Faculty Profile Directory

Total Page:16

File Type:pdf, Size:1020Kb

Faculty Profile Directory NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A237 028 0 ^ELECTEDTIC UN 18 1991i k TEESIS IMPACT OF ION PROPULSION ON PERFORMANCE, DESIGN, TESTING AND OPERATION OF A GEOSYNCHRONOUS SPACECRAFT by Spotrizano Descanzo Lugtu June 1990 Thesis Advisor: Brij N. Agrawal Co-Advisor Oscar Biblarz Approved for public release; distribution unlimited 91-02174 916 11111 1 1111lI0I ll! I! 91 ( 14 040 - Unclassified Security Classification of this page REPORT DOCUMENTATION PAGE I1a Report Security Classification Unclassified i b Restrictive Markings 2a Security Classification Authority 3 Distribution Availability of Report 2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited. 4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s) 6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization Naval Postgraduate School I(If Applicable) 39 Naval Postgraduate School 6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code) Monterey, CA 93943-5000 Monterey, CA 93943-5000 8a Name of Funding/Sponsoring Organization j 8b Office Symbol 9 Procurement Instrument Identification Number I(If Applicable) 8c Address (city, state, and ZIP code) 10 Source of Funding Numbers Program Elenet Number I Projt No I Task No Wok Unit Accemsion No 11 Title (Include Security Classification) IMPACT OF ION PROPULSION ON PERFORMANCE, DESIGN, TESTING AND OPERATION OF A GEOSYNCHRONOUS SATELLITE 12 Personal Author(s) Spotrizano D. Lugtu 13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) I 15 Page Count Master's Thesis From To IJune 1990 I 11 16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position of the De )artment of Defense or the U.S. Government. 17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number) Field Group Subgroup Ion Propulsion; Geosynchronous Satellite; North-South Station Keeping 19 Abstract (continue on reverse if necessary and identify by block number This thesis presents the implementation issues of an ion propulsion subsystem (IPS) on a geosynchronous communications satellite. As an example, Ultra High Frequency (UHF) Follow-On class satellite is selected for this study. The issues include: 1) impact of integration of IPS with other subsystems, such as the electrical power subsystem to take care of the heavy demand of power requirements and location of the subsystem with least impact on attitude control and plume impingement on solar arrays, 2) environmental considerations- particulate contamination, electrostatic discharge (ESD), and electromagnetic interference (EMI), and finally risks and benefits. Ion propulsion offers significant advantages over chemical propulsion due to its high specific impulse and the advent of xenon thruster technology, multikilowatt spacecraft, and nickel-hydrogen (Ni-H 2) batteries with demonstrated high cycle life have combined to make the ion thruster attractive for North-South Station Keeping (NSSK). 20 Distribution/Availability of Abstract 21 Abstract Security Classification N unclassified/unlimited 11 same as report IJ DTIC users Unclassified 22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol Brij N. Agrawal (408) 646-3338[ AA/Ag DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page All other editions are obsolete Unclassified Approved for public release; distribution is unlimited. Impact of Ion Propulsion on Performance, Design, Testing and Operation of a Geosynchronous Spacecraft by Spotrizano D. Lugtu Lieutenant, United States Navy B.S., FEATI University 1975 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL June 1990 Author: , e;)cx., 'Spotzano Desca~zo Lugtu Approved By: /r[, I a - B. Agrawal, Thesis Advisor 0B*arz, Swond Reader--' E. Roberts Woo d, Chairma'rt;-part _je,6f Aeronautical and Astronautical Engineering ii ABSTRACT This thesis presents the implementation issues of an ion propulsion subsystem -. on geosynchronous communications satellites. As an example, Ultra-High Frequency (UHF) Follow-On class satellite is selected for this study. The issues include: 1) impact of integration of ion propulsion subsystem with other subsystems, such as the electrical power subsystem to take care of the heavy demand of power requirements and location of the subsystem with least impact on attitude control and plume impingement on solar arrays, 2) environmental considerations- particulate contamination, electrostatic discharge (ESD), and electromagnetic interference (EMI), and finally 3) risks and benefits. Ion propulsion offers significant advantages over chemical propulsion due to its high specific impulse and the advent of xenon thruster technology, multikilowatt spacecraft and nickel-hydrogen (Ni-H2) batteries with demonstrated high cycle life have combined to make the ion thruster attractive for North-South Station Keeping (NSSK). Ac'cssionl Vr NTIS qFA&I DTIC TAB Un Announced 0 Ju: t iria 01t - S By D1istributiot/____ Availability Codes tAvail and/or Dist Spocial 111 TABLE OF CONTENTS INTRODUCTION ........................................................... 