena, attended the CCQCN Kick-off Meeting), September 2014 (Prof.
    [Show full text]
  • Metamaterials 2012 St
    17th-22nd September Metamaterials 2012 St. Petersburg, Russia th 6 International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Programme http://congress2012.metamorphose-vi.org St.St. Petersburg,Petersburg, RussiaRussia Table of Contents Foreword.......................................................................................................................................................4 Preface.........................................................................................................................................................5 Welcome Message......................................................................................................................................6 Committee................................................................................................................................................7 Location.......................................................................................................................................................8 Conference Venue.......................................................................................................................................9 St. Petersburg Attractions........................................................................................................................10 Programme Monday, 17th September Optical and UV Metamaterials...............................................................................12 Microwave Metamaterials......................................................................................13
    [Show full text]
  • Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials
    COMMUNICATION Optical Metamaterials www.advmat.de Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials James A. Dolan, Raphael Dehmel, Angela Demetriadou, Yibei Gu, Ulrich Wiesner, Timothy D. Wilkinson, Ilja Gunkel, Ortwin Hess, Jeremy J. Baumberg, Ullrich Steiner, Matthias Saba, and Bodo D. Wilts* Metamaterials are artificially engineered Optical metamaterials offer the tantalizing possibility of creating materials whose optical properties are extraordinary optical properties through the careful design and arrangement dependent on both the geometry of their of subwavelength structural units. Gyroid-structured optical metamaterials structural units and their chemical com- [1] possess a chiral, cubic, and triply periodic bulk morphology that exhibits position. The ability to design an effec- tive permittivity ε (ω) and permeability a redshifted effective plasma frequency. They also exhibit a strong linear eff µeff(ω) by careful choice of these subwave- dichroism, the origin of which is not yet understood. Here, the interaction length structural units offers the potential of light with gold gyroid optical metamaterials is studied and a strong for intriguing applications, such as super- correlation between the surface morphology and its linear dichroism is found. lenses and cloaking devices.[2,3] Associ- The termination of the gyroid surface breaks the cubic symmetry of the bulk ated material properties include those lattice and gives rise to the observed wavelength- and polarization-dependent otherwise unavailable in nature, such as a negative refractive index and extreme reflection. The results show that light couples into both localized and “hyperbolic” optical anisotropy.[4] The propagating plasmon modes associated with anisotropic surface protrusions observation of these unique properties and the gaps between such protrusions.
    [Show full text]
  • 6Th IC4N Book of Abstracts
    IC4N SPONSORS 2019 BOOK OF ABSTRACTS 6th International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems Edited by: Efstathios I. Meletis CORFU, GREECE • JUNE 30 – JULY 3 This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/) It can be accessed in the University of Texas at Arlington’s institutional repository, ResearchCommons, at: http://hdl.handle.net/10106/28271 Publication Design and Formatting by Brittany Griffiths Cover Design by Brittany Griffiths Published and made openly accessible by: University of Texas at Arlington Libraries 702 Planetarium Pl. Arlington, TX 76019 Published in 2019 ISBN 978-0-9898878-6-1 Mavs Open Press 2019 University of Texas at Arlington BOOK OF ABSTRACTS 6th IC4N • 2019 Table of Contents xiii Foreword xv Conference Symposia Plenary Lecture xviii Radical Molecular Nanotechnology Sir Fraser Stoddart Keynote Lectures xx Artificial Magnetic Atoms Björgvin Hjörvarsson, Vassilios Kapaklis xxi Chemistry and Devices from Halide Perovskites Semiconductors Mercouri G. Kanatzidis Conference Abstracts 2 Impact of Nanoparticles on Amyloid Peptide and Protein Aggregation T. John, H.J. Risselada, B. Abel 3 Mechanistics of Spectrum Manipulation, Energy and Electron Transfer Reaction in Hybrid Materials Maria Abrahamsson, Elin Sundin, Deise Barbosa de Mattos, Mark Johnstone, Ambra Dreos, Henrik Sundén 4 From Carbon-Rich Molecules to Carbon-Rich Materials Igor Alabugin 5 Preparation and Characterization of Nanostructured AgNiO Thin Films A. Stamatelatos, N. Kanistras, D. I. Anyfantis, E. Violatzi, D. Geralis, S. Grammatikopoulos, M. Tsarmpopoulou, M.M. Sigalas, P. Poulopoulos 6 Responsive Self-Assembled Peptide Biomaterials and Applications Chrysanthi Pinelopi Apostolidou, Anna Mitraki i ii TABLE OF CONTENTS 7 Coexistence of Ferroelectricity and Two-Dimensional Electron Gas at an Oxide Interface A.
