Helogale Parvula)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meerkats (Suricata Suricatta), a New Definitive Host of the Canid Nematode Angiostrongylus Vasorum
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Meerkats ( Suricata suricatta ), a new definitive host of the canid nematode Angiostrongylus vasorum Gillis-Germitsch, Nina ; Manser, Marta B ; Hilbe, Monika ; Schnyder, Manuela DOI: https://doi.org/10.1016/j.ijppaw.2017.10.002 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-141634 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Originally published at: Gillis-Germitsch, Nina; Manser, Marta B; Hilbe, Monika; Schnyder, Manuela (2017). Meerkats ( Suricata suricatta ), a new definitive host of the canid nematode Angiostrongylus vasorum. International Journal for Parasitology: Parasites and Wildlife, 6(3):349-353. DOI: https://doi.org/10.1016/j.ijppaw.2017.10.002 IJP: Parasites and Wildlife 6 (2017) 349–353 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Meerkats (Suricata suricatta), a new definitive host of the canid nematode MARK Angiostrongylus vasorum ∗ Nina Gillis-Germitscha, Marta B. Manserb, Monika Hilbec, Manuela Schnydera, a Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland b Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland c Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland ARTICLE INFO ABSTRACT Keywords: Angiostronglyus vasorum is a cardiopulmonary nematode infecting mainly canids such as dogs (Canis familiaris) Angiostrongylus vasorum and foxes (Vulpes vulpes). -
Mammalian Predators Appropriating the Refugia of Their Prey
Mamm Res (2015) 60:285–292 DOI 10.1007/s13364-015-0236-y ORIGINAL PAPER When prey provide more than food: mammalian predators appropriating the refugia of their prey William J. Zielinski 1 Received: 30 September 2014 /Accepted: 20 July 2015 /Published online: 31 July 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland (outside the USA) 2015 Abstract Some mammalian predators acquire both food and predators) may play disproportionately important roles in their shelter from their prey, by eating them and using the refugia communities. the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxo- Keywords Predator–prey . Dens . Herbivore . Behavior . nomic affiliations, relative sizes, and distributions. I hypothe- Habitat . Resting . Foraging sized that size ratios of species involved in this dynamic would be near 1.0, and that most of these interactions would occur at intermediate and high latitudes. Seventeen species of Introduction Carnivorans exploited at least 23 species of herbivores as food and for their refugia. Most of them (76.4 %) were in the Mammals require food and most require shelter, either to pro- Mustelidae; several small species of canids and a few tect them from predators or from thermal stress. Carnivorous herpestids were exceptions. Surprisingly, the average mammals are unique in that they subsist on mobile food predator/prey weight ratio was 10.51, but few species of pred- sources which, particularly if these sources are vertebrates, ators were more than ten times the weight of the prey whose may build their own refuges to help regulate their body tem- refugia they exploit. -
Social Mongoose Vocal Communication: Insights Into the Emergence of Linguistic Combinatoriality
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Social Mongoose Vocal Communication: Insights into the Emergence of Linguistic Combinatoriality Collier, Katie Abstract: Duality of patterning, language’s ability to combine sounds on two levels, phonology and syntax, is considered one of human language’s defining features, yet relatively little is known about its origins. One way to investigate this is to take a comparative approach, contrasting combinatoriality in animal vocal communication systems with phonology and syntax in human language. In my the- sis, I took a comparative approach to the evolution of combinatoriality, carrying out both theoretical and empirical research. In the theoretical domain, I identified some prevalent misunderstandings in re- search on the emergence of combinatoriality that have propagated across disciplines. To address these misconceptions, I re-analysed existing examples of animal call combinations implementing insights from linguistics. Specifically, I showed that syntax-like combinations are more widespread in animal commu- nication than phonology-like sequences, which, combined with the absence of phonology in some human languages, suggested that syntax may have evolved before phonology. Building on this theoretical work, I empirically explored call combinations in two species of social mongooses. I first investigated social call combinations in meerkats (Suricata suricatta), demonstrating that call combinations represented a non-negligible component of the meerkat vocal communication system and could be used flexibly across various social contexts. Furthermore, I discussed a variety of mechanisms by which these combinations could be produced. Second, I considered call combinations in predation contexts. -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
Sun Bear Zoo Experiences
SUN BEAR ZOO EXPERIENCES 3000 Turtle Time Party You and a guest are invited to Woodland Park Zoo’s Western Pond Turtle Recovery Project to learn how these amazing little guys are hatched at the zoo to get a head start for eventual release into the wild. Once the turtles are ready to hatch, you may be invited back to watch and experience their introduction to their new life at the zoo as field biologists weigh, measure and tag them. Restrictions: Arrangements will have to be based on the breeding cycles of the turtles and program release dates. EXPIRATION DATE: 7/31/2012 DONOR: Woodland Park Zoo Tropical Rain Forest Crew VALUE: $450 3001 Precious Penguins for Five Five lucky people will get the chance to know our penguins up close and personal. You and your friends will talk with a keeper about our penguins and participate in watching them feast on their favorite treats. You don’t want to miss your chance on getting to know these well-dressed birds! Restrictions: Please make mutually agreeable arrangements at least eight weeks in advance. Experience will not be redeemable during breeding season or while the birds are in molt. EXPIRATION DATE: 7/31/2012 DONOR: Woodland Park Zoo Penguin Crew VALUE: $450 3002 Evening Zoo Adventure for Two After the zoo has closed its doors for the night, you and a friend are invited to spend a very special evening of nighttime exploration at Woodland Park Zoo. Your guide will take you through the zoo for a special after hours look at the animals. -