1I_ A. OBJECTIVE ............................................................ 2... B. SCOPE OF STUDY..................................................... 2 I. SELECTION OF GEOSYNCHRONOUS SPACECRAFT ................. 4 A. SATELLITE DESCRIPTION .......................................... 4 1. Station Keeping Considerations.................................... 4 B. LAUNCH VEHICLE ................................................... 9 III. TYPES OF ELECTRIC PROPULSION THRUSTERS ................... 12 A. ION THRUSTER...................................................... 14 1. Field-Emission Ion Thruster (FElT) ........................... 16 2. RF Ionization Thruster .......................................... 17 3. Electron Bombardment Ion Thruster (EBIT) .................. 19 B. ELECTROTHERMAL ................................................ 20 1. Resistojet ......................................................... 20 2. Arcjet............................................................. 20 3. Pulsed Electrothermal Thruster ................................ 21 4. Laser.............................................................. 22 5. Microwave .............................................. ......... 24 C. ELECTROMAGNETIC...............................................25 1. MPD Thruster.................................................... 26 2. Pulsed Plasma Thruster (PPT)................................... 27 3. Pulsed Inductive Thruster (PIT)................................. 27 E. PERFORMANCE COMPARISON OF ELECTRIC PROPULSION.. 28 iv IV. XENON ION PROPULSION SUBSYSTEM DESCRIPTION ............. 33 A. PERFORMANCE CHARACTERISTICS OF XENON ................. 33 B. XENON ION THRUSTER OPERATION .................................. 37 C. SELECTION OF ION THRUSTER ........................................... 38 1. Trade-offs Between Ion Thrusters ...................................... 38 2. Selection of Thrust Level ................................................. 39 3. Available Ion Thrusters ..................................................... 39 E. LOCATION OF ION THRUSTERS ........................................... 42 1. Ion Thrusters on Gimbals .................................................. 55 V. STATION KEEPING .................................................................... 60 A. NORTH-SOUTH STATION KEEPING (NSSK) ......................... 60 1. Perturbation Forces .......................................................... 62 B. EAST-WEST STATION KEEPING (EWSK) ............................. 62 C. STATION REPOSITIONING .................................................. 63 D. NSSK STRATEGY .................................................................. 64 VI. SOLAR ARRAY/BATTERY TRADE-OFF AS POWER SOURCE FOR ION THRUSTER ............................................................................ 66 A . SOLAR ARRAY .................................................................... 67 1. Solar Array Description .................................................... 68 2. Solar Array as Power Source for IPS ................................. 68 B . BA TTERY ............................................................................. 69 1. Battery Description .......................................................... 70 2. Battery as Power Source for IPS ........................................ 70 VII. BIPROPELLANT AND ION PROPULSION TRADE-OFF ............... 72 VIII. IMPLEMENTATION IMPACT ON PRESENT SUBSYSTEMS ...... 80 A . PRO PU LSIO N ........................................................................ 80 v B. ELECTRIC POW ER ................................................................ 80 C. THERMAL CONTROL .......................................................... 81 D . STRUCTURES ........................................................................ 82 E. TELEMETRY, TRACKING AND CONTROL (TT&C) .............. 82 F. ATTITUDE CONTROL .......................................................... 83 IX. ENVIRONMENTAL IMPACT .......................................................... 85 A. PARTICULATE CONTAMINATION ...................................... 85 1. Contamination Process .....................................................
