And Micro-Sized Mgal2o4 Spinel by Combustion Method

Total Page:16

File Type:pdf, Size:1020Kb

And Micro-Sized Mgal2o4 Spinel by Combustion Method Journal of Advanced Ceramics 2017, 6(3): 187–195 ISSN 2226-4108 https://doi.org/10.1007/s40145-017-0230-8 CN 10-1154/TQ Research Article Technical aspect for oxidation of magnesium and aluminum nitrates to manufacture nano- and micro-sized MgAl2O4 spinel by combustion method Shiva SALEM* Faculty of Chemical Engineering, Urmia University of Technology, 57166-17165, Urmia, Iran Received: March 09, 2017; Revised: April 19, 2017; Accepted: May 06, 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract: In the present investigation, the nano- and micro-sized powders were synthesized by stoichiometric contents of magnesium and aluminum nitrates using combustion–oxidation method. The study was conducted over a wide range of operating conditions, in terms of fuel ratio and calcination temperature. The characteristics of magnesium aluminate powders were studied by differential thermal analysis and thermogravimetry (DTA–TG), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The thermal stability of powders was evaluated by calcination at different temperatures. Differences of the specific surface areas were related to the composition and crystallite size. The importance of fuel ratio and calcination temperature to achieve the nano- and micro-sized oxide was discussed in detail. The fuel ratio of 0.56 and calcination at 800 ℃ provided the conditions to achieve the nano-scale magnesium aluminate powders, smaller than 20 nm. The application of presented algorithm can be an important tool for control of particle size in the nano- and micro-scale. Keywords: magnesium aluminate spinel; oxidation; nano-crystallite; combustion; calcination 1 Introduction (9106 (℃)1 between 30 and 1400 ℃), and high thermal shock resistance [1]. Several applications were Recently, magnesium aluminate (MgAl2O4), which is a reported for magnesium aluminate, and numerous ceramic composition, is employed at different technologies were developed for manufacturing spinel engineering fields. The important properties that make powders depending on application. The control of magnesium aluminate as a superior material are high particle size plays an important role in the application melting point (2135 ℃), relatively low density demand. The major applications of this composition can (3.58 g/cm3), excellent transmittance in the wavelength be summarized as: (i) catalyst support especially for of 0.25–5.0 m, high bending strength (180 MPa) and high temperature reactions [2,3]; (ii) fabrication of Vickers hardness (16 GPa), inertness in acidic refractory [4,5]; (iii) manufacture of optical devices and environments, low thermal expansion coefficient sensors [6,7]; (iv) advance applications such as electrochemical fields, dentistry, and reinforcing fibers [6]. * Corresponding author. MgAl2O4 is crystallized in the cubic form in which E-mail: [email protected] the oxygen atoms are arranged in a cubic close-packed www.springer.com/journal/40145 188 J Adv Ceram 2017, 6(3): 187–195 lattice [8]. Different techniques were developed for environmental risk due to generation of nontoxic gases. production of MgAl2O4 particles. High energy ball Glycine, which is one of the simple amino acids, is milling process is the oldest technology for the direct known to act as a complexing agent for a number of fabrication of magnesium aluminate spinel in the metal ions [30], because it contains a carboxylic acid micro-scale [9–12]. In general, the wet-chemical group at one end and amino group at the other end. process [6], precipitation method [13], sol–gel route Moreover, glycine molecules can effectively maintain [14–16], polymerized complex method [17], the compositional homogeneity among the microwave [18,19], and pyrolysis [20] techniques were constituents. reported as processes for the preparation of spinel. The calcination of precursor yields dense particles Depending upon the method used, particles with the with high crystallinity, while the initial powders contain various morphology, stoichiometry, and level of amorphous phase. On the other hand, the increment in crystallinity have been produced. These factors calcination temperature increases the rate of grain essentially affect the quality of final product through the growth and consequently affects the crystalline influence on the thermal behavior, mechanical structure of material. The morphology and particle size characteristics, and electrical and optical properties. of spinel should be considered