A Taxonomic Revision of Solenostomataceae (Marchantiophyta) in Korea

Total Page:16

File Type:pdf, Size:1020Kb

A Taxonomic Revision of Solenostomataceae (Marchantiophyta) in Korea pISSN 1225-8318 − Korean J. Pl. Taxon. 50(2): 120 147 (2020) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2020.50.2.120 Korean Journal of RESEARCH ARTICLE Plant Taxonomy A taxonomic revision of Solenostomataceae (Marchantiophyta) in Korea Vadim V. BAKALIN, Seung Se CHOI1*, Seung Jin PARK2, Sun Hee SIM3 and Chang Woo HYUN3 Botanical Garden-Institute, Vladivostok 690024, Russia 1Department of Natural Environment Research, National Institute of Ecology, Seocheon 33657, Korea 2Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Korea 3Plant Resources Division, National Institute of Biological Resources, Incheon 22755, Korea (Received 14 February 2020; Revised 8 June 2020; Accepted 23 June 2020) ABSTRACT: Solenostomataceae are revised for the Korean Peninsula. In total, 27 species in four genera (Metaso- lenostoma, Plectocolea, Protosolenostoma, Solenostoma) are recorded, the occurrence of 24 of which is con- firmed. Each confirmed species is provided with an ecological overview, and a list of specimens examined and illustrations based on materials from Korea. Solenostoma jirisanense sp. nov. is described. Keywords: Solenostomataceae, Plectocolea, Solenostoma, Metasolenostoma, Protosolenostoma, taxonomy The Solenostomataceae were described by Crandall-Stotler which the record is based are unavailable for revisions. The et al. (2009) to include the series of genera previously regarded latter is fully applicable not only to China, which is not the as members of the Jungermanniaceae. Since then the object of the present study, but also to the Korean Peninsula. circumscription of family was modified several times by On the one hand specimens from North Korea, collected within transfers of genera to other families (e.g., Endogemmataceae, last 60 years, are absolutely unavailable to foreigners (including cf. Vilnet et al., 2011), synonymization of known genera (e.g., South Koreans); on another hand many records from South Scaphophyllum and some species of Gottschelia with Korea published by Yamada and Choe (1997) as well as Hong Solenostoma, cf. Feldberg et al., 2009) and the descriptions of (1962) also could not be checked. We studied the collections new genera (e.g., Protosolenostoma and Metasolenostoma, cf. in the three largest herbaria in Japan: TNS, HIRO, and NICH, Bakalin et al., 2014). The last valuable emendation was the with particular attention to the latter two, where the specimens transfer of Nardia to Gymnomitriaceae (Shaw et al., 2015). studied by these Korean authors should have been deposited Therefore, considering the aforementioned novelties, the but found only a few materials for widely distributed taxa that Solenostomataceae is represented in Korea by four genera: was of little help to us in the preparation in this account. In Metasolenostoma, Plectocolea, Protosolenostoma and fact, we were forced to study the Solenostomataceae in Korea Solenostoma, all of which are more or less closely related from scratch, and this process was started in 2008. morphologically. Outside of Japan and the southern part of the Russian Far Materials and Methods East the taxonomy and distribution patterns of the Solenostomataceae are poorly understood in East Asia. Several This paper is based on materials collected by us (mostly by species were recorded for various provinces in China and the Choi and Bakalin) within the last twelve years in numerous Korean Peninsula. Unfortunately, these data are too localities across the Republic of Korea and deposited in JNU, fragmentary and incline one to suspect disjunctive distributions KB, and VBGI. These collections far exceed the previously for many taxa, especially in China. Additionally, some records known materials collected in South Korea and may be regarded may be based on misidentifications and the specimens on as rather exhaustive for South Korea. Although we did not *Author for correspondence: [email protected] http://e-kjpt.org, © 2020 the Korean Society of Plant Taxonomists. