LANDSCAPE of COMPUTATIONAL COMPLEXITY Spring 2008 State University of New York at Buffalo Department of Computer Science & Engineering Mustafa M

Total Page:16

File Type:pdf, Size:1020Kb

LANDSCAPE of COMPUTATIONAL COMPLEXITY Spring 2008 State University of New York at Buffalo Department of Computer Science & Engineering Mustafa M LANDSCAPE OF COMPUTATIONAL COMPLEXITY Spring 2008 State University of New York at Buffalo Department of Computer Science & Engineering Mustafa M. Faramawi, MBA Dr. Kenneth W. Regan A complete language for EXPSPACE: PIM, “Polynomial Ideal Arithmetical Hierarchy (AH) Membership”—the simplest natural completeness level that is known PIM not to have polynomial‐size circuits. TOT = {M : M is total, K(2) TOT e e ∑n Πn i.e. halts for all inputs} EXPSPACE Succinct 3SAT Unknown ∑2 Π2 but Commonly Believed: RECRE L ≠ NL …………………….. L ≠ PH NEXP co‐NEXP = ∃∀.REC = ∀∃.REC P ≠ NP ∩ co‐NP ……… P ≠ PSPACE nxn Chess p p K D NP ≠ ∑ 2 ∩Π 2 ……… NP ≠ EXP D = {Turing machines M : EXP e Best Known Separations: Me does not accept e} = RE co‐RE the complement of K. AC0 ⊂ ACC0 ⊂ PP, also TC0 ⊂ PP QBF REC (“Diagonal Language”) For any fixed k, NC1 ⊂ PSPACE, …, NL ⊂ PSPACE = ∃.REC = ∀.REC there is a PSPACE problem in this P ⊂ EXP, NP ⊂ NEXP BQP: Bounded‐Error Quantum intersection that PSPACE ⊂ EXPSPACE Polynomial Time. Believed larger can NOT be Polynomial Hierarchy (PH) than P since it has FACTORING, solved by circuits p p k but not believed to contain NP. of size O(n ) ∑ 2 Π 2 L WS5 p p ∑ 2 Π 2 The levels of AH and poly. poly. BPP: Bounded‐Error Probabilistic TAUT = ∃∀ P = ∀∃ P SAT Polynomial Time. Many believe BPP = P. NC1 PH are analogous, NLIN except that we believe NP co‐NP 0 NP ∩ co‐NP ≠ P and NTIME [n2] TC QBF PARITY ∑p ∩Πp NP PP Probabilistic NP FACT 2 2 ≠ P , which NP ACC0 stand in contrast to P PSPACE Polynomial Time MAJ‐SAT CVP RE ∩ co‐RE = REC and 0 AC RE P P ∑2 ∩Π2 = REC GAP NP co‐NP REG NL poly 0 0 ∃ . AC ≠ ACC = P poly p p UGAP . = ∀ P ∑ 2 Π 2 L etc WS Low‐Level Classes 3 5 P DTIME [n ] NP co‐NP DLIN REG BQP DTIME [n2] FACTORING is not REG ≠ L believed to be FACT complete for BQP WS , the word problem for the symmetric group S , is a regular 5 5 Analogy between or for NP ∩ co‐NP. language that is complete for NC1 under AC0 many‐one reductions. P Deterministic and Nondeterministic Arithmetical and BPP Time Hierarchies Within NP Polynomial Hierarchies Complexity “Main Sequence” Realm of Feasibility? .
Recommended publications
  • Week 1: an Overview of Circuit Complexity 1 Welcome 2
    Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes).