in calcination of Although, the sol–gel method using polyvinyl precursor to achieve nano-sized particles. The alcohol for polymerizing was developed for the optimization of spinel preparation and calcination synthesis of high surface area MgAl2O4 spinel conditions promises the direction to obtain nano-sized precursors, this technique involved quite long particles. Although different fuels were employed for processing time. As the contrary solution, combustion production of MgAl2O4, the effect of fuel ratio on synthesis has emerged as a simple, fast, and crystallite size, morphology, and purity of product was economically viable procedure to prepare pure and not studied fundamentally. The compromise between nano-structured powders. This quick, straightforward fuel ratio and calcination temperature should be taken process can be used to synthesize homogeneous, into account in production of spinel. In this article, the high-purity crystalline powders including ultrafine effects of above factors on technical characteristics of particles with a broad range of particle size. In this powders were investigated to optimize the procedure technique, an aqueous solution containing the desired for achieving pure nano-sized particles. metal ions and a suitable fuel is prepared. A viscous gel is obtained during the heat treatment and exothermic reaction which take place rapidly, leading to formation 2 Experimental procedure of fluffy powders. The calcination of autoignition product increases the crystallinity of spinel. The 2. 1 Materials and powder preparation combustion technique is an inexpensive method that Magnesium nitrate, Mg(NO ) ·3H O, and aluminum allows the preparation of highly purified, nano-sized 3 2 2 nitrate, Al(NO ) ·9H O, both manufactured by crystalline powders at lower calcination temperatures in 3 3 2 Sigma-Adrich Company, were used as starting significantly shorter time [21–30]. materials. The purity of nitrate salts was above 99 wt%. Urea–formaldehyde [21], urea and Glycine, NH CH COOH (produced by the same triethylenetetramine mixture [22], sugar–urea [23], 2 2 company, 99.5 wt%), was applied as fuel. 61.2 g glycine [24], starch [25], alanine [14], citrate [26–28], magnesium nitrate and 227.2 g aluminum nitrate were and polyacrylamide [29] were used as fuels in the dissolved in 300 mL de-ionized water, and the molar combustion synthesis of nano-scale MgAl O powders. 2 4 ratio of Mg/Al was considered to be 0.50. Generally, in the combustion process, a thermally Mg(NO ) 3H O 2Al(NO ) 9H O induced redox reaction takes place between cations and 32 2 33 2 2+ 3+ fuel. The metal nitrates act as cation sources, whereas Mg Al 8NO32 21H O (1) organic compounds are employed as fuels. Although The lean and rich contents of glycine were MgAl2O4 spinel with high surface area was produced considered to evaluate the effect of fuel amount on at relatively low temperature by urea–formaldehyde, technical characteristics of final product. The the fuels like glycine and starch can be economically appropriate amounts of glycine were added to the applied for production of nano-sized spinel which is prepared solution for adjusting the fuel/NO3 molar ratio not only cost-effective, but it also reduces the at levels of 0.56 and 0.75, corresponding to 4.5 and 6.0 www.springer.com/journal/40145 J Adv Ceram 2017, 6(3): 187–195 189 moles of glycine, respectively. After stirring for 30 min 2. 2 Powder characterizations and considering the industrial feasible condition, the pH In order to investigate the effect of fuel ratio on thermal of solutions was controlled at level of 7.0 by slowly decomposition of viscous precursors, the dropping ammonia and continuously stirring by thermo-analytical measurements were carried out with magnetic mixer. The homogeneous solutions were simultaneous differential thermal analysis and heated at 110 ℃ on a hot plate to form viscous thermogravimetry (DTA–TG) instrument (Model 409, precursors. The temperature of the obtained precursors Netzsch, Germany). The heating rate was fixed at ℃ was raised to 300 by electrical furnace. The 10 ℃/min and air was used as purge gas. Approximate smoldering-type ignition causes the decomposition, 10 mg of each precursor was placed in a ceramic pan generating a large volume of gas. The combustion and the thermal treatment was performed from room occurs as flaming, gas phase reaction, or smoldering, temperature to 600 ℃. In order to better evaluate the solid–gas reaction. The flaming-type combustion can ignition of fuel after calcination, the residual hydrogen, endure for seconds or maximum 1 min, while the carbon, and nitrogen amounts were determined by smoldering type is extinguished in a few seconds. elemental analysis (Carlo Erba, Model EA 1110, Italy). During the smoldering-type combustion, the material The synthesized powders were characterized by underwent foaming followed by decomposition and it X-ray diffraction (XRD) technique (X’PERT PRO, lasted for almost 7 min, but in flaming-type
