Deep Sea Drilling Project Initial Reports Volume 67
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ocean Trench
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Ocean trench Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. G R A D E S 5 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 11 Images, 1 Video, 2 Links For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/ocean-trench/ Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. Ocean trenches are found in every ocean basin on the planet, although the deepest ocean trenches ring the Pacific as part of the so-called “Ring of Fire” that also includes active volcanoes and earthquake zones. Ocean trenches are a result of tectonic activity, which describes the movement of the Earth’s lithosphere. In particular, ocean trenches are a feature of convergent plate boundaries, where two or more tectonic plates meet. At many convergent plate boundaries, dense lithosphere melts or slides beneath less-dense lithosphere in a process called subduction, creating a trench. Ocean trenches occupy the deepest layer of the ocean, the hadalpelagic zone. The intense pressure, lack of sunlight, and frigid temperatures of the hadalpelagic zone make ocean trenches some of the most unique habitats on Earth. -
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Of Moderate Earthquakes Along the Mexican Seismic Zone Geofísica Internacional, Vol
Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Zobin, Vyacheslav M. Distribution of (mb - Ms) of moderate earthquakes along the Mexican seismic zone Geofísica Internacional, vol. 38, núm. 1, january-march, 1999, pp. 43-48 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56838105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geofísica Internacional (1999), Vol. 38, Num. 1, pp. 43-48 Distribution of (mb - Ms) of moderate earthquakes along the Mexican seismic zone Vyacheslav M. Zobin Observatorio Vulcanológico, Universidad de Colima, 28045 Colima, Col., México. Received: August 26, 1996; accepted: August 3, 1998. RESUMEN Se estudia la distribución espacial de los valores mb-Ms para 55 sismos en el periodo de 1978 a 1994, con profundidades focales de 0 a 80 km, mb de 4.5 a 5.5, ocurridos a lo largo de la Trinchera Mesoamericana entre 95° y 107°W. Los valores mb-Ms tienen una distribución bimodal, con picos en 0.3 y 0.8 y mínimo en mb-Ms=0.6. Los eventos del primer grupo, con mb-Ms<0.6, se distribuyeron a lo largo de la trinchera en toda la región, comprendida por los bloques Michoacán, Guerrero y Oaxaca; la mayoría de los eventos del segundo grupo, con mb-Ms≥0.6, se encontraron en la parte central de la región en el bloque de Guerrero. -
I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM of SHEMYA and ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University O
Paleomagnetism Of Shemya And Adak Islands, Aleutian Islands, Alaska Item Type Thesis Authors Cameron, Christopher Paul Download date 23/09/2021 14:56:00 Link to Item http://hdl.handle.net/11122/9194 I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University of Alaska, Ph.D., 1970 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan tutc nTCCTDTATTOM MAC HTTM MTPROFIT.MFD F.VAPTT.Y AS RF.OF.TVF.D Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALE01IAGNETISM OF SHEMYA AMD ADAK ISLAUDS, ALEUTIAN ISLANDS, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Christopher P/" Cameron B. S. College, Alaska May, 1970 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALEOilAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA APPROVED: f t l ‘y l .V" ■i. n ■ ■< < ; N w 1 T *W -C ltc-JL It / _ _ ____ /vx... , ~ ~ 7 YdSV Chairman APPPvOVED: dai£ 3 / 3 0 / 7 0 Dean of the College of Earth Sciences and Mineral Industry Vice President for Research and Advanced Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Shemya and Adak Islands, Aleutian Islands, Alaska. The specimens were collected and measured using standard paleomagnetic methods. Alternating field demagnetization techniques were applied to test the stability of the remanence and to remove unwanted secondary components of magnetization. -
The Silent Earthquake of 2002 in the Guerrero Seismic Gap, Mexico
The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw=7.6): inversion of slip on the plate interface and some implications (Submitted to Earth and Planetary Science Letters) A. Iglesiasa, S.K. Singha, A. R. Lowryb, M. Santoyoa, V. Kostoglodova, K. M. Larsonc, S.I. Franco-Sáncheza and T. Mikumoa a Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., México b Department of Physics, University of Colorado, Boulder, Colorado, USA c Department of Aerospace Engineering Science, University of Colorado, Boulder, Colorado, USA Abstract. We invert GPS position data to map the slip on the plate interface during an aseismic, slow-slip event, which occurred in 2002 in the Guerrero seismic gap of the Mexican subduction zone, lasted for ∼4 months, and was detected by 7 continuous GPS receivers located over an area of ∼550x250 km2. Our best model, under physically reasonable constraints, shows that the slow slip occurred on the transition zone at a distance range of 100 to 170 km from the trench. The average slip was about 22.5 cm 27 (M0∼2.97 x10 dyne-cm, Mw=7.6). This model implies an increased shear stress at the bottom of the locked, seismogenic part of the interface which lies updip from the transition zone, and, hence, an enhanced seismic hazard. The results from other similar subduction zones also favor this model. However, we cannot rule out an alternative model that requires slow slip to invade the seismogenic zone as well. A definitive answer to this critical issue would require more GPS stations and long-term monitoring. -