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • The Polynomial Hierarchy
    ij 'I '""T', :J[_ ';(" THE POLYNOMIAL HIERARCHY Although the complexity classes we shall study now are in one sense byproducts of our definition of NP, they have a remarkable life of their own. 17.1 OPTIMIZATION PROBLEMS Optimization problems have not been classified in a satisfactory way within the theory of P and NP; it is these problems that motivate the immediate extensions of this theory beyond NP. Let us take the traveling salesman problem as our working example. In the problem TSP we are given the distance matrix of a set of cities; we want to find the shortest tour of the cities. We have studied the complexity of the TSP within the framework of P and NP only indirectly: We defined the decision version TSP (D), and proved it NP-complete (corollary to Theorem 9.7). For the purpose of understanding better the complexity of the traveling salesman problem, we now introduce two more variants. EXACT TSP: Given a distance matrix and an integer B, is the length of the shortest tour equal to B? Also, TSP COST: Given a distance matrix, compute the length of the shortest tour. The four variants can be ordered in "increasing complexity" as follows: TSP (D); EXACTTSP; TSP COST; TSP. Each problem in this progression can be reduced to the next. For the last three problems this is trivial; for the first two one has to notice that the reduction in 411 j ;1 17.1 Optimization Problems 413 I 412 Chapter 17: THE POLYNOMIALHIERARCHY the corollary to Theorem 9.7 proving that TSP (D) is NP-complete can be used with DP.
    [Show full text]
  • Complexity Theory
    Complexity Theory Course Notes Sebastiaan A. Terwijn Radboud University Nijmegen Department of Mathematics P.O. Box 9010 6500 GL Nijmegen the Netherlands [email protected] Copyright c 2010 by Sebastiaan A. Terwijn Version: December 2017 ii Contents 1 Introduction 1 1.1 Complexity theory . .1 1.2 Preliminaries . .1 1.3 Turing machines . .2 1.4 Big O and small o .........................3 1.5 Logic . .3 1.6 Number theory . .4 1.7 Exercises . .5 2 Basics 6 2.1 Time and space bounds . .6 2.2 Inclusions between classes . .7 2.3 Hierarchy theorems . .8 2.4 Central complexity classes . 10 2.5 Problems from logic, algebra, and graph theory . 11 2.6 The Immerman-Szelepcs´enyi Theorem . 12 2.7 Exercises . 14 3 Reductions and completeness 16 3.1 Many-one reductions . 16 3.2 NP-complete problems . 18 3.3 More decision problems from logic . 19 3.4 Completeness of Hamilton path and TSP . 22 3.5 Exercises . 24 4 Relativized computation and the polynomial hierarchy 27 4.1 Relativized computation . 27 4.2 The Polynomial Hierarchy . 28 4.3 Relativization . 31 4.4 Exercises . 32 iii 5 Diagonalization 34 5.1 The Halting Problem . 34 5.2 Intermediate sets . 34 5.3 Oracle separations . 36 5.4 Many-one versus Turing reductions . 38 5.5 Sparse sets . 38 5.6 The Gap Theorem . 40 5.7 The Speed-Up Theorem . 41 5.8 Exercises . 43 6 Randomized computation 45 6.1 Probabilistic classes . 45 6.2 More about BPP . 48 6.3 The classes RP and ZPP .
    [Show full text]
  • Syllabus Computability Theory
    Syllabus Computability Theory Sebastiaan A. Terwijn Institute for Discrete Mathematics and Geometry Technical University of Vienna Wiedner Hauptstrasse 8–10/E104 A-1040 Vienna, Austria [email protected] Copyright c 2004 by Sebastiaan A. Terwijn version: 2020 Cover picture and above close-up: Sunflower drawing by Alan Turing, c copyright by University of Southampton and King’s College Cambridge 2002, 2003. iii Emil Post (1897–1954) Alonzo Church (1903–1995) Kurt G¨odel (1906–1978) Stephen Cole Kleene Alan Turing (1912–1954) (1909–1994) Contents 1 Introduction 1 1.1 Preliminaries ................................ 2 2 Basic concepts 3 2.1 Algorithms ................................. 3 2.2 Recursion .................................. 4 2.2.1 Theprimitiverecursivefunctions . 4 2.2.2 Therecursivefunctions . 5 2.3 Turingmachines .............................. 6 2.4 Arithmetization............................... 