Recommended publications
  • Rediscovery of the Elements — a Historical Sketch of the Discoveries
    REDISCOVERY OF THE ELEMENTS — A HISTORICAL SKETCH OF THE DISCOVERIES TABLE OF CONTENTS incantations. The ancient Greeks were the first to Introduction ........................1 address the question of what these principles 1. The Ancients .....................3 might be. Water was the obvious basic 2. The Alchemists ...................9 essence, and Aristotle expanded the Greek 3. The Miners ......................14 philosophy to encompass a obscure mixture of 4. Lavoisier and Phlogiston ...........23 four elements — fire, earth, water, and air — 5. Halogens from Salts ...............30 as being responsible for the makeup of all 6. Humphry Davy and the Voltaic Pile ..35 materials of the earth. As late as 1777, scien- 7. Using Davy's Metals ..............41 tific texts embraced these four elements, even 8. Platinum and the Noble Metals ......46 though a over-whelming body of evidence 9. The Periodic Table ................52 pointed out many contradictions. It was taking 10. The Bunsen Burner Shows its Colors 57 thousands of years for mankind to evolve his 11. The Rare Earths .................61 thinking from Principles — which were 12. The Inert Gases .................68 ethereal notions describing the perceptions of 13. The Radioactive Elements .........73 this material world — to Elements — real, 14. Moseley and Atomic Numbers .....81 concrete basic stuff of this universe. 15. The Artificial Elements ...........85 The alchemists, who devoted untold Epilogue ..........................94 grueling hours to transmute metals into gold, Figs. 1-3. Mendeleev's Periodic Tables 95-97 believed that in addition to the four Aristo- Fig. 4. Brauner's 1902 Periodic Table ...98 telian elements, two principles gave rise to all Fig. 5. Periodic Table, 1925 ...........99 natural substances: mercury and sulfur.
    [Show full text]
  • Feb 05 2.Indd
    Pittsburgh Section http://membership.acs.org/P/Pitt Volume: LXXXX No.6 February 2005 Pittsburgh Award 2004 Pittcon 2005 The following pictures were taken at the 2004 Pittsburgh Award Dinner held on December The Pittsburgh Conference will 9, 2004 at the Sheraton Station Square Hotel. The Dinner honored 2004 Pittsburgh Award be held in Orlando, FL, February winner, Terrence J. Collins, Lord Professor of Chemistry at Carnegie Mellon University. 27 through March 4, 2005. This The Pittsburgh Award was established in 1932 by the Pittsburgh Section of the ACS to year’s theme is: Pittcon2005, recognize outstanding leadership in chemical affairs in the local and larger professional Everything Science Under the community. The award symbolizes the honor and appreciation accorded to those who have rendered distinguished service to the field of chemistry. Sun! Contents . Pittsburgh Award 2004 1 Eastern Analytical Symposium 2 Job Searching for Chemical Professionals 3 ACS Pittsburgh Chemists Club 4 “Hydrogen Storage: Prospects and Problems” SACP February Meeting 4 “Nanoparticle/Cancer Drugs” Energy Technology Group 5 Terry Collin’s Group. Seated: Terry Collins Front row: Sujit Mondal, Evan Beach, Arani “Fischer-Tropsch Synthesis: Can It Chanda, Delia Popescu, Deboshri Banerjee, Yong-Li Qian, Colin Horwitz, Paul Anastas (Pittsburgh Award Committee) Back Row: Neil Donahue (Pittsburgh Award Committee), Become a Reality for the U.S.?” Mark Beir (Pittsburgh Award Committee), Matt Stadler, Jennifer Henry, Melani Vrabel, SSP March Meeting 5 Eric Rohanna,
    [Show full text]
  • CORE MAGNESIUM NITRATE SOLUTION | FOLIAR and SOIL APPLICATION CORE MAGNESIUM NITRATE for Correction Or Prevention of Magnesium Deficiency in Most Crops