1. Introduction1
Kimura, G., Silver, E.A., Blum, P., et al., 1997 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 170 1. INTRODUCTION1 Shipboard Scientific Party2 The planet is profoundly affected by the distributions and rates of al., 1990), which extends from the Caribbean coast of Colombia to materials that enter subduction zones. The material that is accreted to Limon, Costa Rica. In Costa Rica, the boundary consists of a diffuse the upper plate results in growth of the continental mass, and fluids left lateral shear zone from Limon to the Middle America Trench squeezed out of this accreted mass have significance for biologic and (Ponce and Case, 1987; Jacob and Pacheco, 1991; Guendel and geochemical processes occurring on the margins. Material that is not Pacheco, 1992; Goes et al., 1993; Fan et al., 1993; Marshall et al., accreted or underplated to the margin bypasses surface residency and 1993; Fisher et al., 1994; Protti and Schwartz, 1994). The north- descends into the mantle, chemically affecting both the mantle and trending boundary between the Cocos and Nazca Plates is the right- magmas generated therefrom. Subduction of the igneous ocean crust lateral Panama fracture zone. West of this fracture zone is the Cocos returns rocks to the mantle that earlier had been fractionated from it Ridge, a trace of the Galapagos Hotspot, which subducts beneath the in spreading centers, along with products of chemical alteration that Costa Rican segment of the Panama Block. occur on the seafloor. Sediments that are subducted include biogenic, The Nicoya Peninsula is composed of Late Jurassic to Late Creta- volcanogenic, authigenic, and terrigenous debris. -
The Caribbean-North America-Cocos Triple Junction and the Dynamics of the Polochic-Motagua Fault Systems
The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, E. N. Chiquin, S. Moran To cite this version: Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, et al.. The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models. Tectonics, American Geophysical Union (AGU), 2011, 30, pp.TC3010. 10.1029/2010TC002814. insu-00609533 HAL Id: insu-00609533 https://hal-insu.archives-ouvertes.fr/insu-00609533 Submitted on 19 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 30, TC3010, doi:10.1029/2010TC002814, 2011 The Caribbean–North America–Cocos Triple Junction and the dynamics of the Polochic–Motagua fault systems: Pull‐up and zipper models C. Authemayou,1,2 G. Brocard,1,3 C. Teyssier,1,4 T. Simon‐Labric,1,5 A. Guttiérrez,6 E. N. Chiquín,6 and S. Morán6 Received 13 October 2010; revised 4 March 2011; accepted 28 March 2011; published 25 June 2011. -
Grea3tfpermhl RESOURCES of the ALEUTIAN ARC
GrEa3TFPERMhL RESOURCES OF THE ALEUTIAN ARC Wy Roman .I. Mntylcw, RlairB~yA. Lics, Chri~',Boph~r.I. WYC, and Mary A. Moomnsa GEOTHERMAL RESOURCES OF THE ALEUTIAN ARC By Roman J. Motyka, Shirley A. Liss, Christopher J. Nye, and Mary A. Moorman Roman Motyka sampling an upper Glacier Valley hot spring in the Makushin geothermal area. Photo by Shirley Liss. Professional Report 114 Division of Geological & Geophysical Surveys Cover photo: "Old Faithful" of the Geyser Bight geothermal resource area. When- ever it has been observed (1870, 1948, 1980, and 1988),spring G8, Fairbanks, Alaska shown here at maximum activity, has had an eruption cycle of 1993 12 minutes. Photo by Shirley Liss. STATE OF ALASKA Walter J. Hickel, Governor DEPARTMENT OF NATURAL RESOURCES Harry A. Noah, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Thomas E. Smith, State Geologist Division of Geological & GeophysicalSurveys publications can be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 321 1 Providence Drive 794 University Avenue, Suite 200 Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3645 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 222 W. 7th Avenue Fairbanks, Alaska 99775-1005 Anchorage, Alaska 995 13-7589 Alaska State Library State Office Building, 8th moor 333 Willoughby Avenue Juneau, Alaska 9981 1-0571 This publication released by the Division of Geological & Geophysical Surveys, was -
Subduction of the Kula Ridge at the Aleutian Trench
Subduction of the Kula Ridge at the Aleutian Trench 0 0 SSlTfOX ™ I Department of Geological Sciences, State University of New York at Albany, Albany, New York 12222 FRED W. McDOWELL Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712 ABSTRACT motion of 60 mm/yr throughout Tertiary time between the Pacific and North American plates. Their reconstruction showed that the A simple model of the probable topographic and thermal conse- Kula Ridge reached the Aleutian Trench 30 m.y. ago (with an un- quences of subducting an oceanic spreading center at an island arc certainty of about 10 m.y.), approximately a factor of two later predicts three geologic effects: (1) shoaling and subaerial than the date estimated by Hayes and Pitman (1970). emergence of the crest of the arc, (2) decrease or cessation of Atwater and Molnar's (1973) results indicate that motion be- subduction-related magmatism, and (3) regional low-grade thermal tween the Pacific and North American plates has been continuous metamorphism (AT = 100 to 300 °C) of the arc rocks. All three of during much of Cenozoic time, but with an overall acceleration these phenomena are recorded in the geology of the Aleutian Is- from 20 mm/yr (the average velocity between 38 and 10 m.y. ago) lands, and the following sequence of events is indicated: (1) di- to 55 mm/yr today. Use of these relative motions in a reconstruc- minution of magmatism on approach of the Kula Ridge in middle tion would yield a time for arrival of the Kula Ridge at the Aleutian Eocene time (=45 m.y. -