    [Show full text]
  • CV Paspalakis EN 062016A.Pdf
    CURRICULUM VITAE June 2016 Name: Emmanuel Paspalakis Date of Birth: 21 February 1973 Place of Birth: Thessaloniki, Greece Citizenship: Hellenic Marital Status: Married, two children Work Address: Materials Science Department School of Natural Sciences University of Patras Patras 265 04 Greece Tel: +30 2610 969346 E-mail: [email protected] Google scholar: http://scholar.google.com/citations?user=PtoIBy4AAAAJ&hl=en Home Address: Meilihou 74 Ekso Agia Patras 264 42 Greece Tel: +30 2610 423674, +30 6944 447194 (mobile) UNIVERSITY EDUCATION 10/1996 - 05/1999: PhD in Physics, Imperial College of Science, Technology and Medicine, University of London, London, England. Title of Thesis: “Quantum Interference and Coherent Control in Dissipative Atomic Systems”. Supervisor: Sir Peter L. Knight FRS. 10/1994 - 09/1996: MSc. in Atomic and Molecular Physics, Physics Department, University of Crete, Greece 09/1990 - 09/1994: 4-year BSc. (Ptyhion) in Physics, Physics Department, University of Crete, Greece (Ranked first in my year) EMPLOYMENT 07/2013 - present: Associate Professor, Materials Science Department, University of Patras, Greece. 05/2008 – 06/2013: Assistant Professor, Materials Science Department, University of Patras, Greece. Tenured 08/2011. 09/2003 – 04/2008: Lecturer, Materials Science Department, University of Patras, Greece. 11/2002 - 10/2003: Postdoctoral Researcher at the Materials Science Department, University of Patras, Greece, with a scholarship by the Greek State Scholarships Foundation (IKY). 11/2001 – 08/2003: Fixed Term Lecturer, Materials Science Department, University of Patras, Greece. 04/1999 - 09/1999 and 04/2001 - 10/2001: Full-time Research Associate in the group of Professor Sir P.L. Knight FRS, Department of Physics, Imperial College of Science, Technology and Medicine.
    [Show full text]
  • Final Accreditation Report Physics University of Crete Copy
    ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ HELLENIC REPUBLIC A ΔΙΠ HQA ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ HELLENIC QUALITY ASSURANCE ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ AND ACCREDITATION AGENCY Physics Institution: University of Crete Date: 13 October 2019 ΑΡΙΣΤΕΙΔΟΥ 1 & ΕΥΡΙΠΙΔΟΥ, 105 59 ΑΘΗΝΑ 1, ARISTIDOU ST., 105 59 ATHENS, GREECE Τηλ.: +30 210 9220944, FAX: +30 210 9220143 Tel.: +30 210 9220944, Fax: +30 210 9220143 Ηλ. Ταχ.: [email protected], Ιστότοπος: http://www.hqa.gr Email: [email protected], Website: www.hqa.gr Report of the Panel appointed by the HQA to undertake the review of the Undergraduate Study Programme of Physics of the University of Crete for the purposes of granting accreditation Accreditation Report_Physics_University of Crete 2 TABLE OF CONTENTS Part A: Background and Context of the Review ................................................................................. 4 I. The Accreditation Panel .................................................................................................................. 4 II. Review Procedure and Documentation .......................................................................................... 5 III. Study Programme Profile ................................................................................................................ 8 Part B: Compliance with the Principles ............................................................................................. 9 Principle 1: Academic Unit Policy for Quality Assurance ........................................................................
    [Show full text]
  • Table of Contents
    Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs .