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 120 A taxonomic revision of Solenostomataceae (Marchantiophyta) in Korea 121 figures may be obtained. The nomenclature citation for each species includes only a few synonyms, mostly those names that were previously used for the Korean Peninsula. Here we do not describe the identification and descriptions of each species, genus, and Solenostomataceae, the overview of taxonomically valuable features or the history of generic understanding, because it was published very recently (Bakalin, 2014a; Bakalin and Choi, 2017) and need not be repeated. The synonyms after species name are provided only if they were used to indicate the species for the Korean Peninsula in the literature. Taxonomic Treatments Solenostomataceae Stotler & Crand.-Stotl., Edinburgh J. Bot. 66: 190, 2009. 둥근망울이끼과 There are four genera and 24 taxa recorded in the Korean Peninsula. I. Metasolenostoma Bakalin & Vilnet, Bot. Pacif. 3: 10, 2014. Korean name: O-reum-mang-ul-i-kki-sok (오름망울이끼속). Fig. 1. Provinces of the Korean Peninsula into administrative An oligotypic recently described genus with one species subunits. CB, Chungcheongbuk-do; CN, Chungcheongnam-do; GB, known in Korean Peninsula (Bakalin et al., 2014). Gyeongsangbuk-do; GN, Gyeongsangnam-do; GG, Gyeonggi-do; GW, Gangwon-do; HB, Hamgyeongbuk-do; HN, Hamgyeongnam 1. Metasolenostoma ochotense Vilnet et Bakalin, Bot. Pacif. do; HWB, Hwanghaebuk-do; HWN, Hwanghaenam-do; JB, Jeollabuk-do; JG, Jagang-do; JN, Jeollanam-do; JJ, Jeju-do; PB, 3: 10, 2014 (Fig. 2). Solenostoma ochotensis Bakalin & Vilnet, Pyeonganbuk-do; PN, Pyeongannam-do; YG, Yanggang-do. The Bryologist 115: 575, 2012. Korean name: O-reum-mang-ul-i-kki (오름망울이끼). have access to North Korean specimens, we prefer to include in this revision the data on the distribution of taxa in North Ecology: Acidophilic hygrophyte. In the Kurils, where the Korea, based on literature sources, mainly those summarized species is the most common, it is commonly inclined to occupy by Kim and Hwang (1991) and Yamada and Choe (1997). The volcanically modified habitats (the taxon described from wet distribution of taxa within Korea is given in accordance with scoria field). In adjacent areas this taxon preferentially grows the official subdivision of the country (Fig. 1). in the places with disturbed vegetation cover in open to shaded Each species treatment is accompanied by data on ecology areas within broad-leaved deciduous to boreal dark coniferous (sometimes with list of accompanying liverwort taxa, where forest zones. nomenclature mostly follows to Konstantinova et al., 2009), Distribution: This is a boreal East Asian species with a distribution patterns (with main attention to the Korean distribution covering Kamchatka, Kurils, Sakhalin, northern Peninsula), list of specimens examined and comments (mostly Japan and the Korean peninsula, thus the lands under the to help in the separation of morphologically closely related influence of Pacific wet air masses. The occurrences in the taxa). The data on distribution in adjacent areas are from Korean Peninsula are in the southwestern flank of the species Bakalin (2014a) for the Russian Far East, Piippo (1990) for area and represent poorly developed modifications (similar to China and Amakawa (1960), Yamada and Iwatsuki (2006) for that in the Kamchatka Peninsula). Japan, with some additional information from recent literature Comments: The known