The Google Search Engine

Total Page:16

File Type:pdf, Size:1020Kb

The Google Search Engine University of Business and Technology in Kosovo UBT Knowledge Center Theses and Dissertations Student Work Summer 6-2010 The Google search engine Ganimete Perçuku Follow this and additional works at: https://knowledgecenter.ubt-uni.net/etd Part of the Computer Sciences Commons Faculty of Computer Sciences and Engineering The Google search engine (Bachelor Degree) Ganimete Perçuku – Hasani June, 2010 Prishtinë Faculty of Computer Sciences and Engineering Bachelor Degree Academic Year 2008 – 2009 Student: Ganimete Perçuku – Hasani The Google search engine Supervisor: Dr. Bekim Gashi 09/06/2010 This thesis is submitted in partial fulfillment of the requirements for a Bachelor Degree Abstrakt Përgjithësisht makina kërkuese Google paraqitet si sistemi i kompjuterëve të projektuar për kërkimin e informatave në ueb. Google mundohet t’i kuptojë kërkesat e njerëzve në mënyrë “njerëzore”, dhe t’iu kthej atyre përgjigjen në formën të qartë. Por, ky synim nuk është as afër ideales dhe realizimi i tij sa vjen e vështirësohet me zgjerimin eksponencial që sot po përjeton ueb-i. Google, paraqitet duke ngërthyer në vetvete shqyrtimin e pjesëve që e përbëjnë, atyre në të cilat sistemi mbështetet, dhe rrethinave tjera që i mundësojnë sistemit të funksionojë pa probleme apo të përtërihet lehtë nga ndonjë dështim eventual. Procesi i grumbullimit të të dhënave ne Google dhe paraqitja e tyre në rezultatet e kërkimit ngërthen në vete regjistrimin e të dhënave nga ueb-faqe të ndryshme dhe vendosjen e tyre në rezervuarin e sistemit, përkatësisht në bazën e të dhënave ku edhe realizohen pyetësorët që kthejnë rezultatet e radhitura në mënyrën e caktuar nga algoritmi i Google. Mbledhja, sistemimi dhe paraqitja e rezultateve nga Google paraqet boshtin e shtjellimit në këtë punim. Me rritjen e Google, përkatësisht, me fuqizimin e Google në ueb, paraqiten edhe problemet e përshtatshmërisë dhe përputhshmërisë së sistemit me teknologjitë aktuale që disponon tregu. Sikur që çdo sistem i veçantë, kërkon zgjidhje të veçantë, edhe Google ka sistemin e saj shumë specifik për funksionalizimin e pjesëve të saj në mënyrat, të cilat janë treguar mjaft optimale, sidomos financiarisht. Përfundimisht, pjesë e këtij punimi janë edhe mashtrimet që i bëhen Google duke shfrytëzuar dobësitë e algoritmit për radhitjen e rezultateve, si dhe studimi i mundësive dhe ideve për zhvillimin e mëtutjeshëm dhe avancimin e teknologjive të kërkimit në ueb. Fjalët kyçe: Google makina kërkuese, Google klaster arkitektura, PageRank, ueb semantike Abstract Generally, Google search machine is presented as a projected system of computers that handles the search requests for information on web. Google tries to understand human search requests in a “human” way, as well as it tries to return search results in the most possible clear format. But, this goal is not so close to the ideal case, and its realization is becoming more difficult when we take in consideration webs exponential enlargement. The process of collecting data and their representation in search results comprises data registration from various web pages and saving of those data into system reservoirs, respectively in the databases, that are used to run queries. These queries returns search results to the users, ordered in the way that is defined by Google algorithm. Data collecting, systematization and result representation from Google engine will be in the center of explication on this paper. Analysis of mega-systems, such as Google, is constructed by inspecting particles from which system is composed, those one in which system lays on, as well as environments that make system work without encountering problems or recover the system from eventual failures. While web is enlarging, Google’s taking a new role in the web. But, this is also followed by a range of problems, starting from system compatibility with current technologies. As all specific systems does, also this issue needs a specific solution, so Google has its own system for turning its system components work in a particular way, which has been seen more efficient and financially optimal. Finally, in this paper are discussed also the ‘work around’ or ‘cheats’ on Google, through using algorithm weaknesses, which orders the search result. Advanced