Recommended publications
  • Classification of Geosynchrono
    ESA UNCLASSIFIED - Limited Distribution ! esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 F +31 (0)6151 90495 www.esa.int TECHNICAL NOTE Classification of Geosynchronous objects. Prepared by ESA Space Debris Office Reference GEN-DB-LOG-00270-OPS-SD Issue/Revision 21.0 Date of Issue 19 July 2019 Status Issued ESA UNCLASSIFIED - Limited Distribution ! Page 2/234 Classification of Geosynchronous objects. Issue Date 19 July 2019 Ref GEN-DB-LOG-00270-OPS-SD ESA UNCLASSIFIED - Limited Distribution ! Abstract This is a status report on (near) geosynchronous objects as of 1 January 2019. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1578 objects for which orbital data are available (of which 14 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 529 are actively controlled, 831 are drifting above, below or through GEO, 195 are in a libration orbit and 21 are in a highly inclined orbit. For 2 object the status could not be determined. Furthermore, there are 60 uncontrolled objects without orbital data (of which 55 have not been catalogued). Thus the total number of known objects in the geostationary region is 1638. Finally, there are 130 rocket bodies crossing GEO. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str.
    [Show full text]
  • Name NORAD ID Int'l Code Launch Date Period [Minutes] Longitude LES 9 MARISAT 2 ESIAFI 1 (COMSTAR 4) SATCOM C5 TDRS 1 NATO 3D AR
    Name NORAD ID Int'l Code Launch date Period [minutes] Longitude LES 9 8747 1976-023B Mar 15, 1976 1436.1 105.8° W MARISAT 2 9478 1976-101A Oct 14, 1976 1475.5 10.8° E ESIAFI 1 (COMSTAR 4) 12309 1981-018A Feb 21, 1981 1436.3 75.2° E SATCOM C5 13631 1982-105A Oct 28, 1982 1436.1 104.7° W TDRS 1 13969 1983-026B Apr 4, 1983 1436 49.3° W NATO 3D 15391 1984-115A Nov 14, 1984 1516.6 34.6° E ARABSAT 1A 15560 1985-015A Feb 8, 1985 1433.9 169.9° W NAHUEL I1 (ANIK C1) 15642 1985-028B Apr 12, 1985 1444.9 18.6° E GSTAR 1 15677 1985-035A May 8, 1985 1436.1 105.3° W INTELSAT 511 15873 1985-055A Jun 30, 1985 1438.8 75.3° E GOES 7 17561 1987-022A Feb 26, 1987 1435.7 176.4° W OPTUS A3 (AUSSAT 3) 18350 1987-078A Sep 16, 1987 1455.9 109.5° W GSTAR 3 19483 1988-081A Sep 8, 1988 1436.1 104.8° W TDRS 3 19548 1988-091B Sep 29, 1988 1424.4 84.7° E ASTRA 1A 19688 1988-109B Dec 11, 1988 1464.4 168.5° E TDRS 4 19883 1989-021B Mar 13, 1989 1436.1 45.3° W INTELSAT 602 20315 1989-087A Oct 27, 1989 1436.1 177.9° E LEASAT 5 20410 1990-002B Jan 9, 1990 1436.1 100.3° E INTELSAT 603 20523 1990-021A Mar 14, 1990 1436.1 19.8° W ASIASAT 1 20558 1990-030A Apr 7, 1990 1450.9 94.4° E INSAT 1D 20643 1990-051A Jun 12, 1990 1435.9 76.9° E INTELSAT 604 20667 1990-056A Jun 23, 1990 1462.9 164.4° E COSMOS 2085 20693 1990-061A Jul 18, 1990 1436.2 76.4° E EUTELSAT 2-F1 20777 1990-079B Aug 30, 1990 1449.5 30.6° E SKYNET 4C 20776 1990-079A Aug 30, 1990 1436.1 13.6° E GALAXY 6 20873 1990-091B Oct 12, 1990 1443.3 115.5° W SBS 6 20872 1990-091A Oct 12, 1990 1454.6 27.4° W INMARSAT 2-F1 20918
    [Show full text]
  • Federal Communications Commission DA 03-1045 1 Before The