    CORE MAGNESIUM NITRATE SOLUTION | FOLIAR AND SOIL APPLICATION CORE MAGNESIUM NITRATE For Correction or Prevention of Magnesium deficiency in Most Crops GENERAL INFORMATION 7-0-0-6% Mg CORE MAGNESIUM NITRATE solution is an effective, readily available source of Increase liquid Magnesium for both soil and foliar your applications. It may be applied in water sprays, yields! with pesticides, or with most liquid fertilizers. GuARANTEEd ANALysIs: Advantages of CORE MAGNEsIuM Nitrogen (N).........................................................................7.0% NITRATE solution over dry products 7.0% Nitrate Nitrogen • Liquid CORE MAGNESIUM NITRATE is easier Magnesium (Mg)................................................................6.0% to handle and mix than dry magnesium nitrate. Derived from: Magnesium Nitrate. • Reduced time and labor cost using liquid over dry. • Less waste and lower warehousing cost. RECOMMENdEd RATEs Nuts and Pome Fruit: Apply 1 to 4 quarts per acre per application. Apply Product specifications first application at green tip and subsequent applications at 30-day intervals, CAs Number 10377-60-3 or as needed to meet nutritional requirements. Mg (NO3)2 36.61% Grapes and Berries: Apply 1 to 4 quarts per acre per application. Apply first application pre-bloom and subsequent applications at 30-day intervals, Odor None or as needed to meet nutritional requirements. Appearance Clear, colorless solution Avocados and Citrus Fruit: Apply 1 to 4 quarts per acre per application. salt Index 43 Apply first application at pre-bloom, then subsequent applications at mid salt out Temp. 15˚F crop and 3 to 4 weeks prior to harvest, or as needed to meet nutritional requirements. stone Fruit: Apply 1 to 4 quarts per acre per application.
    [Show full text]
  • Ficha CNA Mg(NO3)
    CNA CONCENTRATED NITRIC ACID (Mg(NO3)2 Process) Concentrated nitric acid (CNA) is used in the production of explosives and chemicals such as isocyanates and nitrobenzene. The concentrated Nitric Acid can be obtained from weak Nitric Acid (57-60%)with an extractive distillation column as explained in this brochure. ESPINDESA can integrate the production of Weak Acid and Concentrated NitricAcid Processes. Arapiles, 13-28015 Madrid. Spain Tel. +34 914483100 Fax +34 914480456 email: [email protected] web: www.espindesa.es CNA CONCENTRATED NITRIC ACID (Mg(NO3)2 Process) PROCESS DESCRIPTION The Salt Evaporator drum is provided with an U tube heater to avoid freezing during shutdowns. The attached drawing shows the critical Concentrated Nitric Acid operation zones for magnesium nitrate. The water vapors produced in the Salt Evaporator during the salt concentration operation are condensed in The maximum boiling azeotrope of nitric acid and water (69 percent nitric the Salt Concentrator Condenser and drained to Battery Limits. acid) requires extractive distillation to produce concentrated nitric acid when starting with acid that is weaker than the azeotrope. Sulphuric acid The uncondensed gases leaving the dehydrating Tower Condenser pass has been used for this extractive distillation, but its use requires high through the Gas-Liquid Separator and, jointly with the non condensed maintenance costs. Magnesium nitrate is being used in several commercial vapors from the Salt Concentrator Condenser, are aspired by the Vacuum plants in extractive distillation of nitric acid and was selected rather than Pumps used to produce vacuum in the Dehydrating Tower and in the Salt other nitrate salts since it has the most favourable combination of physical Concentrator Condenser.
    [Show full text]
  • Safety Data Sheet Spectrus* Nx106
    Version: 3.0 Effective Date: Jun-18-2015 Previous Date: Jun-05-2015 SAFETY DATA SHEET SPECTRUS* NX106 1. Identification Product identifier SPECTRUS NX106 Other means of identification None. Recommended use Biocide Recommended restrictions None known. Company/undertaking identification GE Betz, Inc. 4636 Somerton Road Trevose, PA 19053 T 215 355 3300, F 215 953 5524 Emergency telephone (800) 877 1940 2. Hazard(s) identification Physical hazards Not classified. Health hazards Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Sensitization, skin Category 1 Specific target organ toxicity, single exposure Category 3 respiratory tract irritation OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Causes severe skin burns and eye damage. May cause an allergic skin reaction. Causes serious eye damage. May cause respiratory irritation. Precautionary statement Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe mist or vapor. Wash thoroughly after handling. Use only outdoors or in a well-ventilated area. Contaminated work clothing must not be allowed out of the workplace. Wear protective gloves/protective clothing/eye protection/face protection. Response If swallowed: Rinse mouth. Do NOT induce vomiting. If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. If inhaled: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center/doctor/. Specific treatment (see this label). If skin irritation or rash occurs: Get medical advice/attention.