10 2.4.1 Codingfunctions .......................... 10 2.4.2 Thenormalformtheorem . 11 2.4.3 The basic equivalence and Church’s thesis . 13 2.4.4 Canonicalcodingoffinitesets. 15 2.5 Exercises .................................. 15 3 Computable and computably enumerable sets 19 3.1 Diagonalization............................... 19 3.2 Computablyenumerablesets . 19 3.3 Undecidablesets .............................. 22 3.4 Uniformity ................................. 24 3.5 Many-onereducibility ........................... 25 3.6 Simplesets ................................. 26 3.7 Therecursiontheorem ........................... 28 3.8 Exercises
    [Show full text]
  • Lower Bounds from Learning Algorithms
    Circuit Lower Bounds from Nontrivial Learning Algorithms Igor C. Oliveira Rahul Santhanam Charles University in Prague University of Oxford Motivation and Background Previous Work Lemma 1 [Speedup Phenomenon in Learning Theory]. From PSPACE BPTIME[exp(no(1))], simple padding argument implies: DSPACE[nω(1)] BPEXP. Some connections between algorithms and circuit lower bounds: Assume C[poly(n)] can be (weakly) learned in time 2n/nω(1). Lower bounds Lemma [Diagonalization] (3) (the proof is sketched later). “Fast SAT implies lower bounds” [KL’80] against C ? Let k N and ε > 0 be arbitrary constants. There is L DSPACE[nω(1)] that is not in C[poly]. “Nontrivial” If Circuit-SAT can be solved efficiently then EXP ⊈ P/poly. learning algorithm Then C-circuits of size nk can be learned to accuracy n-k in Since DSPACE[nω(1)] BPEXP, we get BPEXP C[poly], which for a circuit class C “Derandomization implies lower bounds” [KI’03] time at most exp(nε). completes the proof of Theorem 1. If PIT NSUBEXP then either (i) NEXP ⊈ P/poly; or 0 0 Improved algorithmic ACC -SAT ACC -Learning It remains to prove the following lemmas. upper bounds ? (ii) Permanent is not computed by poly-size arithmetic circuits. (1) Speedup Lemma (relies on recent work [CIKK’16]). “Nontrivial SAT implies lower bounds” [Wil’10] Nontrivial: 2n/nω(1) ? (Non-uniform) Circuit Classes: If Circuit-SAT for poly-size circuits can be solved in time (2) PSPACE Simulation Lemma (follows [KKO’13]). 2n/nω(1) then NEXP ⊈ P/poly. SETH: 2(1-ε)n ? ? (3) Diagonalization Lemma [Folklore].
    [Show full text]
  • A Superpolynomial Lower Bound on the Size of Uniform Non-Constant-Depth Threshold Circuits for the Permanent
    A Superpolynomial Lower Bound on the Size of Uniform Non-constant-depth Threshold Circuits for the Permanent Pascal Koiran Sylvain Perifel LIP LIAFA Ecole´ Normale Superieure´ de Lyon Universite´ Paris Diderot – Paris 7 Lyon, France Paris, France [email protected] [email protected] Abstract—We show that the permanent cannot be computed speak of DLOGTIME-uniformity), Allender [1] (see also by DLOGTIME-uniform threshold or arithmetic circuits of similar results on circuits with modulo gates in [2]) has depth o(log log n) and polynomial size. shown that the permanent does not have threshold circuits of Keywords-permanent; lower bound; threshold circuits; uni- constant depth and “sub-subexponential” size. In this paper, form circuits; non-constant depth circuits; arithmetic circuits we obtain a tradeoff between size and depth: instead of sub-subexponential size, we only prove a superpolynomial lower bound on the size of the circuits, but now the depth I. INTRODUCTION is no more constant. More precisely, we show the following Both in Boolean and algebraic complexity, the permanent theorem. has proven to be a central problem and showing lower Theorem 1: The permanent does not have DLOGTIME- bounds on its complexity has become a major challenge. uniform polynomial-size threshold circuits of depth This central position certainly comes, among others, from its o(log log n). ]P-completeness [15], its VNP-completeness [14], and from It seems to be the first superpolynomial lower bound on Toda’s theorem stating that the permanent is as powerful the size of non-constant-depth threshold circuits for the as the whole polynomial hierarchy [13].