technologies for web searching are discussed at the very end of this paper. Keywords: Google search engine, Google cluster architecture, PageRank, web semantics Falënderime Deshiroj të falënderoj në rend të parë familjen time, babain Mexhitin, nënen Nazlien, motrat, vëllaun, posaqërisht vajzën Ninen si dhe bashkëshortin tim Islamin, për ndihmen dhe përkrahjen e pakursyer që më dhanë gjatë studimeve. Falënderime të veçanta kam edhe për familjen e gjerë, te cilët me interesimin e tyre, më dhanë shtytje të fortë, që t’i perfundoj studimet me sukses. Deshiroj t’i falënderoj, gjithashtu shokët e shoqet për përkrahjen që më kanë dhënë, dhe për kujtimet e mira nga koha e studimeve. Një falënderim të posaçëm kam për profesorin Dr. Bekim Gashin, në radhë të parë për durimin e tij, mbështetjen dhe ndihmën e pakursyer që më ka dhënë gjatë punimit të diplomës. 1. Hyrja dhe motivimi 1.1 Hyrje Përmbajtja 1 HYRJA DHE MOTIVIMI.........................................................................................1 1.1 Hyrje....................................................................................................................... 1 1.2 Motivimi................................................................................................................. 2 1.3 Përshkrimi i problemit dhe objektivat .................................................................... 2 2 PARAQITJA E GOOGLE NË UEB ..........................................................................3 2.1 Zhvillimi i makinave kërkuese ................................................................................ 3 3 ARKITEKTURA E GOOGLE MAKINËS KËRKUESE ..........................................6 3.1 Arkitektura e klasterëve të Google ......................................................................... 6 3.2 Sistemi i skedarëve të Google ................................................................................ 8 3.3 Struktura e të dhënave............................................................................................ 13 4 ORGANIZIMI I TË DHËNAVE NË GOOGLE.......................................................15 4.1 Struktura funksionale e komponentëve të klasterëve të Google ........................... 15 4.2 Mbledhja e informative në ueb ............................................................................. 18 4.3 Indeksimi i uebit dhe MapReduce modeli............................................................. 21 5 REZULTATET E KËRKIMIT.................................................................................25 5.1 Analiza e pyetësorëve dhe përpilimi i rezultateve preliminare të kërkimit .......... 25 5.2 Renditja e rezultateve të kërkimit përmes algoritmit PageRank........................... 27 5.3 Efektshmëria e sistemit......................................................................................... 31 5.4 Google dhe makinat tjera kërkuese ....................................................................... 32 6 SI TË MASHTROHET GOOGLE?..........................................................................35 6.1 Teknikat për manipulimin e rezultateve të kërkimit të Google makinës kërkuese ........................................................................................................................................... 35 6.2 Teknikat e makinave kërkuese për mbrojtje kundër mashtrimeve........................ 36 1 1. Hyrja dhe motivimi 1.1 Hyrje 7 E ARDHMJA E MAKINAVE KËRKUESE ...........................................................38 7.1 Zhvillimi i vetive semantike te makinat kërkuese ................................................ 38 8 PËRFUNDIMI .........................................................................................................41 REFERENCAT .......................................................................................................44 Shtesat Listae figurave Figura 1: Grafi i rritjes së numrit të ueb faqeve .............................................................................. 4 Figura 2: Klaster arkitektura (stendat) e Google ............................................................................. 6 Figura 3: Arkitektura e sistemit të skedarëve të Google ................................................................. 9 Figura 4: Kontrolli i shkrimit dhe rrjedha e të dhënave ............................................................... 