    Federal Communications Commission DA 03-1045 Before the Federal Communications Commission Washington, D.C. 20554 In the matter of ) ) Loral SpaceCom Corporation and ) File Nos. 123/124-SAT-MP-96; Loral Space & Communications Corporation ) IBFS Nos. SAT-MOD-19960610-00082/83 ) SAT-MOD-19991102-00106; Applications for Modification of Fixed-Satellite ) SAT-MOD-19991101-00108/109 Service Space Station Authorizations ) Call Signs: S2159, S2160, S2205, T-402 ) Applications for Extension of Milestone Dates ) File Nos. SAT-MOD-19991101-00107 ) SAT-MOD-20020408-00060 ) Call Sign: S2160 ) Request for Extension of Time to Construct, ) File Nos. SAT-MOD-20000104-00042/43/44/45 Launch, and Operate a Ka-band Satellite System ) in the Fixed-Satellite Service ) MEMORANDUM OPINION, ORDER AND AUTHORIZATION Adopted: March 31, 2003 Released: April 1, 2003 By the Chief, International Bureau: TABLE OF CONTENTS Paragraph Number I. INTRODUCTION ........................................................................................................................... 1 II. BACKGROUND ............................................................................................................................. 2 III. DISCUSSION.................................................................................................................................. 7 A. Reassignment of Telstar 4 to 77° W.L. and Telstar 8 to 89° W.L. ..................................... 7 B. Launch and Operation of Telstar 8 as a C/Ku/Ka-band Hybrid Satellite ........................... 8
    [Show full text]
  • PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12Th STREET S.W
    PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET S.W. WASHINGTON D.C. 20554 News media information 202-418-0500 Fax-On-Demand 202-418-2830; Internet: http://www.fcc.gov (or ftp.fcc.gov) TTY (202) 418-2555 Report No. SES-00708 Wednesday April 27, 2005 SATELLITE COMMUNICATIONS SERVICES INFORMATION RE: ACTIONS TAKEN The Commission, by its International Bureau, took the following actions pursuant to delegated authority. The effective dates of the actions are the dates specified. SES-AMD-20050214-00177 E E000128 Loral Skynet Network Services, Inc. (Debtor-in-Possession) Amendment Grant of Authority Date Effective: 04/25/2005 Class of Station: Fixed Earth Stations Nature of Service: Fixed Satellite Service This amendment application was filed to correct FCC 312 Main Form, questions #29, 30, 31 and 32, by changing the answers from N/A to NO. This amendment application is associated with file no. SES-MOD-20050211-00172. SITE ID: 1 LOCATION: Hawaii, VARIOUS ANTENNA ID: 4.5M 4.5 meters ANDREW ESA45T-1 6225.0000 - 6425.0000 MHz 3M09G7W 59.00 dBW QPSK, R=1/2 ENCODED: DIGITAL MULTIPLEXED CARRIER, international voice, video, facsimile & data 6225.0000 - 6425.0000 MHz 1M54G7W 54.90 dBW QPSK, R=1/2 ENCODED: DIGITAL MULTIPLEXED CARRIER, international voice, video, facsimile & data 6225.0000 - 6425.0000 MHz 384KG7W 48.80 dBW QPSK, R=1/2 ENCODED: DIGITAL MULTIPLEXED CARRIER, international voice, video, facsimile & data Page 1 of 22 6225.0000 - 6425.0000 MHz 36M0G7W 71.00 dBW DIGITAL MULTIPLEXED CARRIER QPSK DATA, VOICE AND VIDEO (NON DTH)
    [Show full text]
  • August 23, 1995 -1- ELECTRIC PROPULSION DEVELOPM13NT