populations in Korea represent (cited where used). The taxa for which we were unable to leptodermous modification of the species (also common in confirm or to study specimens from Korea proper are only Kamchatka Peninsula in North-East Asia) characterized by discussed and provided with references for papers where pellucid, very pale-colored plants and small concave trigones Korean Journal of Plant Taxonomy Vol. 50 No. 2 (2020) 122 Vadim V. BAKALIN et al. Fig. 2. Metasolenostoma ochotense Vilnet et Bakalin. A. Cells along leaf margin. B. Cells in the leaf middle. C, D. Perianthous branch with young unfertilized perianth. E. Male branch. F, G. Leaves (from Choi 633). Scale bars = 50 µm (A, B), 1 mm (C–G). in leaf cells. Perianth are not known from the Korean Peninsula. A large genus counting over 60 taxa in East to South-East Among regional taxa, leptodermous modifications of this Asia, with its center of diversity in warm temperate mountains species may be probably mistaken with Protosolenostoma near the Pacific Ocean. 15 species are recorded in the Korean fusiforme, from which it differs by its small, but distinct Peninsula. trigones of leaf cells, as well as the smaller size of leaf cells (in P. fusiforme mostly larger than 40 × 30 μm in the midleaf), 1. Plectocolea comata (Nees) S. Hatt. Bull. Tokyo Sci. Mus. absence of an evident leaf rim and also its occurrence at lower 11: 38, 1944 (Figs. 3, 20B–D). Jungermannia comata Nees, altitudes in the peninsula (P. fusiforme known from high to Enum. Pl. Crypt. Jav. 78, 1830. middle elevations in Jeju-do Island only). The records of Korean name: Bi-jja-ru-mang-ul-i-kki (비짜루망울이끼). Plectocolea hyalina for Chungcheongbuk-do, Gyeonggi-do, and Gangwon-do (Yamada and Choe, 1997) may be based on Ecology: Acido- to neutrophilic meso-hygrophyte, misidentification of Metasolenostoma ochotense. Our previous
Recommended publications
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • A New Species of the Genus Jungermannia (Jungermanniales, Marchantiophyta) from the Caucasus with Notes on Taxa Delimitation and Taxonomy of Jungermannia S
    Phytotaxa 255 (3): 227–239 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.255.3.4 A new species of the genus Jungermannia (Jungermanniales, Marchantiophyta) from the Caucasus with notes on taxa delimitation and taxonomy of Jungermannia s. str. NADEZDA A. KONSTANTINOVA1 & ANNA A. VILNET1 1Polar-Alpine Botanical Garden–Institute RAS, 184256, Kirovsk, Russia, email: [email protected], [email protected] Abstract The new species Jungermannia calcicola Konstant. et Vilnet, is described based on a critical reinvestigation of morphologi- cal features and molecular analyses of trnL–trnF and trnG intron cpDNA sequences of forty samples of Jungermannia s. str. The new species is described and illustrated as well as noting its differentiation from allied species and distribution patterns. New data on some taxonomical ambiguities and on the taxa delimitation in the Jungermannia s. str. are discussed. Key words: Jungermannia calcicola sp. nov., liverworts, taxonomy, molecular systematics, distribution Introduction Jungermannia Linnaeus (1753: 1131) is one of the oldest described genera of leafy liverworts. Since its description the treatment of this genus has been drastically changed. At the end of the 20th to the beginning of the 21st centuries most bryologists accepted Jungermannia in the wide sense including Solenostoma Mitten (1865a: 51), Plectocolea (Mitten 1865b: 156) Mitten (1873: 405), Liochlaena Nees in Gottsche et al. (1845: 150). But in recent molecular phylogenetic studies Jungermannia s. lat. has been proved to be a mixture of phylogenetically unrelated taxa, some of which have been elevated to distinct families, e.g., Solenostomataceae Stotler et Crand.-Stotl.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • North American H&A Names