Cross Section, Alaska Peninsula-Kodiak Island—Aleutian Trench: Summary
Cross section, Alaska Peninsula-Kodiak Island—Aleutian Trench: Summary GEORGE W^MOORE^ ] Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 J. CASEY MOORE Earth Sciences Board, University of California, Santa Cruz, California 95064 CHRISTOPHER D. STEPHENS U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 SCOPE earthquake is recorded, but a numerical precision is difficult to give, and accuracy probably varies greatly. Relative accuracy in the The U.S. Geodynamics Committee has sponsored preparation Benioff zone can be estimated by comparing the scatter of hypocen- and publication of geologic sections across the nation's continental ters evident in two nearby compilations from local networks of margins. The sections are at a scale of 1:250,000 without vertical seismographs in the Shumagin Islands and Cook Inlet areas. The exaggeration and include the basic data from which they were Benioff zone is 10 km thick below the Shumagin Islands network constructed. The section described here (von Huene and others, 600 km southwest of the Kodiak group of islands (Davies and 1979)1 crosses a seismically active continental margin in the Gulf of House, 1979) and 15 km thick below the Cook Inlet network 600 Alaska that includes the Aleutian Trench, the Aleutian volcanic km northeast (Lahr and others, 1974). In our data, a 15-km-thick chain, and the intervening accretionary terrane. Between the vol- zone includes most of the hypocenters that were recorded at more canic arc and the oceanic trench are tectonic features common to than 50 stations along the Benioff zone, but many of the hypocen- many other convergent margins. -
Geology of Umnak and Bogoslof Islands Aleutian Islands Alaska
Geology of Umnak and Bogoslof Islands Aleutian Islands Alaska By F. M. BYERS, JR. INVESTIGATIONS OF ^ALASKAN VOLCANOES GEOLOGICAL SURVEY BULLETIN 1028-L Prepared in cooperation with the Office, Chief of Engineers, U.S. Army UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. PEEFACE In October 1945 the War Department (now Department of the Army) requested the Geological Survey to undertake a program of volcano investigations in the Aleutian Islands-Alaska Peninsula area. Field studies under general direction of G. D. Robinson, were begun as soon as weather permitted in the spring of 1946. The results of the first year's field, laboratory, and library work were assembled as two administrative reports. Part of the data was published in 1950 in Geological Survey Bulletin 974-B, "Volcanic Activity in the Aleutian Arc", by Robert R. Coats. The rest of the data has been included in Bulletin 1028. The geologic investigations covered by this report were recon naissance. The factual information presented is believed to be accu rate, but many of the tentative interpretations and conclusions will be modified as the investigations continue and knowledge grows. The investigations of 1946 were supported almost entirely by the Military Intelligence Division of the Office, Chief of Engineers, U.S. Army. The Geological Survey is indebted to that Office for its early recognition of the value of geologic studies in the Aleutian region, which made this report possible, and for its continuing support. -
Aleutian Island Arc Magma Production Rates and Mechanisms
https://doi.org/10.5194/se-2019-179 Preprint. Discussion started: 4 December 2019 c Author(s) 2019. CC BY 4.0 License. Aleutian island arc magma production rates and mechanisms Yongliang Bai1, Diya Zhang1, Dongdong Dong2, Shiguo Wu3, Zhenjie Wang1 1College of Ocean and Space Information, China University of Petroleum, Qingdao 266580, China 2Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 5 266071, China 3Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China Correspondence to: Yongliang Bai ([email protected]) Abstract. The variation in island arc magma production rates and their influencing mechanisms are of great significance since island arc magma is considered a main source of continental crust growth. The island arc magma directly originates from the 10 molten mantle wedge, and the mantle melting is driven by fluids or melts from the subducted slab. Slab dehydration flux mainly depends on the slab thermal structures, and subducted slab melting requires a sufficiently high temperature. For the Aleutian subduction system, the subducted Pacific Plate has diverse thermal structures due to the existing fracture zones, ridges and slab window, so it is an ideal region for arc magma production rate research. However, the previous estimations are based on seismic profiles that only provide magma production rates at specific regions of the Aleutian arc, and these results are 15 controversial. Here, we design a magma production rate estimation method based on gravity inversion constrained by deep seismic profiles. The first overview map of magma production rates along the Aleutian arc strike demonstrates that the magma production rates have the same trend as the slab dips, and the peaks correspond to the subduction of the fracture zones and ridges.