    # . .“ ELECTRIC PROPULSION DEVELOPM13NT AND APPLICATION 1 N THE lJNITED STATES Dr. R. Rhodes Stephenson Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, USA ABSTRACT In the early 1960s, just as today, the community of electric propulsion technologists eagerly anticipated the near-term, wide-spread use of their technology in space. Between then and today a significant change has taken place. Today, many comtnercial firms are engaged in privately sponsored or co-sponsored programs to develop and demonstrate electric propulsion devices for specific applications. It is this commercial investment, coupled with government investment in some instances, that ensures the near-term application of electric propulsion to space missions. This process has already begun with the usc of hydrazine arcjcts by I.ockhced-Martin on a communications satellite in 1994 and in the next few months Hughes will launch a spacecraft using griddcd ion thrusters, More importantly, it is this commercial investment that allows us to foresee the revolution in on- board and deep-space propulsion that electric propulsion will provide. * INTRODUCTION In the middle 1960s, relatively early in the history of electric propulsion, there was much discussion within the community of electric propulsio]l technologists about the soon to bc realized advent of electric propulsion’s use in space. In-space experiments had shown the performance and efficacy of small ion thrusters. A wide spectrum of arcjets was being vigorously developed. Nuclear reactors as power sources were being developed and assumed for a variety of Earth-orbiting and planetary ] nissions. Enthusiasm and expectations within the community of electric propulsion technologists were high.
    [Show full text]
  • 5. Space Insurance
    Mémoire présenté devant le Centre d’Etudes Actuarielles pour l’obtention du diplôme du Centre d’Etudes Actuarielles et l’admission à l’Institut des Actuaires le : 27 Janvier 2012 Par : Jean-François GAUCHE Titre : SPACE RISKS ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Confidentialité : NON OUI (Durée : 1an 2 ans) Les signataires s’engagent à respecter la confidentialité indiquée ci-dessus Membre présent du jury de signature Entreprise : l’Institut des Actuaires : Nom : ______________________________ ________________________ Signature : Membres présents du jury du Directeur de mémoire en entreprise : Centre d’Etudes Actuarielles : Thomas BEHAR Nom : ______________________________ Signature : Vincent DAMAS Invité : Gérard CROSET Arnaud COHEN Nom : ______________________________ Signature : Jean-Pierre DIAZ Brigitte DUBUS Paul ESMEIN Autorisation de publication et de Michel FROMENTEAU mise en ligne sur un site de Stéphane MENART diffusion de documents actuariels (après expiration de l’éventuel délai de Christophe IZART confidentialité) Pierre PETAUTON Signature du responsable entreprise Florence PICARD Olivier LOPEZ Secrétariat : Signature du candidat Bibliothèque : 4 rue Chauveau Lagarde 75008 Paris Tél. : 01 44 51 72 72 / Fax : 01 44 51 72 73 MMéémmooiirree AAccttuuaarriiaatt SSppaaccee RRiisskkss Jean-François Gauché Centre d’Etude Décembre 2011 Actuarielle Forewords The present paper is the final work to validate the graduation of actuary studies in the “Centre d’Etude Actuarielle”. The purpose of this work is to analyze the space business environment with an actuary angle in order to find solutions to manage efficiently the underlying space risks. This is an attempt to formalize the business practices with statistics and mathematical models. The main outcome is to calculate the “cost of risk” in the space sector.