    [Show full text]
  • CHEM 1412. Review for Test 1 (Chapter 13, 14, 15). Ky75
    CHEM 1412. Review for Test 1 (chapter 13, 14, 15). Ky75 1. A solution is prepared by adding 40.3 g of Mg(NO3)2 to 127 g of water. Calculate the mole fraction and molality of magnesium nitrate in this solution. 2. What is the boiling point of an aqueous solution of a nonelectrolyte that has an osmotic pressure of 10.50 atm at 25°C? Kb of water is 0.52°C/m. Assume the density of the solution is the same as that of pure water. A) 0.22°C B) 0.429°C C) 100.43°C D) 99.78°C E) 100.22°C 3. Which of the following compounds should be soluble in CCl4? A) NaCl B) H2O C) NaOH D) C8H18 E) None of these 4. Arrange the following aqueous solutions in order of increasing boiling points: 0.050 m Mg(NO3)2; 0.100 m ethanol; 0.090 m NaCl. A) Mg(NO3)2 < NaCl < ethanol B) ethanol < Mg(NO3)2 < NaCl C) ethanol < NaCl < Mg(NO3)2 D) NaCl < ethanol < Mg(NO3)2 E) Mg(NO3)2 < ethanol < NaCl 5. The density of a 20.3 M CH3OH (methanol) solution is 0.858 g/mL. What is the molality of this solution? H2O is the solvent. A) 17.4 m B) 20.8 m C) 23.7 m D) 70.0 m E) 97.6 m 6. Explain the following, on the basis of osmosis or osmotic pressure: When sprinkled with sugar, a dish of sliced fruit will form its own juice.
    [Show full text]
  • Secretariat GENERAL
    UNITED NATIONS ST Distr. Secretariat GENERAL ST/SG/AC.10/C.3/2005/48 13 September 2005 Original: ENGLISH COMMITTEE OF EXPERTS ON THE TRANSPORT OF DANGEROUS GOODS AND ON THE GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS Sub-Committee of Experts on the Transport of Dangerous Goods Twenty-eighth session, 28 November-7 December 2005 Item 5 of the provisional agenda LISTING, CLASSIFICATION AND PACKING Classification of magnesium nitrate hexahydrate Submitted by the expert from South Africa Background Magnesium nitrate (UN 1474) is classified in the UN Model Regulations as an oxidizer of Division 5.1, Packing Group III. Magnesium nitrate exists in multiple forms differentiated by the degree of hydration e.g. dihydrate, tetrahydrate and hexahydrate. Sasol Nitro in South Africa is a major manufacturer of magnesium nitrate hexahydrate and produces and exports about 25 % of the estimated world production of 20 kilo tonnes per year. The hexahydrate of magnesium nitrate is solely supplied to the agricultural sector where it is used in fertilizers and, principally, in fertigation (liquid fertilizers). See annex A for the Technical Data Sheet. Discussion The TNO Prins Maurits Laboratory in The Netherlands and the Fire Engineering Laboratory of the South African Bureau of Standards tested the magnesium nitrate hexahydrate in accordance with Test 0.1: Test for oxidizing solids of the UN Manual of tests and criteria. The results obtained are given in the table below. ST/SG/AC.10/C.3/2005/48 page 2 Substance Ratio Mean burning time, s TNO Prins Maurits Fire Engineering Laboratory, Laboratory, The SABS Netherlands Reference 3:7 116 60 2:3 39 42 3:2 8 18 Magnesium nitrate 1:1 >180 a 720 hexahydrate 4:1 >180 a 186 a No flames were observed, only yellow-brown smoke.