    A very tentative and preliminary list of North American liverworts and hornworts, doubtless containing errors and omissions, but forming a basis for updating the spreadsheet of recognized genera and numbers of species, November 2010. Liverworts Blasiales Blasiaceae Blasia L. Blasia pusilla L. Fossombroniales Calyculariaceae Calycularia Mitt. Calycularia crispula Mitt. Calycularia laxa Lindb. & Arnell Fossombroniaceae Fossombronia Raddi Fossombronia alaskana Steere & Inoue Fossombronia brasiliensis Steph. Fossombronia cristula Austin Fossombronia foveolata Lindb. Fossombronia hispidissima Steph. Fossombronia lamellata Steph. Fossombronia macounii Austin Fossombronia marshii J. R. Bray & Stotler Fossombronia pusilla (L.) Dumort. Fossombronia longiseta (Austin) Austin Note: Fossombronia longiseta was based on a mixture of material belonging to three different species of Fossombronia; Schuster (1992a p. 395) lectotypified F. longiseta with the specimen of Austin, Hepaticae Boreali-Americani 118 at H. An SEM of one spore from this specimen was previously published by Scott and Pike (1988 fig. 19) and it is clearly F. pusilla. It is not at all clear why Doyle and Stotler (2006) apply the name to F. hispidissima. Fossombronia texana Lindb. Fossombronia wondraczekii (Corda) Dumort. Fossombronia zygospora R.M. Schust. Petalophyllum Nees & Gottsche ex Lehm. Petalophyllum ralfsii (Wilson) Nees & Gottsche ex Lehm. Moerckiaceae Moerckia Gottsche Moerckia blyttii (Moerch) Brockm. Moerckia hibernica (Hook.) Gottsche Pallaviciniaceae Pallavicinia A. Gray, nom. cons. Pallavicinia lyellii (Hook.) Carruth. Pelliaceae Pellia Raddi, nom. cons. Pellia appalachiana R.M. Schust. (pro hybr.) Pellia endiviifolia (Dicks.) Dumort. Pellia endiviifolia (Dicks.) Dumort. ssp. alpicola R.M. Schust. Pellia endiviifolia (Dicks.) Dumort. ssp. endiviifolia Pellia epiphylla (L.) Corda Pellia megaspora R.M. Schust. Pellia neesiana (Gottsche) Limpr. Pellia neesiana (Gottsche) Limpr.
    [Show full text]
  • Article ISSN 1179-3163 (Online Edition)
    Phytotaxa 63: 21–68 (2012) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2012 Magnolia Press Article ISSN 1179-3163 (online edition) Early Land Plants Today: Index of Liverworts & Hornworts 2009–2010 LARS SÖDERSTRÖM1, ANDERS HAGBORG2, MARSHALL R. CROSBY3 & MATT VON KONRAT2 1 Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway; [email protected] 2 Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, U.S.A.;[email protected], [email protected] 3 Missouri Botanical Garden, P. O. Box 299, St. Louis, MO 63166–0299 U.S.A.; [email protected] Abstract A widely accessible list of known plant species is a fundamental requirement for plant conservation and has vast applications. An index of published names of liverworts and hornworts between 2009 and 2010 is provided as part of a continued effort in working toward producing a world checklist of this group. Included in the list are also names overlooked by earlier indices. The list includes 30 higher taxa, 250 species, 52 infraspecific taxa, 31 autonyms, and two fossils for 2009 and 2010. A number of taxa not covered by the earlier indices for 2000-2008 are also included. Key words: Liverworts, hornworts, index, nomenclature Introduction Under the auspices of the Early Land Plants Today project, there has been a strong community-driven effort attempting to address the critical need to synthesize the vast nomenclatural, taxonomic and global distributional data for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) (von Konrat et al. 2010a). These endeavours are critical in providing the foundation to develop a working checklist of liverworts and hornworts worldwide; the first version is projected to be published in 2012.