    [Show full text]
  • Logic and Complexity
    o| f\ Richard Lassaigne and Michel de Rougemont Logic and Complexity Springer Contents Introduction Part 1. Basic model theory and computability 3 Chapter 1. Prepositional logic 5 1.1. Propositional language 5 1.1.1. Construction of formulas 5 1.1.2. Proof by induction 7 1.1.3. Decomposition of a formula 7 1.2. Semantics 9 1.2.1. Tautologies. Equivalent formulas 10 1.2.2. Logical consequence 11 1.2.3. Value of a formula and substitution 11 1.2.4. Complete systems of connectives 15 1.3. Normal forms 15 1.3.1. Disjunctive and conjunctive normal forms 15 1.3.2. Functions associated to formulas 16 1.3.3. Transformation methods 17 1.3.4. Clausal form 19 1.3.5. OBDD: Ordered Binary Decision Diagrams 20 1.4. Exercises 23 Chapter 2. Deduction systems 25 2.1. Examples of tableaux 25 2.2. Tableaux method 27 2.2.1. Trees 28 2.2.2. Construction of tableaux 29 2.2.3. Development and closure 30 2.3. Completeness theorem 31 2.3.1. Provable formulas 31 2.3.2. Soundness 31 2.3.3. Completeness 32 2.4. Natural deduction 33 2.5. Compactness theorem 36 2.6. Exercices 38 vi CONTENTS Chapter 3. First-order logic 41 3.1. First-order languages 41 3.1.1. Construction of terms 42 3.1.2. Construction of formulas 43 3.1.3. Free and bound variables 44 3.2. Semantics 45 3.2.1. Structures and languages 45 3.2.2. Structures and satisfaction of formulas 46 3.2.3.
    [Show full text]
  • ECC 2015 English
    © Springer-Verlag 2015 SpringerMedizin.at/memo_inoncology SpringerMedizin.at 2/15 /memo_inoncology memo – inOncology SPECIAL ISSUE Congress Report ECC 2015 A GLOBAL CONGRESS DIGEST ON NSCLC Report from the 18th ECCO- 40th ESMO European Cancer Congress, Vienna 25th–29th September 2015 Editorial Board: Alex A. Adjei, MD, PhD, FACP, Roswell Park, Cancer Institute, New York, USA Wolfgang Hilbe, MD, Departement of Oncology, Hematology and Palliative Care, Wilhelminenspital, Vienna, Austria Massimo Di Maio, MD, National Institute of Tumor Research and Th erapy, Foundation G. Pascale, Napoli, Italy Barbara Melosky, MD, FRCPC, University of British Columbia and British Columbia Cancer Agency, Vancouver, Canada Robert Pirker, MD, Medical University of Vienna, Vienna, Austria Yu Shyr, PhD, Department of Biostatistics, Biomedical Informatics, Cancer Biology, and Health Policy, Nashville, TN, USA Yi-Long Wu, MD, FACS, Guangdong Lung Cancer Institute, Guangzhou, PR China Riyaz Shah, PhD, FRCP, Kent Oncology Centre, Maidstone Hospital, Maidstone, UK Filippo de Marinis, MD, PhD, Director of the Th oracic Oncology Division at the European Institute of Oncology (IEO), Milan, Italy Supported by Boehringer Ingelheim in the form of an unrestricted grant IMPRESSUM/PUBLISHER Medieninhaber und Verleger: Springer-Verlag GmbH, Professional Media, Prinz-Eugen-Straße 8–10, 1040 Wien, Austria, Tel.: 01/330 24 15-0, Fax: 01/330 24 26-260, Internet: www.springer.at, www.SpringerMedizin.at. Eigentümer und Copyright: © 2015 Springer-Verlag/Wien. Springer ist Teil von Springer Science + Business Media, springer.at. Leitung Professional Media: Dr. Alois Sillaber. Fachredaktion Medizin: Dr. Judith Moser. Corporate Publishing: Elise Haidenthaller. Layout: Katharina Bruckner. Erscheinungsort: Wien. Verlagsort: Wien. Herstellungsort: Linz. Druck: Friedrich VDV, Vereinigte Druckereien- und Verlags-GmbH & CO KG, 4020 Linz; Die Herausgeber der memo, magazine of european medical oncology, übernehmen keine Verantwortung für diese Beilage.