    [Show full text]
  • La Industria Espacial Española: Nueva Órbita
    La industria espacial española: nueva órbita Con el apoyo de Explore los límites de lo posible. Soluciones de test&medida para Defensa y sector Aeroespacial. Las avanzadas tecnologías empleadas por el sector Aeroespacial y Defensa requieren soluciones de test y medida cada vez más sofisticadas que amplien los límites de los posible. Como proveedor integral, Rohde & Schwarz ofrece una amplia gama de soluciones que están a la altura de las aplicaciones más exigentes. Nuestra experiencia y conocimientos en microondas, RF y EMC permiten a nuestros clientes evaluar el rendimiento de sus sistemas, optimizarlos y sacarles el máximo partido. Infórmese en: www.rohde-schwarz.com/ad/sat/nwa Destacado: análisis de redes ❙ Soluciones modulares de fácil manejo hasta 500 GHz ❙ Medidas de Perfil del pulso de alta resolución ❙ Medidas precisas de retardo de grupo en convertidores de frecuencia sin LO access ❙ Medida de fase en mezcladores Sumario 4/ PRESENTACIÓN 6 / SECRETARÍA GENERAL DE INDUSTRIA Y DE LA PYME “La creación de una agencia espacial española es un objetivo deseable” Begoña Cristeto, Secretaria General de Industria y de la Pequeña y Mediana Empresa 10 / CDTI “El New Space está cuestionando pilares fundamentales de esta industria, es una revolución” Francisco Marín, Director General del Centro para el Desarrollo Tecnológico Industrial, CDTI 14 / INSTITUCIONES 14 / ESA Llega el Espacio 4.0 José Manuel Sánchez, Jefe del Departamento de Relaciones Industriales de la Agencia Espacial Europea, ESA 18 / MARCA ESPAÑA España sigue en órbita: nuestra
    [Show full text]
  • TELE-Satellite International Signing On
    1 Inhalt Content 1998/10 Advertisers Index STRONG 2 Satellite Venues HUGHES 3 NOKIA 7 Leserbriefe 8 Letter To The Editor CommunicAsia 12 Singapore PACE 9 MTI 11 Messen 10 Satellite Fairs Satelliten Panorama 20 Satellite Panorama MASCOM 13 HUMAX 15 PRAXIS 17 PHILIPS 19 Satellite Products HWA/LIN 23 www.TSI-magazine.com/TSI/9810/radix.shtml GEWINNSPIEL 25 RADIX S.T.E.A.L.T.H. 26 250 Channel Analog Universal Receiver FORCE 29 www.TSI-magazine.com/TSI/9810/pace.shtml FAMS 33 PACE MSS220, MSS30 30 Analog Universal Receiver with two Inputs HUTH 37 www.TSI-magazine.com/TSI/9810/nokia.shtml ASTRA 43 NOKIA Mediamaster 9800S 30 Digital Receiver with Extended Memory DAMBOLDT 47 www.TSI-magazine.com/TSI/9810/benjamin.shtml PRO VISION 51 BENJAMIN DB-6000 40 Digital Receiver with 1000 Channel Memory TRATEC 55 www.TSI-magazine.com/TSI/9810/force.shtml STS 57 WEISS 61 FORCE PalMaster 1000 44 High Quality Analog Receiver TRIAX, LEMON 65 www.TSI-magazine.com/TSI/9810/prosat.shtml CREMER, MWC, SAMRAA 67 PROSAT P-2002S 48 Digital Receiver with Lots of Comfort MESSE MÜNCHEN, ASTRO 73 www.TSI-magazine.com/TSI/9810/arcon.shtml TELECOMP, Cairo 74 ARCON UM-60 52 Analog Receiver with 400 Channel Memory PROMAX, LNB 75 www.TSI-magazine.com/TSI/9810/philips.shtml ANTENNE, Paris 80 PHILIPS ODU 58 Universal LNBF for 10.7 to 12.7 GHz KWS/HC 81 www.TSI-magazine.com/TSI/9810/hirschmann.shtml DOEBIS 87 HIRSCHMANN Hit-Sat 62 Complete Analog Set TELENOR, Oslo 95 SPACECOM, Tel-Aviv 99 www.TSI-magazine.com/TSI/9810/mti.shtml DOEBIS-GARDINER 100 MTI AP8-T2 68 Universal LNB from 10.7 to 12.75 GHz MLESAT.