11 Figura 5: Një pjesë e tabelës të BigTable, që ruan të dhënat për ueb faqe13 Figura 6: Arkitetktura e nivelit të lartë të Google makinës kërkuese ............................................. 15 Figura 7: Indekset e avancuara dhe të përmbysura dhe leksikoni .................................................. 17 Figura 8: Rrjedha e një crawler-i të thjeshtë sekuencial................................................................. 18 Figura 9: Një faqe e bazuar në HTML dhe struktura përkatëse ...................................................... 21 Figura 10: Pseudokodi i funksionit map dhe reduce ....................................................................... 22 Figura 11: Pamja e përgjithshme e ekzekutimit të funksionit map dhe reduce............................... 23 Figura 12: Relacioni në mes tri dokumenteve të lincuara ndërmjet veti ......................................... 27 Figura 13: Diagrami
Recommended publications
  • Why We Need an Independent Index of the Web ¬ Dirk Lewandowski 50 Society of the Query Reader
    Politics of Search Engines 49 René König and Miriam Rasch (eds), Society of the Query Reader: Reections on Web Search, Amsterdam: Institute of Network Cultures, 2014. ISBN: 978-90-818575-8-1. Why We Need an Independent Index of the Web ¬ Dirk Lewandowski 50 Society of the Query Reader Why We Need an Independent Index of the Web ¬ Dirk Lewandowski Search engine indexes function as a ‘local copy of the web’1, forming the foundation of every search engine. Search engines need to look for new documents constantly, detect changes made to existing documents, and remove documents from the index when they are no longer available on the web. When one considers that the web com- prises many billions of documents that are constantly changing, the challenge search engines face becomes clear. It is impossible to maintain a perfectly complete and current index.2 The pool of data changes thousands of times each second. No search engine can keep up with this rapid pace of change.3 The ‘local copy of the web’ can thus be viewed as the Holy Grail of web indexing at best – in practice, different search engines will always attain a varied degree of success in pursuing this goal.4 Search engines do not merely capture the text of the documents they find (as is of- ten falsely assumed). They also generate complex replicas of the documents. These representations include, for instance, information on the popularity of the document (measured by the number of times it is accessed or how many links to the document exist on the web), information extracted from the documents (for example the name of the author or the date the document was created), and an alternative text-based 1.
    [Show full text]
  • Efficient Focused Web Crawling Approach for Search Engine
    Ayar Pranav et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.5, May- 2015, pg. 545-551 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 4, Issue. 5, May 2015, pg.545 – 551 RESEARCH ARTICLE Efficient Focused Web Crawling Approach for Search Engine 1 2 Ayar Pranav , Sandip Chauhan Computer & Science Engineering, Kalol Institute of Technology and Research Canter, Kalol, Gujarat, India 1 [email protected]; 2 [email protected] Abstract— a focused crawler traverses the web, selecting out relevant pages to a predefined topic and neglecting those out of concern. Collecting domain specific documents using focused crawlers has been considered one of most important strategies to find relevant information. While surfing the internet, it is difficult to deal with irrelevant pages and to predict which links lead to quality pages. However most focused crawler use local search algorithm to traverse the web space, but they could easily trapped within limited a sub graph of the web that surrounds the starting URLs also there is problem related to relevant pages that are miss when no links from the starting URLs. There is some relevant pages are miss. To address this problem we design a focused crawler where calculating the frequency of the topic keyword also calculate the synonyms and sub synonyms of the keyword. The weight table is constructed according to the user query. To check the similarity of web pages with respect to topic keywords and priority of extracted link is calculated.