Pest Risk Assessment
PEST RISK ASSESSMENT Meerkat Suricata suricatta (Photo: Fir0002. Image from Wikimedia Commons under a GNU Free Documentation License, Version 1.2) March 2011 Department of Primary Industries, Parks, Water and Environment Resource Management and Conservation Division Department of Primary Industries, Parks, Water and Environment 2011 Information in this publication may be reproduced provided that any extracts are acknowledged. This publication should be cited as: DPIPWE (2011) Pest Risk Assessment: Meerkat (Suricata suricatta). Department of Primary Industries, Parks, Water and Environment. Hobart, Tasmania. About this Pest Risk Assessment This pest risk assessment is developed in accordance with the Policy and Procedures for the Import, Movement and Keeping of Vertebrate Wildlife in Tasmania (DPIPWE 2011). The policy and procedures set out conditions and restrictions for the importation of controlled animals pursuant to s32 of the Nature Conservation Act 2002. This pest risk assessment is prepared by DPIPWE for the use within the Department. For more information about this Pest Risk Assessment, please contact: Wildlife Management Branch Department of Primary Industries, Parks, Water and Environment Address: GPO Box 44, Hobart, TAS. 7001, Australia. Phone: 1300 386 550 Email: [email protected] Visit: www.dpipwe.tas.gov.au Disclaimer The information provided in this Pest Risk Assessment is provided in good faith. The Crown, its officers, employees and agents do not accept liability however arising, including liability for negligence, for any loss resulting from the use of or reliance upon the information in this Pest Risk Assessment and/or reliance on its availability at any time. Pest Risk Assessment: Meerkat Suricata suricatta 2/22 1. -
'Mechanisms and Demographic Consequences of Dispersal In
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Mechanisms and demographic consequences of dispersal in the cooperatively breeding meerkat Maag, Nino Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-169620 Dissertation Published Version Originally published at: Maag, Nino. Mechanisms and demographic consequences of dispersal in the cooperatively breeding meerkat. 2019, University of Zurich, Faculty of Science. MECHANISMS AND DEMOGRAPHIC CONSEQUENCES OF DISPERSAL IN THE COOPERATIVELY BREEDING MEERKAT Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der MatheMatisch-naturwissenschaftlichen Fakultät der Universität Zürich von Nino Maag aus Zürich ZH Promotionskommission Prof. Dr. Arpat Ozgul (Vorsitz) Dr. Gabriele Cozzi Prof. Dr. Marta Manser Prof. Dr. Tim Clutton-Brock Prof. Dr. Luca Börger Dr. Andrew Bateman Zürich, 2019 TABLE OF CONTENTS SUMMARY .............................................................................................................................. 3 CHAPTER ONE General introduction .................................................................................................................. 7 CHAPTER TWO Density-dependent dispersal strategies in a cooperative breeder ............................................ 23 CHAPTER THREE Cost of dispersal in a social mammal – body mass loss and increased stress ........................ -
The Role of Small Private Game Reserves in Leopard Panthera Pardus and Other Carnivore Conservation in South Africa
The role of small private game reserves in leopard Panthera pardus and other carnivore conservation in South Africa Tara J. Pirie Thesis submitted in accordance with the requirements of The University of Reading for the Degree of Doctor of Philosophy School of Biological Sciences November 2016 Acknowledgements I would first like to thank my supervisors Professor Mark Fellowes and Dr Becky Thomas, without whom this thesis would not have been possible. I am sincerely grateful for their continued belief in the research and my ability and have appreciated all their guidance and support. I especially would like to thank Mark for accepting this project. I would like to acknowledge Will & Carol Fox, Alan, Lynsey & Ronnie Watson who invited me to join Ingwe Leopard Research and then aided and encouraged me to utilize the data for the PhD thesis. I would like to thank Andrew Harland for all his help and support for the research and bringing it to the attention of the University. I am very grateful to the directors of the Protecting African Wildlife Conservation Trust (PAWct) and On Track Safaris for their financial support and to the landowners and participants in the research for their acceptance of the research and assistance. I would also like to thank all the Ingwe Camera Club members; without their generosity this research would not have been possible to conduct and all the Ingwe Leopard Research volunteers and staff of Thaba Tholo Wilderness Reserve who helped to collect data and sort through countless images. To Becky Freeman, Joy Berry-Baker -
Science Learning at the Zoo: Evaluating Children's