    [Show full text]
  • PB1616-Plant Nutrition and Fertilizers for Greenhouse Production
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Commercial Horticulture UT Extension Publications 2-1999 PB1616-Plant Nutrition and Fertilizers for Greenhouse Production The University of Tennessee Agricultural Extension Service Follow this and additional works at: https://trace.tennessee.edu/utk_agexcomhort Part of the Horticulture Commons Recommended Citation "PB1616-Plant Nutrition and Fertilizers for Greenhouse Production," The University of Tennessee Agricultural Extension Service, PB1616-1M-2/99 E12-2015-00-104-99, https://trace.tennessee.edu/ utk_agexcomhort/4 The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or ecommendations.r Current information about UT Ag Research can be found at the UT Ag Research website. This Greenhouse Production is brought to you for free and open access by the UT Extension Publications at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Commercial Horticulture by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Agricultural Extension Service The University of Tennessee PB1616 PlantNutrition &Fertilizers For Greenhouse Production 1 Table of Contents Plant Nutrition: The Basics______________________________________________________________ 3 Fertilizer Salts ______________________________________________________________________
    [Show full text]
  • Magnesium Nitrate MSDS # 429.00
    Material Safety Data Sheet Page 1 of 2 Magnesium Nitrate MSDS # 429.00 Section 1: Product and Company Identification Magnesium Nitrate Synonyms/General Names: Magnesium nitrate, hexahydrate Product Use: For educational use only Manufacturer: Columbus Chemical Industries, Inc., Columbus, WI 53925. 24 Hour Emergency Information Telephone Numbers CHEMTREC (USA): 800-424-9300 CANUTEC (Canada): 613-424-6666 ScholAR Chemistry; 5100 W. Henrietta Rd, Rochester, NY 14586; (866) 260-0501; www.Scholarchemistry.com Section 2: Hazards Identification White powder, no odor. HMIS (0 to 4) Health 1 DANGER! Strong oxidizer and body tissue irritant Fire Hazard 0 Target organs: None known. Reactivity 1 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Section 3: Composition / Information on Ingredients Magnesium Nitrate (13446-18-9), >99% Section 4: First Aid Measures Always seek professional medical attention after first aid measures are provided. Eyes: Immediately flush eyes with excess water for 15 minutes, lifting lower and upper eyelids occasionally. Skin: Immediately flush skin with excess water for 15 minutes while removing contaminated clothing. Ingestion: Call Poison Control immediately. Rinse mouth with cold water. Give victim 1-2 cups of water or milk to drink. Induce vomiting immediately. Inhalation: Remove to fresh air. If not breathing, give artificial respiration. Section 5: Fire Fighting Measures Oxidizing agent. When heated to decomposition, emits acrid fumes of NOx. 0 Protective equipment and precautions for firefighters: Use foam or dry chemical to extinguish fire. 1 1 Firefighters should wear full fire fighting turn-out gear and respiratory protection (SCBA). Cool ox container with water spray.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET According to JIS Z 7253:2019 Revision Date 16-Apr-2021 Version 2.01 Section 1: PRODUCT AND COMPANY IDENTIFICATION Product name Magnesium Nitrate Hexahydrate, 99.5% Product code 130-09532 Manufacturer FUJIFILM Wako Pure Chemical Corporation 1-2 Doshomachi 3-Chome Chuo-ku, Osaka 540-8605, Japan Phone: +81-6-6203-3741 Fax: +81-6-6203-5964 Supplier FUJIFILM Wako Pure Chemical Corporation 1-2 Doshomachi 3-Chome, Chuo-ku, Osaka 540-8605, Japan Phone: +81-6-6203-3741 Fax: +81-6-6203-2029 Emergency telephone number +81-6-6203-3741 / +81-3-3270-8571 Recommended uses and For research use only restrictions on use Section 2: HAZARDS IDENTIFICATION GHS classification Classification of the substance or mixture Specific target organ toxicity (single exposure) Category 1 Category 1 blood system Specific target organ toxicity (repeated exposure) Category 1 Category 1 blood system Pictograms Signal word Danger Hazard statements H370 - Causes damage to the following organs: blood system H372 - Causes damage to the following organs through prolonged or repeated exposure: blood system Precautionary statements-(Prevention) • Do not breathe dust/fume/gas/mist/vapors/spray • Wash face, hands and any exposed skin thoroughly after handling • Do not eat, drink or smoke when using this product Precautionary statements-(Response) • IF exposed: Call a POISON CENTER or doctor/physician Precautionary statements-(Storage) • Store locked up. Precautionary statements-(Disposal) • Dispose of contents/container to an approved waste disposal plant Others Other hazards Not available __________________________________________________________________________________________ Page 1 / 6 W01W0113-0953 JGHEEN Magnesium Nitrate Hexahydrate, 99.5% Revision Date 16-Apr-2021 __________________________________________________________________________________________ Section 3: COMPOSITION/INFORMATION ON INGREDIENTS Single Substance or Mixture Substance Formula Mg(NO3)2·6H2O Chemical Name Weight-% Molecular weight ENCS ISHL No.