    [Show full text]
  • Distributed Indexing/Searching Workshop Agenda, Attendee List, and Position Papers
    Distributed Indexing/Searching Workshop Agenda, Attendee List, and Position Papers Held May 28-19, 1996 in Cambridge, Massachusetts Sponsored by the World Wide Web Consortium Workshop co-chairs: Michael Schwartz, @Home Network Mic Bowman, Transarc Corp. This workshop brings together a cross-section of people concerned with distributed indexing and searching, to explore areas of common concern where standards might be defined. The Call For Participation1 suggested particular focus on repository interfaces that support efficient and powerful distributed indexing and searching. There was a great deal of interest in this workshop. Because of our desire to limit attendance to a workable size group while maximizing breadth of attendee backgrounds, we limited attendance to one person per position paper, and furthermore we limited attendance to one person per institution. In some cases, attendees submitted multiple position papers, with the intention of discussing each of their projects or ideas that were relevant to the workshop. We had not anticipated this interpretation of the Call For Participation; our intention was to use the position papers to select participants, not to provide a forum for enumerating ideas and projects. As a compromise, we decided to choose among the submitted papers and allow multiple position papers per person and per institution, but to restrict attendance as noted above. Hence, in the paper list below there are some cases where one author or institution has multiple position papers. 1 http://www.w3.org/pub/WWW/Search/960528/cfp.html 1 Agenda The Distributed Indexing/Searching Workshop will span two days. The first day's goal is to identify areas for potential standardization through several directed discussion sessions.
    [Show full text]
  • Web-Page Indexing Based on the Prioritize Ontology Terms
    Web-page Indexing based on the Prioritize Ontology Terms Sukanta Sinha1, 4, Rana Dattagupta2, Debajyoti Mukhopadhyay3, 4 1Tata Consultancy Services Ltd., Victoria Park Building, Salt Lake, Kolkata 700091, India [email protected] 2Computer Science Dept., Jadavpur University, Kolkata 700032, India [email protected] 3Information Technology Dept., Maharashtra Institute of Technology, Pune 411038, India [email protected] 4WIDiCoReL Research Lab, Green Tower, C-9/1, Golf Green, Kolkata 700095, India Abstract. In this world, globalization has become a basic and most popular human trend. To globalize information, people are going to publish the docu- ments in the internet. As a result, information volume of internet has become huge. To handle that huge volume of information, Web searcher uses search engines. The Web-page indexing mechanism of a search engine plays a big role to retrieve Web search results in a faster way from the huge volume of Web re- sources. Web researchers have introduced various types of Web-page indexing mechanism to retrieve Web-pages from Web-page repository. In this paper, we have illustrated a new approach of design and development of Web-page index- ing. The proposed Web-page indexing mechanism has applied on domain spe- cific Web-pages and we have identified the Web-page domain based on an On- tology. In our approach, first we prioritize the Ontology terms that exist in the Web-page content then apply our own indexing mechanism to index that Web- page. The main advantage of storing an index is to optimize the speed and per- formance while finding relevant documents from the domain specific search engine storage area for a user given search query.
    [Show full text]
  • Analysis and Evaluation of the Link and Content Based Focused Treasure-Crawler Ali Seyfi 1,2
    Analysis and Evaluation of the Link and Content Based Focused Treasure-Crawler Ali Seyfi 1,2 1Department of Computer Science School of Engineering and Applied Sciences The George Washington University Washington, DC, USA. 2Centre of Software Technology and Management (SOFTAM) School of Computer Science Faculty of Information Science and Technology Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur, Malaysia [email protected] Abstract— Indexing the Web is becoming a laborious task for search engines as the Web exponentially grows in size and distribution. Presently, the most effective known approach to overcome this problem is the use of focused crawlers. A focused crawler applies a proper algorithm in order to detect the pages on the Web that relate to its topic of interest. For this purpose we proposed a custom method that uses specific HTML elements of a page to predict the topical focus of all the pages that have an unvisited link within the current page. These recognized on-topic pages have to be sorted later based on their relevance to the main topic of the crawler for further actual downloads. In the Treasure-Crawler, we use a hierarchical structure called the T-Graph which is an exemplary guide to assign appropriate priority score to each unvisited link. These URLs will later be downloaded based on this priority. This paper outlines the architectural design and embodies the implementation, test results and performance evaluation of the Treasure-Crawler system. The Treasure-Crawler is evaluated in terms of information retrieval criteria such as recall and precision, both with values close to 0.5. Gaining such outcome asserts the significance of the proposed approach.