    [Show full text]
  • Federico Capasso
    Federico Capasso ADDRESS: John A. Paulson School of Engineering and Applied Sciences Harvard University 205 A Pierce Hall 29 Oxford Street Cambridge MA 02138 PHONE: (617) 384-7611 FAX: (617) 495-2875 EMAIL: [email protected] PERSONAL: Married; two children CITIZENSHIP: Italian and U.S. (Naturalized; 09/23/1992) EDUCATION: 1973 Doctor of Physics, Summa Cum Laude University of Rome, La Sapienza, Italy 1973-1974 Postdoctoral Fellow Fondazione Bordoni, Rome, Italy ACADEMIC APPOINTMENTS Jan. 2003- Present Robert Wallace Professor of Applied Physics Vinton Hayes Senior Research Fellow in Electrical Engineering, John A. Paulson, School of Engineering and Applied Sciences, Harvard University, PROFESSIONAL POSITIONS: 2000 – 2002 Vice President of Physical Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ 1997- 2000 Department Head, Semiconductor Physics Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ. 1987- 1997 Department Head, Quantum Phenomena and Device Research, Bell Laboratories Lucent Technologies (formerly AT&T Bell Labs, until 1996), Murray Hill, NJ 1984 – 1987 Distinguished Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1977 – 1984 Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1976 – 1977 Visiting Scientist, Bell Laboratories, Holmdel, NJ 1974 – 1976 Research Physicist, Fondazione Bordoni, Rome, Italy Citations (Google Scholar) Over 93000 H-index (Google Scholar) 144 Publications Over 500 hundred peer reviewed journals Patents 70 US patents KEY ACHIEVEMENTS 1. Bandstructure Engineering and Quantum Cascade Lasers (QCLs) Capasso and his Bell Labs collaborators over a 20-year period pioneered band-structure engineering, a technique to design and implement artificially structured (“man-made”) semiconductor, materials, and related phenomena/ devices, which revolutionized heterojunction devices in photonics and electronics.
    [Show full text]
  • Here One Can Enjoy Delicious Local and Greek Recipes
    Metamaterials 2016 Table of Contents Sponsors 3 Foreword 5 Preface 6 Welcome Message 7 Committees 8 Location 10 Conference Venue 12 Social Events 13 Session Matrix 14 Programme th Sunday, 18 September 18 Monday, 19th September 18 Plenary Session I 18 Oral Sessions Monday 19 – Morning 18 Oral Sessions Monday 19 – Afternoon 1 23 Poster Session I 27 Oral Sessions Monday 19 – Afternoon 2 35 Tuesday, 20th September 38 Plenary Session II 38 Oral Sessions Tuesday 20 – Morning 38 Oral Sessions Tuesday 20 – Afternoon 1 43 Oral Sessions Tuesday 20 – Afternoon 2 48 1 st Wednesday, 21 September 52 Plenary Session III 52 Oral Sessions Wednesday 21 – Morning 52 Oral Sessions Wednesday 21 – Afternoon 1 56 Poster Session II 60 10th Anniversary Special Session 68 Thursday, 22nd September 70 Oral Sessions Thursday 22 – Morning 1 70 Oral Sessions Thursday 22 – Morning 2 73 Oral Sessions Thursday 22 – Afternoon 1 76 Oral Sessions Thursday 22 – Afternoon 2 80 Notes 84 . 2 Metamaterials 2016 Support, Sponsors, Exhibitors Organizational support Crete Center for Quantum Complexity and Nanotechnology http:// qcn.physics.uoc.gr Diamond sponsors Metamaterial Technologies Inc. http://www.metamaterial.com/ Metamaterial Technologies Inc. (MTI) is a smart materials and photonics company that is changing the way we use, interact and benefit from light. The company specializes in metamaterial research, nanofabrication, and computational electromagnetic; bridging the gap between the theoretical and the possible. Through applied physics and intelligent design, it has developed a new platform technology using a variety of smart materials that are capable of dramatically changing how light can be altered and harnessed.