    [Show full text]
  • Nitric Acid Concentration Dilute Nitric Acid Can Be Concentrated by Evaporation of the Water from the Mixture
    Both the single step evaporators and the distillation process utilize the Chemetics natural Nitric Acid circulation thermosyphon evaporators that have proven to be extremely reliable and easy to Concentration operate. Gravity flow is used to transport the hot nitric Nitric acid is used in a wide variety of chemical acid between the different concentration steps processes. Concentration of nitric acid is wherever possible to improve plant safety. complicated by the fact that nitric acid has a maximum azeotrope at ~67wt% as shown in the chart below. Weak Nitric Acid Concentration Dilute nitric acid can be concentrated by evaporation of the water from the mixture. The maximum concentration that can be achieved for this two-component distillation process is the azeotrope concentration of ~67 wt%. Depending on the application Chemetics offers the following processes: ■ Single step concentration under vacuum for product concentrations below 25 wt% ■ Nitric Acid Distillation at atmospheric pressure for product concentrations up to 67wt% ■ Double effect concentration systems with improved energy consumption combining the single step vacuum concentration unit with the atmospheric distillation unit. This process is expecially suitable for concentration of very dilute or very large streams of nitric acid. Heat integration (feed/product interchangers) and high efficiency distillation tower packing (to minimize the amount of reflux) are used to reduce the energy requirements of the system. Spent nitric acid streams containing Nitrous Acid (HNO2) or NOx are pre-treated in a purification column upstream of the concentration system. The NOx vapours from this column can be recovered as additional nitric acid using a NOx absorber. Further options to remove other impurities (e.g.
    [Show full text]
  • Chemical Word Equations (Key)
    Chemistry: Chemical Word Equations KEY Directions: Write a balanced chemical equation for each of the word equations below. 1. aqueous sodium chloride reacts with aqueous lead (II) nitrate to yield a lead (II) chloride precipitate and aqueous sodium nitrate sodium chloride + lead (II) nitrate lead (II) chloride + sodium nitrate NaCl + Pb(NO3)2 PbCl2 + NaNO3 2 NaCl (aq) + Pb(NO3)2 (aq) PbCl2 (ppt) + 2 NaNO3 (aq) 2. aqueous barium nitrate reacts with sulfuric acid [H2SO4(aq)] to yield a barium sulfate precipitate and nitric acid [HNO3(aq)] barium nitrate + sulfuric acid barium sulfate + nitric acid Ba(NO3)2 + H2SO4 BaSO4 + HNO3 Ba(NO3)2 (aq) + H2SO4(aq) BaSO4 (ppt) + 2 HNO3 (aq) 3. silver nitrate reacts in solution with potassium chromate to yield a silver chromate precipitate and soluble potassium nitrate silver nitrate + potassium chromate silver chromate + potassium nitrate 2 AgNO3 (s) + K2CrO4(aq) Ag2CrO4 (ppt) + 2 KNO3 (aq) 4. solid calcium carbonate reacts with hydrochloric acid [HCl(aq)] to yield aqueous calcium chloride, carbon dioxide gas, and liquid water calcium carbonate + hydrochloric acid calcium chloride + carbon dioxide + water CaCO3 (aq) + 2 HCl(aq) CaCl2 (aq) + H2CO3 (aq) CO2 (g) + H2O (l) 5. aqueous zinc chloride reacts with dihydrogen monosulfide gas to yield a zinc sulfide precipitate and hydrochloric acid zinc chloride + dihydrogen monosulfide zinc sulfide + hydrochloric acid ZnCl2 (aq) + H2S(g) ZnS (ppt) + 2 HCl (aq) 6. magnesium nitrate reacts in solution with potassium hydroxide to yield a magnesium hydroxide precipitate and soluble potassium nitrate magnesium nitrate + potassium hydroxide magnesium hydroxide + potassium nitrate Mg(NO3)2 (s) + 2 KOH (aq) Mg(OH)2 (ppt) + 2 KNO3 (aq) 7.
    [Show full text]