    [Show full text]
  • Google Bing Facebook Findopen Foursquare
    The Network Google Active Monthly Users: 1B+ Today's world of smartphones, mobile moments, and self-driving cars demands accurate location data more than ever. And no single search, maps, and apps provider is more important to your location marketing strategy than Google. With the Yext Location Manager, you can manage your location data on Google My Business—the tool through which Businesses can supply data to Google Search, Google Maps, and Google+. Bing Active Monthly Users: 150M+ With more than 20% of search market share in the US and rapidly increasing traction worldwide, Bing is an essential piece of the local ecosystem. More than 150 million users search for local Businesses and services on Bing every month. Beginning in 2016, Bing will also power search results across the AOL portfolio of sites, including Huffington Post, Engadget, and TechCrunch. Facebook Active Monthly Users: 1.35B Facebook is the world’s Biggest social network with more than 2 Billion users. Yext Sync for FaceBook makes it easy to manage accurate and up-to-date contact information, photos, messages and more. FindOpen FindOpen is one of the world’s leading online Business directories and helps consumers find the critical information they need to know aBout the Businesses they’d like to visit, like hours of operation, holiday hours, special hours, menus, product and service lists, and more. FindOpen — also known as FindeOffen, TrovaAperto, TrouverOuvert, VindOpen, nyitva.hu, EncuentreAbierto, AussieHours, FindAaben, TeraZOtwarte, HittaӦppna, and deschis.ro in the many countries it operates — provides a fully responsive experience, no matter where its gloBal users are searching from.
    [Show full text]
  • Effective Focused Crawling Based on Content and Link Structure Analysis
    (IJCSIS) International Journal of Computer Science and Information Security, Vol. 2, No. 1, June 2009 Effective Focused Crawling Based on Content and Link Structure Analysis Anshika Pal, Deepak Singh Tomar, S.C. Shrivastava Department of Computer Science & Engineering Maulana Azad National Institute of Technology Bhopal, India Emails: [email protected] , [email protected] , [email protected] Abstract — A focused crawler traverses the web selecting out dependent ontology, which in turn strengthens the metric used relevant pages to a predefined topic and neglecting those out of for prioritizing the URL queue. The Link-Structure-Based concern. While surfing the internet it is difficult to deal with method is analyzing the reference-information among the pages irrelevant pages and to predict which links lead to quality pages. to evaluate the page value. This kind of famous algorithms like In this paper, a technique of effective focused crawling is the Page Rank algorithm [5] and the HITS algorithm [6]. There implemented to improve the quality of web navigation. To check are some other experiments which measure the similarity of the similarity of web pages w.r.t. topic keywords, a similarity page contents with a specific subject using special metrics and function is used and the priorities of extracted out links are also reorder the downloaded URLs for the next crawl [7]. calculated based on meta data and resultant pages generated from focused crawler. The proposed work also uses a method for A major problem faced by the above focused crawlers is traversing the irrelevant pages that met during crawling to that it is frequently difficult to learn that some sets of off-topic improve the coverage of a specific topic.
    [Show full text]
  • Awareness Watch™ Newsletter by Marcus P
    Awareness Watch™ Newsletter By Marcus P. Zillman, M.S., A.M.H.A. http://www.AwarenessWatch.com/ V9N4 April 2011 Welcome to the V9N4 April 2011 issue of the Awareness Watch™ Newsletter. This newsletter is available as a complimentary subscription and will be issued monthly. Each newsletter will feature the following: Awareness Watch™ Featured Report Awareness Watch™ Spotters Awareness Watch™ Book/Paper/Article Review Subject Tracer™ Information Blogs I am always open to feedback from readers so please feel free to email with all suggestions, reviews and new resources that you feel would be appropriate for inclusion in an upcoming issue of Awareness Watch™. This is an ongoing work of creativity and you will be observing constant changes, constant updates knowing that “change” is the only thing that will remain constant!! Awareness Watch™ Featured Report This month’s featured report covers Deep Web Research. This is a comprehensive miniguide of reference resources covering deep web research currently available on the Internet. The below list of sources is taken from my Subject Tracer™ Information Blog titled Deep Web Research and is constantly updated with Subject Tracer™ bots at the following URL: http://www.DeepWeb.us/ These resources and sources will help you to discover the many pathways available to you through the Internet to find the latest reference deep web resources and sites. 1 Awareness Watch V9N4 April 2011 Newsletter http://www.AwarenessWatch.com/ [email protected] eVoice: 800-858-1462 © 2011 Marcus P. Zillman, M.S., A.M.H.A. Deep Web Research Bots, Blogs and News Aggregators (http://www.BotsBlogs.com/) is a keynote presentation that I have been delivering over the last several years, and much of my information comes from the extensive research that I have completed over the years into the “invisible” or what I like to call the “deep” web.