    [Show full text]
  • Bryophyte Ecology Table of Contents
    Glime, J. M. 2020. Table of Contents. Bryophyte Ecology. Ebook sponsored by Michigan Technological University 1 and the International Association of Bryologists. Last updated 15 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. This file will contain all the volumes, chapters, and headings within chapters to help you find what you want in the book. Once you enter a chapter, there will be a table of contents with clickable page numbers. To search the list, check the upper screen of your pdf reader for a search window or magnifying glass. If there is none, try Ctrl G to open one. TABLE OF CONTENTS BRYOPHYTE ECOLOGY VOLUME 1: PHYSIOLOGICAL ECOLOGY Chapter in Volume 1 1 INTRODUCTION Thinking on a New Scale Adaptations to Land Minimum Size Do Bryophytes Lack Diversity? The "Moss" What's in a Name? Phyla/Divisions Role of Bryology 2 LIFE CYCLES AND MORPHOLOGY 2-1: Meet the Bryophytes Definition of Bryophyte Nomenclature What Makes Bryophytes Unique Who are the Relatives? Two Branches Limitations of Scale Limited by Scale – and No Lignin Limited by Scale – Forced to Be Simple Limited by Scale – Needing to Swim Limited by Scale – and Housing an Embryo Higher Classifications and New Meanings New Meanings for the Term Bryophyte Differences within Bryobiotina 2-2: Life Cycles: Surviving Change The General Bryobiotina Life Cycle Dominant Generation The Life Cycle Life Cycle Controls Generation Time Importance Longevity and Totipotency 2-3: Marchantiophyta Distinguishing Marchantiophyta Elaters Leafy or Thallose? Class
    [Show full text]
  • Phytotaxa, Taxonomic Novelties Resulting from Recent Reclassification of the Lophoziaceae
    Phytotaxa 3: 47–53 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) Taxonomic novelties resulting from recent reclassification of the Lophoziaceae/ Scapaniaceae clade LARS SÖDERSTRÖM1, RYAN DE ROO2 & TERRY HEDDERSON2 1 Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway email: [email protected] 2 Bolus Herbarium, Department of Botany, University of Cape Town, Private Bag, Rondebosch 7701, South Africa email: [email protected] Abstract A new family, Anastrophyllaceae, is segregated from Lophoziaceae, two new genera, Neoorthocaulis and Oleolophozia are described and the following new combinations are made: Neoorthocaulis attenuatus, N. binsteadii, N. floerkei, N. hyperboreus, Barbilophozia subgen. Sudeticae, Barbilophozia sudetica and Oleolophozia perssonii. Key words: Anastrophyllaceae, liverworts, Neoorthocaulis, Oleolophozia, Barbilophozia Introduction The Lophoziaceae has previously been either recognized as a separate family (e.g. Grolle & Long 2000) or placed in the synonymy of Jungermanniaceae (e.g. Damsholt 2002). Recent molecular work (De Roo et al. 2007) has shown that the two are not particularly closely related and that Lophoziaceae should be retained as a separate family. However, molecular data (Schill et al. 2004) also show that the family Scapaniaceae is nested within Lophoziaceae, a pattern confirmed by, inter alia, Yatsentyuk et al. (2004), Davis (2004) and De Roo et al. (2007). Those studies also exclude two elements frequently included in Lophoziaceae in the past— the family Jamesoniellaceae and the genus Leiocolea (Müller 1913: 711) Buch (1933: 288). However, some recent studies (De Roo et al. 2007 and unpublished results by R.
    [Show full text]
  • Natural Heritage Information Centre Newsletter 2014 Volume 19 Science and Research Branch Newsletter Biodiversity and Monitoring Section
    Ministry of Natural Resources Natural Heritage Information Centre Newsletter 2014 Volume 19 Science and Research Branch Newsletter Biodiversity and Monitoring Section Transformation brings new staff to the NHIC Contents As a result of the Ministry of Natural Resources’s (MNR) transformation Transformation brings new of Science and Information Resources Division, the Natural Heritage and staff to the NHIC .......................... 1 Information Centre (NHIC) has been fortunate to pick up four key staff from Using the Vegetation the former Southern Science and Information Section. Sampling Protocol (VSP) to monitor natural cover in David Bradley joins the NHIC and brings his experiences and skills as the Lake Simcoe watershed ........ 2 an Ecological Land Classification (ELC) Botanist to our team. David has helped to sample and analyze 1,144 research plots in site regions 6E and Bryophyte research at 7E and over 5,000 Vegetation Sampling Protocol (VSP) vegetation plots. the NHIC ...................................... 4 Since coming to the NHIC, David has been busy upgrading the bryophyte Citizen scientists contribute herbarium and contributing to the bryophyte database. This year, David valuable information to the will be collecting and identifying mosses and liverworts from across NHIC ............................................ 6 Ontario while he continues to support the VSP in southern Ontario. Need information? ...................... 6 Danijela Puric-Mladenovic joins the NHIC and brings her Associate Natural Heritage inventories Professor
