Structure of Flowering Plants 3.2 Organisation & the Vascular
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia. -
California's Native Ferns
CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image. -
The Big Bloom—How Flowering Plants Changed the World
The Big Bloom—How Flowering Plants Changed the World Written by Michael Klesius Republished from the pages of National Geographic magazine -- July 2002 In the summer of 1973 sunflowers appeared in my father's vegetable garden. They seemed to sprout overnight in a few rows he had lent that year to new neighbors from California. Only six years old at the time, I was at first put off by these garish plants. Such strange and vibrant flowers seemed out of place among the respectable beans, peppers, spinach, and other vegetables we had always grown. Gradually, however, the brilliance of the sunflowers won me over. Their fiery halos relieved the green monotone that by late summer ruled the garden. I marveled at birds that clung upside down to the shaggy, gold disks, wings fluttering, looting the seeds. Sunflowers defined flowers for me that summer and changed my view of the world. Flowers have a way of doing that. They began changing the way the world looked almost as soon as they appeared on Earth about 130 million years ago, during the Cretaceous period. That's relatively recent in geologic time: If all Earth's history were compressed into an hour, flowering plants would exist for only the last 90 seconds. But once they took firm root about 100 million years ago, they swiftly diversified in an explosion of varieties that established most of the flowering plant families of the modern world. Today flowering plant species outnumber by twenty to one those of ferns and cone-bearing trees, or conifers, which had thrived for 200 million years before the first bloom appeared. -
Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care. -
Auxins for Hardwood Cuttings: Effect of Root-Promoting Hormones
Auxins for Hardwood Cuttings effect of root-promoting hormones in propagating fruit trees by hardwood cuttings studied during past three seasons H. T. Hartmann Hardwood cuttings of five species of fruit trees, Marianna 2624 plum, Angers quince, Stockton Morello cherry, Mal- ling-Merton 793 apple, and Mission olive, were used in propagation tests to study the effects of various root-promot- ing hormones-auxins-applied under several different conditions. Marianna 2624 plum is a commonly used rootstock for a number of the stone fruit species; the 2624 selection is a seedling of the parent Marianna plum, presumably an open-pollinated cross of Prunus cerasifera and P. munsoniana. This rootstock is propagated commer- cially by hardwood cuttings, but in heavy soils considerable difficulty is often experienced in obtaining satisfac- tory rooting. Angers quince4ydonia oblong- has long been used as a dwarfing root- stock for certain of the pear varieties. It is commercially propagated by hard- wood cuttings. Stockton Morello cherry-Prunus cer- asus-is used to a considerable extent in California as a semidwarfing rootstock for the sweet cherry and is propagated commercially by suckers arising around the base of older trees. It would be de- sirable to be able to propagate this stock by cuttings. In all the tests conducted with this variety, however, not one hard- wood cutting was induced to root. Later studies have shown that it can be easily rooted under mist humidification by softwood cuttings taken from actively growing shoots if treated with indolebu- tyric acid. The Malling-Merton 793 apple-Ma- lus sylwstris-is a newly developed clonal apple rootstock from’ England which is usually propagated by some method of layering. -
Handouts-Lect. 30 Gymnosperms and Angiosperms.Pdf
Lecture 30 Gymnosperms and Angiosperms Gymnosperms Gymnosperms means “naked seed” and are are nonflowering plants. Their seeds that do not develop within an enclosed structure. Examples are conifers, cycads, Ginkgo, and Gnetales. Gymnosperm seeds develop either on the surface of scale or a leaf-like appendage of cones or at the end of short stalks. Evolution of gymnosperms Seed ferns were the first seed plants, protecting their reproductive parts in structures called capsules. Seed ferns gave rise to the gymnosperms during the Paleozoic Era, about 390 million years ago. Gymnosperms include the gingkoes and conifers and inhabit many, ecosystem such as the taiga and the alpine forests, because they are well adapted for cold weather. True seed plants became more numerous and diverse during the Carboniferous period around 319 million years ago; an explosion that appears to be due to a whole genome duplication event. Gymnosperms do not depend on water for fertilization (have air‐borne pollen). Life Cycle of Gymnosperms 1. Gymnosperms are vascular plants that produce seeds in cones. Examples include conifers such as pine and spruce trees. The gymnosperm life cycle has a dominant sporophyte generation. Both gametophytes and the next generation’s new sporophytes develop on the sporophyte parent plant. 2. Cones form on a mature sporophyte plant. Inside male cones, male spores develop into male gametophytes. Each male gametophyte consists of several cells enclosed within a grain of pollen. Inside female cones, female spores develop into female gametophytes. Each female gametophyte produces an egg inside an ovule. 3. Pollination occurs when pollen is transferred from a male to female cone. -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups. -