    [Show full text]
  • Crawling Frontier Controls
    Nutch – ApacheCon US '09 Web-scale search engine toolkit search Web-scale Today and tomorrow Today Apache Andrzej Białecki [email protected] Nutch – ApacheCon US '09 • • • Questions answers and future Nutch present and solutions)some (and Challenges Nutchworkflow: Nutcharchitecture overview general Web in crawling project the About Searching Crawling Setup Agenda 2 Nutch – ApacheCon US '09 • • Collections typically 1 mln - 200 mln documents mln Collections -typically 200 1 mln search mostly vertical in operation, installations Many Spin-offs: (sub-project Lucene) of Apache project since 2004 Mike Cafarella creator, and Lucene bythe Cutting, Doug 2003 in Founded Content type detection and parsing Tika → Map-Reduce and distributed → Hadoop FS Apache Nutch project 3 Nutch – ApacheCon US '09 4 Nutch – ApacheCon US '09 first, random Traversal: depth- breadth-first, edges, the follow listsas Oftenadjacency represented (neighbor) <alabels: href=”..”>anchor Edge text</a> Edges (links): hyperlinks like <a href=”targetUrl”/> Nodes (vertices):URL-s identifiers as unique 6 2 8 1 3 Web as a directed graph 5 4 7 9 7 →3, 4, 8, 9 5 →6, 9 1 →2, 3, 4, 5, 6 5 Nutch – ApacheCon US '09 … What's in a search engine? a fewa things may surprisethat you! 6 Nutch – ApacheCon US '09 Injector -links(in/out) - Web graph pageinfo Search engine building blocks Scheduler Updater Crawling frontierCrawling controls Crawler repository Content Searcher Indexer Parser 7 Nutch – ApacheCon US '09 Robust API and integration options Robust APIintegration and Full-text&indexer search engine processingdata framework Scalable Robustcontrols frontier crawling processing (parsing, content filtering) Plugin-based crawler distributed multi-threaded, Multi-protocol, modular: highly Plugin-based, graph) (web link database and database Page − − − − Support Support for search distributed or Using Lucene Solr Map-reduce processing Mostvia plugins be behavior can changed Nutch features at a glance 8 Hadoop foundation File system abstraction • Local FS, or • Distributed FS − also Amazon S3, Kosmos and other FS impl.
    [Show full text]
  • Context Based Web Indexing for Storage of Relevant Web Pages
    International Journal of Computer Applications (0975 – 8887) Volume 40– No.3, February 2012 Context based Web Indexing for Storage of Relevant Web Pages Nidhi Tyagi Rahul Rishi R.P. Agarwal Asst. Prof. Prof. & Head Prof. & Head Shobhit University, Technical Institute of Textile & Shobhit University, Meerut Sciences, Bhiwani Meerut ABSTRACT or 1. This strategy makes the searching task faster and A focused crawler downloads web pages that are relevant to a optimized. user specified topic. The downloaded documents are indexed with a view to optimize speed and performance in finding 2. RELATED WORK relevant documents for a search query at the search engine In this section, a review of previous work on index side. However, the information will be more relevant if the organization is given. In this field of index organization and context of the topic is also made available to the retrieval maintenance, many algorithms and techniques have already system. This paper proposes a technique for indexing the been proposed but they seem to be less efficient in efficiently keyword extracted from the web documents along with their accessing the index. contexts wherein it uses a height balanced binary search F. Silvestri, R.Perego and Orlando [4] proposed the (AVL) tree, for indexing purpose to enhance the performance reordering algorithm which partitions the set of documents of the retrieval system. into k ordered clusters on the basis of similarity measure where the biggest document is selected as centroid of the first General Terms cluster and n/k1 most similar documents are assigned to this Algorithm, retrieval, indexer. cluster. Then the biggest document is selected and the same process repeats.