    [Show full text]
  • Bryophyte Flora of Gayasan Mountain National Park in Korea
    Korean J. Pl. Taxon. 51(1): 33−48 (2021) pISSN 1225-8318 eISSN 2466-1546 https://doi.org/10.11110/kjpt.2021.51.1.33 Korean Journal of RESEARCH ARTICLE Plant Taxonomy Bryophyte flora of Gayasan Mountain National Park in Korea Hyun Min BUM, Eun-Young YIM1, Seung Jin PARK, Vadim A. BAKALIN2, Seung Se CHOI3*, Sea-Ah RYU4 and Chang Woo HYUN4 Department of Life Science, Jeonbuk National University, Jeonju 54896, Korea 1Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Seogwipo 63582, Korea 2Botanical Garden-Institute, Vladivostok 690024, Russia 3Team of National Ecosystem survey, National Institute of Ecology, Seocheon 33657, Korea 4Plant Resources Division, National Institute of Biological Resources, Incheon 22755, Korea (Received 1 February 2021; Revised 1 March 2021; Accepted 12 March 2021) ABSTRACT: We investigated the bryophyte flora of the Gayasan Mountain National Park in Korea by conduct- ing 18 field surveys in from April of 2009 to November of 2016 at various sites on the mountains. During the surveys, we discovered 204 taxa comprising 57 families, 106 genera, 199 species, 2 subspecies, and 3 varieties. Among these, 145 species were reported as new to the flora of Gayasan Mountain. A checklist based on a study of 903 specimens is provided. The most notable species recorded during the surveys were the rare bryophytes Hattoria yakushimensis (Horik.) R. M. Schust., Nipponolejeunea pilifera (Steph.) S. Hatt., Drepanolejeunea angustifolia (Mitt.) Grolle, Lejeuena otiana S. Hatt., Cylindrocolea recurvifolia (Steph.) Inoue and Pogonatum contortum (Menzies ex Brid.) Lesq. Keywords: Bryophyte, flora, mosses, liverworts, Gayasan Mt. The first of bryophytes on Gayasan Mountains was between latitudes and longitudes 35o44′56″–35o51′19″N and published by Kashimura (1939) who identified two species, 128o02′42″–128o11′10″E, the lowland area of which has a Andreaea rupestris var.
    [Show full text]
  • Wikstrom2009chap13.Pdf
    Liverworts (Marchantiophyta) Niklas Wikströma,*, Xiaolan He-Nygrénb, and our understanding of phylogenetic relationships among A. Jonathan Shawc major lineages and the origin and divergence times of aDepartment of Systematic Botany, Evolutionary Biology Centre, those lineages. Norbyvägen 18D, Uppsala University, Norbyvägen 18D 75236, Altogether, liverworts (Phylum Marchantiophyta) b Uppsala, Sweden; Botanical Museum, Finnish Museum of Natural comprise an estimated 5000–8000 living species (8, 9). History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland; Early and alternative classiA cations for these taxa have cDepartment of Biology, Duke University, Durham, NC 27708, USA *To whom correspondence should be addressed (niklas.wikstrom@ been numerous [reviewed by Schuster ( 10)], but the ebc.uu.se) arrangement of terminal taxa (species, genera) into lar- ger groups (e.g., families and orders) based on morpho- logical criteria alone began in the 1960s and 1970s with Abstract the work of Schuster (8, 10, 11) and Schljakov (12, 13), and culminated by the turn of the millenium with the work Liverworts (Phylum Marchantiophyta) include 5000–8000 of Crandall-Stotler and Stotler (14). 7 ree morphological species. Phylogenetic analyses divide liverworts into types of plant bodies (gametophytes) have generally been Haplomitriopsida, Marchantiopsida, and Jungerman- recognized and used in liverwort classiA cations: “com- niopsida. Complex thalloids are grouped with Blasiales in plex thalloids” including ~6% of extant species diversity Marchantiopsida, and leafy liverworts are grouped with and with a thalloid gametophyte that is organized into Metzgeriidae and Pelliidae in Jungermanniopsida. The distinct layers; “leafy liverworts”, by far the most speci- timetree shows an early Devonian (408 million years ago, ose group, including ~86% of extant species diversity and Ma) origin for extant liverworts.