Secretory Tissues (Gesneriaceae)
Acta Bot. Neerl. 46(4), December 1997, p.413-420 Secretory tissues of the flower of Sanango racemosum (Gesneriaceae). I. Light microscopy Sara Maldonadoi* and Marisa Oteguiif * Institute de Recursos Bioldgicos, INTA 1712, Villa Udaondo, Castelar, Argentina; fFacultad de Ciencias La 1900 La Naturales y Museo, Universidad Nacional de Plata, Plata, Argentina SUMMARY Sanango racemosum (Ruiz & Pav.) Barringer has a dry stigma without a free-flowing secretion fluid but with a hydrated proteinaceous pellicle. The stigmatic surface is covered with unicellular, bottle-shaped papillae. At maturity, a viscous emulsion is accumulated between the cuticle and the pecto-cellulosic wall of the papillae, causing it to become detached from the surface of the papilla cell walls. The style has a central solid core of transmitting tissue. The cells of the transmitting tissue are rich in starch and exhibit thick lateral walls rich in pectic substance. The nectary disk is a ring elongated into a cup, with five lobes at the top. One of the most conspicuous histological features of the disk is the abundance of starch in the secretory cells. The disk is supplied only by phloem; the stomata are found in the top of the lobes. A fluid substance is produced just before anthesis and secreted through the stomata with no visible decline in starch level. During anthesis and after fertilization, a rapid decline in starch is observed. The hypothesis that the disk has other functions besides that of a nectary is discussed. Key-words: disk, nectary, osmophore, Sanango, stigma, transmitting tissue. INTRODUCTION The monotypic genus Sanango G. S. Bunting and J. -
Flowering Plants; They Were Too Numerous and Too Varied, and There Were Too Few Fos- Sils to Sort out Which Were More Primitive
NEWSFOCUS embryo that serves as its food supply. Darwin was perplexed by the diversity of On the Origin of flowering plants; they were too numerous and too varied, and there were too few fos- sils to sort out which were more primitive. Flowering Plants Throughout much of the 20th century, mag- nolia relatives with relatively large flowers were leading candidates for the most primi- how flowers got started—and from which tive living flowers, although a few ancestor. Today, researchers have analytical researchers looked to small herbs instead. tools, fossils, genomic data, and insights that In the late 1990s, molecular systematics Darwin could never have imagined, all of came to the rescue, with several reports pre- which make these mysteries less abom- senting a fairly consistent picture of the inable. Over the past 40 years, techniques lower branches of the angiosperm tree. An for assessing the relationships between obscure shrub found only in New Caledonia organisms have greatly improved, and gene emerged as a crucial window to the past. sequences, as well as morphology, now help Amborella trichopoda, with its 6-millimeter researchers sort out which angiosperms greenish-yellow flowers, lives deep in the arose early and which arose late. New fossil cloud forests there. In multiple gene-based finds and new ways to study them—with assessments, including an analysis in 2007 synchrotron radiation, for example—pro- of 81 genes from chloroplast genomes vide a clearer view of the detailed anatomy belonging to 64 species, Amborella sits of ancient plants. And researchers from var- at the base of the angiosperm family tree, ious fields are figuring out genomic changes the sister group of all the rest of the that might explain the amazing success of angiosperms. -