    [Show full text]
  • Atlas and Titan Space Operations at the Cape, 1993-2006
    ATLAS AND TITAN SPACE OPERATIONS AT CAPE CANAVERAL 1993 — 2006 by Mark C. Cleary 45th SPACE WING History Office ATLAS AND TITAN SPACE OPERATIONS AT THE CAPE, 1993 – 2006 TABLE OF CONTENTS PREFACE……………………………………………………………………………………… iv ATLAS I/CENTAUR and ATLAS II/CENTAUR Overview……………………………….. 1 ATLAS I/CENTAUR and ATLAS II/CENTAUR Military Space Operations……………. 3 UHF F/O #1; DSCS III (Jul 93); UHF F/O #2; DSCS III (Nov 93); UHF F/O #3; EHF F/O #4; EHF F/O #5; DSCS III (Jul 95); EHF F/O #6; UHF F/O #7; DSCS III (Oct 97); NRO Payload (Jan 98); UHF F-8; UHF F-9; UHF F-10; DSCS III B8 (Jan 00); DSCS III B11 (Oct 00); NRO MLV-11 (Dec 00); NRO MLV-12 (Oct 01); NROL-1. ATLAS I/CENTAUR and ATLAS II/CENTAUR Commercial Space Operations………... 18 TELSTAR 4; DIRECTV; INTELSAT VII (Oct 94); ORION; INTELSAT VII (Jan 95); INTELSAT VII (Mar 95); MSAT; JCSAT; GALAXY IIIR; PALAPA-C1; INMARSAT-3; SAX; GE-1; HOT BIRD 2; INMARSAT-3 F3; JCSAT-4; TEMPO II; SUPERBIRD-C; GE-3; ECHOSTAR III; GALAXY VIII-i; INTELSAT 806; INTELSAT 805; HOTBIRD-5; JCSAT-6; EUTELSAT W3; ECHOSTAR V; HISPASAT 1-C; ECHOSTAR VI; ICO-A1 (F2); HISPASAT-1D; AMC-10; SUPERBIRD-6; AMC-11. ATLAS I/CENTAUR and ATLAS II/CENTAUR Civil Space Operations………………... 41 GOES-I; GOES-J; SOHO; GOES-K; GOES-L; TDRS-H; GOES-M; TDRS-I; TDRS-J. ATLAS IIIA/CENTAUR and ATLAS IIIB/CENTAUR Overview…………………………. 48 ATLAS IIIA and ATLAS IIIB/CENTAUR Commercial Space Operations……………….
    [Show full text]
  • Iil,15/\ the EVOLUTIONARY DEVELOPMENT of HIGH SPECIFIC IMPULSE ELECTRIC THRUSTER TECHNOLOGY
    i -70 NASA Technical Memorandum 105758 The Evolutionary Development of High Specific Impulse Electric Thruster Technology James S. Sovey, John A. Hamley, Michael J. Patterson, and Vincent K. Rawlin National A eronautics and Space Administration Lewis Research Center Cleveland, Ohio and Roger M. Meyers Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio 0 if Prepared for the Space Programs and Technologies Conference sponsored by the American Institute of Aeronautics and Astronautics Huntsville, Alabama, March 24-27, 1992 iil,15/\ THE EVOLUTIONARY DEVELOPMENT OF HIGH SPECIFIC IMPULSE ELECTRIC THRUSTER TECHNOLOGY James S. Sovey, John A. Hamley, Michael J. Patterson, and Vincent K. Rawlin National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 and Roger M. Myers Sverdrup Technology, Inc. NASA Lewis Research Center Group Brookpark, Ohio 44142 ABSTRACT Electric propulsion flight and technology demonstrations conducted primarily by Europe, Japan, Peoples Republic of China, USA, and USSR are reviewed. Evolution- ary mission applications for high specific impulse electric thruster systems are discussed, and the status of arcjet, ion, and magnetoplasmadynamic thruster and associated power processor technologies are summarized. INTRODUCTION Most spacecraft use low thrust chemical propulsion systems for either apogee topping, stationkeeping, attitude control, orbit transfer/control, and/or drag makeup. In many cases the use of high specific impulse electric propulsion can significantly reduce the required propellant mass, minimize low Earth orbit (LEO) propellant logistics for space platforms, extend mission life, and in some cases influence the choice of launch vehicles (refs. 1,2). Electric propulsion can positively impact mission performance, life, as well as initial and life-cycle cost.
