Expression of Eukaryotic Translation Initiation Factor 3 Subunit B in Liver Cancer and Its Prognostic Significance

Total Page:16

File Type:pdf, Size:1020Kb

Expression of Eukaryotic Translation Initiation Factor 3 Subunit B in Liver Cancer and Its Prognostic Significance 436 EXPERIMENTAL AND THERAPEUTIC MEDICINE 20: 436-446, 2020 Expression of eukaryotic translation initiation factor 3 subunit B in liver cancer and its prognostic significance QING YUE1*, LINGYU MENG2*, BAOXING JIA2 and WEI HAN2 Departments of 1Oncology and 2Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China Received July 16, 2019; Accepted December 19, 2019 DOI: 10.3892/etm.2020.8726 Abstract. Liver cancer is one of the major malignancies with in high EIF3B expression and low EIF3B expression groups. the worst prognosis among all solid tumor types. It is therefore In conclusion, high EIF3B expression was indicated to be an ponderable to explore prognostic biomarkers and therapeutic independent prognostic biomarker for patients with liver cancer. targets for liver cancer. Eukaryotic translation initiation factor 3 subunit B (EIF3B) is closely linked to the transcription initia- Introduction tion of cancer-associated genes. In the present study, EIF3B was indicated to be a potential prognostic biomarker of liver cancer. Liver cancer is a common malignant tumor type with high The mRNA expression level of EIF3B in liver cancer was morbidity and mortality (1). Although various treatments have assessed by analyzing the Cancer Genome Atlas dataset. χ2 and been improved, the mortality rate of liver cancer is still high Fisher's exact tests were used to assess the association of EIF3B and the prognosis remains poor (2,3). Therefore, prognostic expression with clinical parameters. Receiver-operating char- biomarkers of liver cancer have become one of the hotspots acteristic curve analysis was used for evaluating the diagnostic of current research (4). The discovery of accurate prognostic value of EIF3B. Overall and relapse-free survival were assessed biomarkers may contribute to clinical guidance in order to using Kaplan-Meier curves to determine the association improve the evaluation system of liver cancer. between EIF3B expression and survival. Univariate and multi- The family of eukaryotic translation initiation factors (EIFs) variate Cox regression analysis were performed to identify the participates in eukaryotic translation by regulating the interac- factors affecting overall/relapse-free survival. Gene set enrich- tion between ribosomes and RNA. It is the rate-limiting step ment analysis (GSEA) was used to identify signaling pathways of protein synthesis and participates in numerous processes associated with EIF3B in liver cancer. It was revealed that that are deregulated in cancer cells, including DNA repair EIF3B was highly expressed in liver cancer tissues and it had a and proliferation, cell cycle and apoptosis (5). EIF 3 subunit promising diagnostic ability. Furthermore, the survival analysis B (EIF3B) is an important member of the family of EIFs and indicated that patients with high EIF3B expression generally had has been observed to be overexpressed in numerous cancer shorter overall as well as relapse-free survival. Univariate and types, including clear cell renal cell carcinoma (6), esopha- multivariate Cox analysis suggested that high EIF3B mRNA geal squamous cell carcinoma (7), glioblastoma (8), ovarian expression may serve as an independent biomarker for the cancer (9), osteosarcoma (10) and lung cancer (11), and has prognostication of patients with liver cancer. GSEA suggested an important role in the progression and prognosis of several that MYC-V1 (HALLMARK_MYC_TARGETS_V1 geneset; cancer types (12-14). In addition, Golob-Schwarzl et al (15) P=0.009), MYC-V2 (HALLMARK_MYC_TARGETS_V2 reported that EIF3B was upregulated in hepatitis C virus geneset; P=0.004) and DNA repair pathways (HALLMARK_ (HCV)-associated hepatocellular carcinoma (HCC). However, DNA_REPAIR geneset; P<0.001) were differentially enriched the precise role of EIF3B in liver cancer has remained elusive. To further evaluate the roles of EIF3B in patients with liver cancer, the expression of EIF3B was examined in a dataset from The Cancer Genome Atlas (TCGA) database. The χ2 and Fisher's exact tests were used to assess the association Correspondence to: Dr Wei Han, Department of Hepatobiliary of EIF3B with clinicopathological parameters and demo- and Pancreatic Surgery, The First Hospital of Jilin University, graphic features. Receiver operating characteristics (ROC) 71 Xinmin Street, Changchun, Jilin 130021, P.R. China E-mail: [email protected] curve analysis was used for evaluating the diagnostic value of EIF3B. Kaplan-Meier overall survival and relapse-free *Contributed equally survival analysis were performed to determine the association between EIF3B expression and survival. Univariate and multi- Key words: eukaryotic translation initiation