The Effects of Different Hormones and Their Doses on Rooting of Stem Cuttings in Anatolian Sage (Salvia Fruticosa Mill.)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect APCBEE Procedia 8 ( 2014 ) 348 – 353 2013 4th International Conference on Agriculture and Animal Science (CAAS 2013) 2013 3rd International Conference on Asia Agriculture and Animal (ICAAA 2013) The Effects of Different Hormones and Their Doses on Rooting of Stem Cuttings in Anatolian Sage (Salvia Fruticosa Mill.) A.Canan SAĞLAM a,*, Seviye YAVERa, İsmet BAŞERa, Latif CİNKILIÇb, aNamık Kemal Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü, Tekirdağ bNamık Kemal Üniversitesi Çorlu meslek Yüksek Okulu, Tekirdağ Abstract In this research, three different hormones and five different hormone dosages were applied on cuttings were taken from Anatolian sage plants (Salvia fruticosa Mill.) before flowering period. NAA, IBA (0, 60, 120, 180, 240 ppm) and IAA hormones (0, 100, 200, 300, 400 ppm) were prepared by dissolving in distilled water. Stem cuttings were kept in hormone solution for 24 hours and they were planted in perlit medium under greenhouse conditions. After a month, the number of rooted stem cutting, the number of root per stem cuttings, root length and root weight were determined on stem cuttings. Rooting was observed in all of the cuttings for both samples to which hormone was applied and to which hormone was not applied. According to the result of the variance analysis, the effects of the hormones and hormone doses on the examined characters were found significant as statistically. According to the results obtained, IAA application increased root number considerably. While high hormone dose applications caused the notable increase in root weight and root number in all of three hormones, low hormone applications did not affect root length. -
Sieve Plate Pores in the Phloem and the Unknowns of Their Formation
plants Review Sieve Plate Pores in the Phloem and the Unknowns of Their Formation Lothar Kalmbach 1,* and Ykä Helariutta 1,2,* 1 The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK 2 Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland * Correspondence: [email protected] (L.K.); [email protected] (Y.H.) Received: 7 December 2018; Accepted: 19 January 2019; Published: 22 January 2019 Abstract: Sieve pores of the sieve plates connect neighboring sieve elements to form the conducting sieve tubes of the phloem. Sieve pores are critical for phloem function. From the 1950s onwards, when electron microscopes became increasingly available, the study of their formation had been a pillar of phloem research. More recent work on sieve elements instead has largely focused on sieve tube hydraulics, phylogeny, and eco-physiology. Additionally, advanced molecular and genetic tools available for the model species Arabidopsis thaliana helped decipher several key regulatory mechanisms of early phloem development. Yet, the downstream differentiation processes which form the conductive sieve tube are still largely unknown, and our understanding of sieve pore formation has only moderately progressed. Here, we summarize our current knowledge on sieve pore formation and present relevant recent advances in related fields such as sieve element evolution, physiology, and plasmodesmata formation. Keywords: plant vasculature; phloem; development; sieve element; sieve plate; cell wall; plasmodesmata; Arabidopsis 1. Introduction Studying the plant vascular system has attracted considerable attention over the past decades. The vasculature enables apoplastic water and nutrient transport from the root to the shoot through root pressure and transpiration-powered transport through the xylem vessels. -
Rooting Hormones
Essential Factor: Rooting Hormones Rooting Hormones are auxins, or plant growth regulators, that are involved in cell elongation and adventitious root formation. ¡ Reasons to use rooting hormones in your facility ¡ Difficult or slow to root crops can benefit greatly from rooting hormone application. ¡ Uniformity and speed of rooting can be increased when properly utilized, even for crops that normally root easily. ¡ Overhead applications can be made after crop is in the greenhouse to improve efficiency. ¡ Any resource or tool that you can use to decrease the time the cutting spends under mist should be considered a valuable part of a propagators tool box. Rooting Hormones: Basal end applications Powder Applications Liquid Applications ¡ Powdered hormone such as ¡ IBA can be applied as a liquid Rhizopon AA Dry Powder can basal application with typical be applied to basal end of the rates of 500-1000ppm. cutting. ¡ Dip N Grow and Rhizopon AA are ¡ Use a duster to apply to the stem only. two commonly used hormones for this type of application. ¡ Avoid getting powdered hormone on the leaves. ¡ Apply to the basal end with a hand-held spray bottle. ¡ Do not dip the stem into a container of hormone….this is a ¡ Do not allow solution to get on the sanitation risk. stems or leaves of the cutting. ¡ Do not coat the stem with a ¡ Do not dip stems directly into the solid layer of powder. solution…..this is a sanitation risk. Rooting Hormone Trial: Pretreated White Lightning Osteo ¡ Osteospermum White Lightning was pre-treated at Las Limas Top row pretreated with 1,500ppm Dip-N-Grow as a Bottom row untreated basal dip.