    [Show full text]
  • Plasmonic Nanocavity Modes: from Near-Field to Far-Field Radiation Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J
    pubs.acs.org/journal/apchd5 Article Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J. Baumberg,* and Ortwin Hess* Cite This: https://dx.doi.org/10.1021/acsphotonics.9b01445 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: In the past decade, advances in nanotechnology have led to the development of plasmonic nanocavities that facilitate light−matter strong coupling in ambient conditions. The most robust example is the nanoparticle-on-mirror (NPoM) structure whose geometry is controlled with subnanometer precision. The excited plasmons in such nanocavities are extremely sensitive to the exact morphology of the nanocavity, giving rise to unexpected optical behaviors. So far, most theoretical and experimental studies on such nanocavities have been based solely on their scattering and absorption properties. However, these methods do not provide a complete optical description of the nanocavities. Here, the NPoM is treated as an open nonconservative system supporting a set of photonic quasinormal modes (QNMs). By investigating the morphology-dependent optical properties of nanocavities, we propose a simple yet comprehensive nomenclature based on spherical harmonics and report spectrally overlapping bright and dark nanogap eigenmodes. The near-field and far-field optical properties of NPoMs are explored and reveal intricate multimodal interactions. KEYWORDS: plasmonics, nanophotonics, nanocavities, quasinormal mode, near-to-far-field transformation etallic nanostructures have the ability to confine light resonances from far-field spectral peaks. Although significant M below the diffraction limit via the collective excitation of information can be obtained from the far-field spectra, they do conduction electrons, called localized surface plasmons.
    [Show full text]
  • Mode-Locking in Broad-Area Semiconductor Lasers Enhanced
    968 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2004 Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection Joachim Kaiser, Ingo Fischer, Wolfgang Elsäßer, Senior Member, IEEE, Edeltraud Gehrig, and Ortwin Hess Abstract—We present combined experimental and theoretical extensive interest ever since the breakthrough of the semicon- investigations of the picosecond emission dynamics of broad-area ductor laser [11]–[19]—could lead to applications of BALs in semiconductor lasers (BALs). We enhance the weak longitu- short optical pulse or high repetition rate signal generation at dinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct high powers. regular train of 13-ps pulses. Modeling based on multimode In addition, fundamental questions arise from the fact that Maxwell–Bloch equations illustrates how the dynamic interaction the BALs emission does not only consist of many longitudinal of the injected pulse with the internal laser field efficiently couples modes, but each of these modes consists in fact of a multitude the longitudinal modes and synchronizes the output across the of different lateral modes typically up to the tenth order. This laser stripe. Thus, our results reveal insight into the complex interplay between lateral and longitudinal dynamics in BALs, at allows for a variety of phenomena associated with locking of the same time indicating their potential for short optical pulse the various modes: lateral modes of different longitudinal order generation. or different lateral modes within the same longitudinal mode Index Terms—Broad-area semiconductor lasers (BALs), mode- order might couple.
    [Show full text]
  • An Introduction to Quantum Physics
    An Introduction to Quantum Physics An Introduction to Quantum Physics A First Course for Physicists, Chemists, Materials Scientists, and Engineers Stefanos Trachanas Authors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Stefanos Trachanas editors, and publisher do not warrant the Foundation for Research & Technology– information contained in these books, Hellas (FORTH) including this book, to be free of errors. Crete University Press Readers are advised to keep in mind that 100 Nikolaou Plastira statements, data, illustrations, procedural Vassilika Vouton details or other items may inadvertently 70013 Heraklion be inaccurate. Greece Library of Congress Card No.: applied for and University of Crete British Library Cataloguing-in-Publication Department of Physics Data P.O. Box 2208 A catalogue record for this book is 71003 Heraklion available from the British Library. Greece Bibliographic information published by Manolis Antonoyiannakis the Deutsche Nationalbibliothek The American Physical Society The Deutsche Nationalbibliothek Editorial Office lists this publication in the Deutsche 1ResearchRoad Nationalbibliografie; detailed Ridge, NY 11961 bibliographic data are available on the United States Internet at <http://dnb.d-nb.de>. and © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Columbia University Germany Department of Applied Physics & Applied Mathematics All rights reserved (including those of 500 W. 120th Street translation into other languages). No part New York, NY 10027 of this book may be reproduced in any United States form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language Leonidas Tsetseris without written permission from the National Technical University of Athens publishers. Registered names, trademarks, Department of Physics etc.usedinthisbook,evenwhennot Zografou Campus specifically marked as such, are not to be 15780 Athens considered unprotected by law.
    [Show full text]