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Warwick Research Archives Portal Repository Original citation: Wagoner, Brady and Jensen, Eric. (2010) Science learning at the zoo : evaluating children's developing understanding of animals and their habitats. Psychology & Society, 3 (1). pp. 65- 76. Permanent WRAP URL: http://wrap.warwick.ac.uk/46484 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. A note on versions: The version presented in WRAP is the published version or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications 1 Science Learning at the Zoo: Evaluating Children’s Developing Understanding of Animals and their Habitats BRADY WAGONER Aalborg University ERIC JENSEN University of Warwick Abstract Zoos attract hundreds of millions of visitors every year worldwide – many of them children. -
Causes and Consequences of Coati Sociality
chapter 28 Causes and consequences of coati sociality Ben T. Hirsch and Matthew E. Gompper Ring-tailed coatis (Nasua nasua) © B. Hirsch Introduction of Kaufmann’s work, and similar studies on pri- mates and other carnivores, have greatly enhanced Over fifty years ago John Kaufmann conducted a our understanding of how and why animals live in two-year study on the white-nosed coati (Nasua groups. Such issues frame the core of the modern narica) on Barro Colorado Island, Panama. The field of behavioural ecology. resulting monograph (Kaufmann 1962) is a solid Animals live in groups when the benefits (e.g. examination of the natural history of the species, a greater ability to survive threats from predators with an emphasis on understanding its social struc- and pathogens) are greater than the costs (e.g. in- ture. Although many such studies now exist, Kauf- creased competition for resources such as food or mann’s study bordered on revolutionary at the time mates) (Krause and Ruxton 2002). Overlaying such because this was one of the first studies to gather cost–benefit ratios are the genetic relatedness of in- detailed ethological data of wild vertebrates via dividuals and the willingness of animals to coop- habituation of free-living social animals. The idea erate in a manner that increases the benefits and of following animals from a distance of just a few decreases the costs of sociality. Among the mus- metres, and observing the nuances of their behav- teloid carnivores, studies of coatis have contrib- iour, was relatively novel at the time. The results uted more to our understanding of the causes and Hirsch, B. -
Banded Mongoose
Mungos mungo – Banded Mongoose Assessment Rationale The Banded Mongoose is listed as Least Concern as, although its distribution is restricted to the northeast of the assessment region, it is generally common in suitable habitat and is present in several protected areas. There are no major threats that could cause range-wide population decline. Accidental persecution through poisoning, controlled burning, and infectious disease may lead to local declines, whilst wildlife ranching might have a positive effect by conserving more suitable habitat and connecting subpopulations. Regional population effects: Dispersal across regional Chris & Mathilde Stuart borders is suspected as the range extends widely into Mozambique and is continuous into southeastern Regional Red List status (2016) Least Concern Botswana and southern Zimbabwe, and the species is not constrained by fences. National Red List status (2004) Least Concern Reasons for change No change Distribution Global Red List status (2016) Least Concern This species is distributed widely in sub-Saharan Africa TOPS listing (NEMBA) (2007) None from Senegal and Gambia to Ethiopia, Eritrea and Somalia, and south to about 31° in South Africa. It has CITES listing None been recorded to 1,600 m asl. in Ethiopia (Yalden et al. Endemic No 1996). Although fairly widespread in southern Africa, M. mungo appears to be rare in West Africa. Its relative In addition to living in groups numbering tens of scarcity in West Africa may be due to niche overlap with its individuals, Banded Mongooses are plural congener, the Gambian Mongoose (M. gambianus), breeders, females giving birth synchronously, and endemic to West Africa and reported to occupy similar provide cooperative care to the communal litter of habitat and have a similar diet (Cant & Gilchrist 2013; van pups (Cant & Gilchrist 2013). -
UNDERSTANDING the INFLUENCE of BANDED MONGOOSE (Mungos Mungo) SOCIAL STRUCTURING on DISEASE TRANSMISSION USING MOLECULAR TOOLS by Kelton M
UNDERSTANDING THE INFLUENCE OF BANDED MONGOOSE (Mungos mungo) SOCIAL STRUCTURING ON DISEASE TRANSMISSION USING MOLECULAR TOOLS By Kelton M. Verble Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Fisheries and Wildlife Sciences Kathleen A. Alexander, Committee Chair Eric M. Hallerman Michael J. Cherry Understanding the Influence of Banded Mongoose (Mungos mungo) Social Structuring on Disease Transmission Using Molecular Tools Kelton Verble Abstract Understanding the disease transmission dynamics in wildlife species can be difficult and can prove more complicated if the population structure of a socially living species is shaped by territoriality. Understanding the connections and movements of individuals between groups is vital to documenting how a disease may be spread. The presence of a heterogeneous landscape can further complicate attempts to describe transmission of an infectious disease. Here, I sought to understand how dispersal patterns of individual banded mongooses (Mungos mungo) could potentially influence disease transmission. Banded mongooses are small fossorial mammals that live in social groups ranging from 5 to 75 individuals and defend their territories against rival troops. The focal population of mongooses for this study lives across a complex environment in the Chobe district of northern Botswana and is faced with a novel strain of tuberculosis, Mycobacterium mungi. To infer genetic structure and individual movements between troops, I utilized microsatellite genetic markers and population genetic analyses. I found moderately strong genetic structuring (FST = 0.086) among 12 troops of banded mongooses in the study area in 2017-18.