    [Show full text]
  • Notes on Early Land Plants Today. 44. Comments on Sexuality in Solenostoma (Solenostomataceae, Marchantiophyta) and on Some Newly Described Taxa
    Phytotaxa 152 (1): 33–47 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.152.1.3 Notes on Early Land Plants Today. 44. Comments on sexuality in Solenostoma (Solenostomataceae, Marchantiophyta) and on some newly described taxa JIŘÍ VÁŇA1, LARS SÖDERSTRÖM2, ANDERS HAGBORG3 & MATT VON KONRAT3 1Department of Botany, Charles University, Benátská 2, CZ-12801 Praha 2, Czech Republic; email: [email protected] 2Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 3Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, USA; [email protected], [email protected] Abstract The sexuality of Solenostoma species is discussed and it is concluded that Solenostoma sanguinolentum is heteroicous. This and other morphological differences from Solenostoma marcescens are discussed and they are considered to belong to the same species. Heteroicity probably also occurs in Solenostoma micranthum and possibly in other Solenostoma species. Solenostoma rossicum and Solenostoma pyriflorum subsp. purpureum are new synonyms to Solenostoma sphaerocarpum. Solenostoma ochotense is a new synonym to Solenostoma hokkaidense. Solenostoma costaricanum is a new synonym to Solenostoma amoenum. Plectocolea subbalfourii is a new synonym to Solenostoma balfourii. Solenostoma rubrum var. underwoodii is a new synonym to Solenostoma rubrum. Plectocolea yunnanensis is a new synonym to Solenostoma sikkimense. Solenostoma inundatum var. grandirete is a new synonym to Solenostoma orbiculatum. Solenostoma kurilense and Solenostoma ovalifolia are new combinations and Solenostoma philippinense a new species. Bakalin & Vilnet (2012) described two new species and made one new combination in Solenostoma and two new combinations in Plectocolea.
    [Show full text]
  • Transfer of the Eocene Jungermannia Berendtii Grolle to Solenostoma
    Cryptogamie, Bryologie, 2015, 36 (3): 285-288 © 2015 Adac. Tous droits réservés Transfer of the Eocene Jungermannia berendtii Grolle to Solenostoma Jiří VÁŇA a*, Alfons SCHÄFER-VERWIMP b, Julia BECHTELER c, Alexander R. SCHMIDT d & Jochen HEINRICHS c aDepartment of Botany, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic bMittlere Letten 11, 88634 Herdwangen-Schönach, Germany cSystematic Botany and Mycology, Geobio-Center, Faculty of Biology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany dDepartment of Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany Abstract – The Baltic amber fossil Jungermannia berendtii is transferred to Solenostoma based on the presence of numerous long rhizoids, distinct trigones, and subquadrate-rotund to elongate-elliptical leaves. Amber / Cenozoic / Jungermanniales / Jungermanniineae / liverwort / Solenostomataceae INTRODUCTION Eocene Baltic amber is well known as a source of diverse bryophyte inclusions (Grolle & Meister, 2004; Frahm, 2010). Currently, twenty-four species of liverworts are recognized from this amber (Heinrichs et al., 2015; Katagiri, 2015), the majority of which are known from multiple specimens. Jungermannia berendtii Grolle, however, is known exclusively from the scanty, sterile holotype specimen. This fossil was tentatively placed in Jungermannia L. subgenus Solenostoma (Mitt.) Amakawa sect. Desmorhiza Amakawa (Grolle, 1980) based on the presence of numerous rhizoids that extend from the ventral stem cortex. Moreover, the fossil is characterized by a stem with relatively thin-walled, rectangular cortical cells, subquadrate-rotund to elongate-elliptical, succubously to almost transversally inserted leaves, and +/– isodiametric leaf cells with distinct trigones. Grolle (1980) and Grolle & Meister (2004) accepted a wide genus concept of Jungermannia that includes Solenostoma Mitt.
    [Show full text]