    [Show full text]
  • Satellite Broadcasting Services
    Satellite Broadcasting Services 2 TABLE OF Vol.1-INDEX Published monthly by CONTENTS Satnews Publishers 800 Siesta Way Sonoma, CA 95476 USA Phone (707) 939-9306 Fax (707) 939-9235 E-mail: [email protected] Website: www.satmagazine.com EDITORIAL Silvano Payne Publisher Virgil Labrador Managing Editor and Editor, The Americas Chris Forrester Editor, Europe, Middle East and Africa John Puetz, Bruce Elbert Dan Freyer, Howard Greenfield Dan Makinster 3 / Issue Index--an issue by issue guide to the articles covered in the past year Contributing Writers, The Americas 8/ Subject Index-- a comprehensive reference to keywords, names and places Peter Marshall, Roger Stanyard Company Profiles Contributing Writers, Europe 7/ SES Global Bernardo Schneiderman 9/ PanAmSat Contributing Writer, Latin America 11/ Comtech EF Data Baden Woodford 13/ MITEQ Contributing Writer, Africa 15/ Paradise Datacom Jill Durfee 17/ Andrew Corporation/ Agile Communications Systems ([email protected]) Advertising Sales 19/ FOXCOM/ Global Link Productions, Inc. Joyce Schneider 21/ Advanced Projects Intl./ Microspace Communications Corp. ([email protected]) 23/ PROMAX Electronica S.A./ Sector Microwave industries, Inc. Advertising Sales 25/ ISCe 2004/ W.B. Walton Enterprises Satnews Publishers is the leading provider of information 27/ About the Authors on the worldwide satellite industry. Fore more informa- 28/ Calendar of Events tion, go to www.satnews.com. Copyright © 2004 Satnews Publishers All rights reserved. Vol. 1-INDEX SATMAGAZINE.COM 3 ISSUE INDEX An issue by
    [Show full text]
  • Mariana Riva Palacio
    ANALYSIS OF THE LEGAL FRAMEWORK ON THE USE OF FOREIGN SATELLITES: NORTH AMERICA Mariana Riva Palacio McGiII University Montréal, Canada Faculty of Law Institute of.Comparative Law November 2001 A thesis $ubmitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Laws (LL.M) @ Mariana Riva Palacio National Library Bibliothèque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographie SelVices selVices bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON K1A 01'.14 Ottawa ON 1<1 A0lIl4 Canada Canada Your tiIe V",'MHéfërmce Our file Nctre réfélencB The author has granted a non­ L'auteur a accordé une licence non exclusive licence allowing the exclusive pennettant à la National Libr&)' ofCanada to Bibliothèque nationale du Canada de reproduce, loan., distribute or sell reproduire, prêter, distribuer ou copies ofthis thesis :in microfonn, vendre des copies de cette thèse sous paper or electronic fonnats. la fonne de microfiche/film, de reproduction sur papier ou sur fonnat électronique. The author retains ownership ofthe L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts frOID :it Ni la thèse ni des extraits substantiels may be prillted or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son pemnsslOn. autorisation. 0-612-79143-2 Canada Abstract Over the last years satellite communications remained as a government monopoly in most countries. Recently, that situation has changed and we have witnessed Iiberalization on trade in satellite services where governmental entities that provided satellite services were privatized.
    [Show full text]