    [Show full text]
  • Lecture 10: Logspace Division and Its Consequences 1. Overview
    IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 10: Logspace Division and Its Consequences David Mix Barrington and Alexis Maciel July 28, 2000 1. Overview Building on the last two lectures, we complete the proof that DIVISION is in FOMP (first-order with majority quantifiers, BIT, and powering modulo short numbers) and thus in both L-uniform TC0 and L itself. We then examine the prospects for improving this result by putting DIVISION in FOM or truly uniform TC0, and look at some consequences of the L-uniform result for complexity classes with sublogarithmic space. We showed last time that we can divide a long number by a nice long number, • that is, a product of short powers of distinct primes. We also showed that given any Y , we can find a nice number D such that Y=2 D Y . We finish the proof by finding an approximation N=A for D=Y , where≤ A ≤is nice, that is good enough so that XN=AD is within one of X=Y . b c We review exactly how DIVISION, ITERATED MULTIPLICATION, and • POWERING of long integers (poly-many bits) are placed in FOMP by this argument. We review the complexity of powering modulo a short integer, and consider • how this affects the prospects of placing DIVISION and the related problems in FOM. Finally, we take a look at sublogarithmic space classes, in particular problems • solvable in space O(log log n). These classes are sensitive to the definition of the model. We argue that the more interesting classes are obtained by marking the space bound in the memory before the machine starts.
    [Show full text]
  • On the Weakness of Sharply Bounded Polynomial Induction
    On the Weakness of Sharply Bounded Polynomial Induction Jan Johannsen Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg May 4, 1994 Abstract 0 We shall show that if the theory S2 of sharply bounded polynomial induction is extended 0 by symbols for certain functions and their defining axioms, it is still far weaker than T2 , which has ordinary sharply bounded induction. Furthermore, we show that this extended 0 b 0 system S2+ cannot Σ1-define every function in AC , the class of functions computable by polynomial size constant depth circuits. 1 Introduction i i The theory S2 of bounded arithmetic and its fragments S2 and T2 (i ≥ 0) were defined in [Bu]. The language of these theories comprises the usual language of arithmetic plus additional 1 |x|·|y| symbols for the functions ⌊ 2 x⌋, |x| := ⌈log2(x + 1)⌉ and x#y := 2 . Quantifiers of the form ∀x≤t , ∃x≤t are called bounded quantifiers. If the bounding term t is furthermore of the form b b |s|, the quantifier is called sharply bounded. The classes Σi and Πi of the bounded arithmetic hierarchy are defined in analogy to the classes of the usual arithmetical hierarchy, where the i counts alternations of bounded quantifiers, ignoring the sharply bounded quantifiers. i S2 is axiomatized by a finite set of open axioms (called BASIC) plus the schema of poly- b nomial induction (PIND) for Σi -formulae ϕ: 1 ϕ(0) ∧ ∀x ( ϕ(⌊ x⌋) → ϕ(x) ) → ∀x ϕ(x) 2 i b T2 is the same with the ordinary induction scheme for Σi -formulae replacing PIND.
    [Show full text]
  • An Introduction to Computability Theory
    AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of com- putability theory. Based on Robert Soare's textbook, The Art of Turing Computability: Theory and Applications, we examine concepts including the Halting problem, properties of Turing jumps and degrees, and Post's Theo- rem.1 In the paper, we will assume the reader has a conceptual understanding of computer programs. Contents 1. Basic Computability 1 2. The Halting Problem 2 3. Post's Theorem: Jumps and Quantifiers 3 3.1. Arithmetical Hierarchy 3 3.2. Degrees and Jumps 4 3.3. The Zero-Jump, 00 5 3.4. Post's Theorem 5 Acknowledgments 8 References 8 1. Basic Computability Definition 1.1. An algorithm is a procedure capable of being carried out by a computer program. It accepts various forms of numerical inputs including numbers and finite strings of numbers. Computability theory is a branch of mathematical logic that focuses on algo- rithms, formally known in this area as computable functions, and studies the degree, or level of computability that can be attributed to various sets (these concepts will be formally defined and elaborated upon below). This field was founded in the 1930s by many mathematicians including the logicians: Alan Turing, Stephen Kleene, Alonzo Church, and Emil Post. Turing first pioneered computability theory when he introduced the fundamental concept of the a-machine which is now known as the Turing machine (this concept will be intuitively defined below) in his 1936 pa- per, On computable numbers, with an application to the Entscheidungsproblem[7].
    [Show full text]