    [Show full text]
  • Web Crawling, Analysis and Archiving
    Web Crawling, Analysis and Archiving Vangelis Banos Aristotle University of Thessaloniki Faculty of Sciences School of Informatics Doctoral dissertation under the supervision of Professor Yannis Manolopoulos October 2015 Ανάκτηση, Ανάλυση και Αρχειοθέτηση του Παγκόσμιου Ιστού Ευάγγελος Μπάνος Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διδακτορική Διατριβή υπό την επίβλεψη του Καθηγητή Ιωάννη Μανωλόπουλου Οκτώβριος 2015 i Web Crawling, Analysis and Archiving PhD Dissertation ©Copyright by Vangelis Banos, 2015. All rights reserved. The Doctoral Dissertation was submitted to the the School of Informatics, Faculty of Sci- ences, Aristotle University of Thessaloniki. Defence Date: 30/10/2015. Examination Committee Yannis Manolopoulos, Professor, Department of Informatics, Aristotle University of Thes- saloniki, Greece. Supervisor Apostolos Papadopoulos, Assistant Professor, Department of Informatics, Aristotle Univer- sity of Thessaloniki, Greece. Advisory Committee Member Dimitrios Katsaros, Assistant Professor, Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece. Advisory Committee Member Athena Vakali, Professor, Department of Informatics, Aristotle University of Thessaloniki, Greece. Anastasios Gounaris, Assistant Professor, Department of Informatics, Aristotle University of Thessaloniki, Greece. Georgios Evangelidis, Professor, Department of Applied Informatics, University of Mace- donia, Greece. Sarantos Kapidakis, Professor, Department of Archives, Library Science and Museology, Ionian University, Greece. Abstract The Web is increasingly important for all aspects of our society, culture and economy. Web archiving is the process of gathering digital materials from the Web, ingesting it, ensuring that these materials are preserved in an archive, and making the collected materials available for future use and research. Web archiving is a difficult problem due to organizational and technical reasons. We focus on the technical aspects of Web archiving.
    [Show full text]
  • Finding OGC Web Services in the Digital Earth
    Finding OGC Web Services in the Digital Earth Aneta J. Florczyk1, Patrick Mau´e2, Francisco J. L´opez-Pellicer1, and Javier Nogueras-Iso1 1 Departamento de Inform´atica e Ingenier´ıa de Sistemas, Universidad de Zaragoza, Spain {florczyk,fjlopez,jnog}@unizar.es 2 Institute for Geoinformatics (ifgi), University of Muenster, Germany [email protected] Abstract. The distribution of OGC Web Catalogues (CSW) across pro- fessional communities, the expert profile of the catalogue user and also the low coverage of OGC Web Services (OWS) in standard search engines reduce the possibility of discovery and sharing geographic information. This paper presents an approach to simple spatio-temporal search of OWS retrieved from the web by a specialized crawler. The Digital Earth could benefit from this solution as it overcomes technical boundaries and solves the limitation of CSW acceptance only within professional com- munity. Keywords: OWS, discovery, open search 1 Introduction The concept of the Digital Earth envisions easy-to-use applications to support non-expert users to interact with various kinds of geographic information. Users are expected to search, load, and visualize spatial data without being challenged by the plethora of file formats and methods to access and download the data. The Open Geospatial Consortium (OGC) standards specify well-defined interfaces for spatial data services to ensure interoperability across information communities. Embedded in Spatial Data Infrastructures (SDI), OGC services are mainly (but not only) used by the public administration to publish their data on the Web. On-going initiatives such as the Global Earth Observation System of Systems (GEOSS) or the European Shared Environmental Information Space (SEIS) form an important backbone to the vision of the Digital Earth.
    [Show full text]