factor 3 subunit B, liver variate Cox regression analysis were performed to identify the cancer, prognosis, The Cancer Genome Atlas, biomarker factors affecting overall survival and relapse-free survival. Furthermore, gene set enrichment analysis (GSEA) was used to explore EIF3B-associated signaling pathways. YUE et al: EXPRESSION OF EIF3B IN LIVER CANCER AND PROGNOSTIC SIGNIFICANCE 437 Table I. Demographic and clinical characteristics of the cohort Table I. Continued. from The Cancer Genome Atlas-liver hepatocellular carci- noma dataset. Characteristics N (373) Characteristics N (373) Vital status Deceased 130 (34.85) Age (years) Alive 243 (65.15) <55 117 (31.45) Sample type ≥55 255 (68.55) Primary tumor 371 (99.46) NA 1 (0.00) Recurrent tumor 2 (0.54) Sex Overall survival (ten years) Female 121 (32.44) No 237 (64.58) Male 252 (67.56) Yes 130 (35.42) Histological type Relapse-free survival (ten years) Fibrolamellar carcinoma 3 (0.80) No 179 (55.94) Hepatocellular carcinoma 363 (97.32) Yes 141 (44.06) Hepatocholangiocarcinoma (mixed) 7 (1.88) EIF3B Histologic grade High 109 (29.22) NA 5 (1.34) Low 264 (70.78) G1 55 (14.75) G2 178 (47.72) NA, not available; EIF3B, eukaryotic translation initiation factor 3 G3 123 (32.98) subunit B; G1-4, grade relating to degree of differentiation; T1-4, G4 12 (3.22) size and or extension of the primary tumor; TX, tumor could not be assessed; N0, no regional lymph node metastasis; N1, regional lymph Stage node metastasis present; NX, lymph nodes could not be assessed; NA 24 (6.43) M0, no distant metastasis; M1, metastasis to distant organs; MX, I 172 (46.11) metastasis could not be assessed; R0, no residual tumor visible under II 87 (23.32) the microscope; R1, residual tumor visible under the microscope; R2, residual tumor visible to the naked eye; RX, residual tumor could not III 85 (22.79) be assessed. IV 5 (1.34) T classification NA 2 (0.54) T1 182 (48.79) Materials and methods T2 95 (25.47) T3 80 (21.45) Data source. The clinical information of patients and their T4 13 (3.49) RNAseq data were obtained from TCGA (https://cancerge- TX 1 (0.27) nome.nih.gov/). All patients from the liver hepatocellular N classification carcinoma (LIHC) cohort were screened based on TCGA NA 1 (0.27) inclusion and exclusion pre-selection criteria. N0 253 (67.83) Statistical analysis. R (version 3.6.1; The R Foundation) (16) N1 4 (1.07) was used for statistical analysis (t-test, Kruskal-Wallis with NX 115 (30.83) Dunn's post-hoc test, Wilcoxon sum-rank test) and genera- M classification tion of images. The ggplot2 package (17) was used to draw M0 267 (71.58) boxplots of the EIF3B expression in subgroups by clinical M1 4 (1.07) characteristics. χ2 and Fisher's exact tests were applied to MX 102 (27.35) estimate the significance of the association between EIF3B Radiation therapy expression and clinicopathological or demographic charac- NA 25 (6.70) teristics. The pROC package (18) was used to plot the ROC curves and assess the diagnostic ability of EIF3B, and patients No 340 (91.15) were divided into a high expression group and low expression Yes 8 (2.14) group according to the best operating system cut-off value Residual tumor determined by the Youden index. The survival package (19) NA 7 (1.88) was used to draw survival curves. A univariate Cox linear R0 326 (87.40) regression model was utilized to select correlative variables R1 17 (4.56) affecting survival time. Multivariate Cox regression analysis R2 1 (0.27) was employed to evaluate the independent influencing factors RX 22 (5.90) of survival time. 438 EXPERIMENTAL AND THERAPEUTIC MEDICINE 20: 436-446, 2020 Figure 1. Differences in EIF3B expression among subgroups of patients. Boxplots showing differences in EIF3B expression according to (A) tissue type (P<0.001 vs. normal tissue controls), (B) age, (C) sex, (D) histologic grade (P<0.001), (E) histological type, (F) T classification, (G) N classification, (H) M classification, (I) radiation therapy, (J) residual tumor classification, (K) sample type, (L) clinical stage and (M) vital status (P=0.005). EIF3B, eukaryotic translation initiation factor 3 subunit B. G1-4, grade relating to degree of differentiation; T1-4, size and or extension of the primary tumor; TX, tumor could not be assessed; N0, no regional lymph node metastasis; N1, regional lymph node metastasis present; NX, lymph nodes could not be assessed; M0, no distant metastasis; M1, metastasis to distant organs; MX, metastasis could not be assessed; R0, no residual tumor visible under the microscope; R1, residual tumor visible under the microscope; R2, residual tumor visible to the naked eye; RX, residual tumor could not be assessed. GSEA. GSEA may be used to determine whether a predefined therapy, residual tumor, relapse-free survival, histological set of genes is able to indicate significant, consistent differ- type, stage, vital status, survival data, T/N/M classification and ences between two biological states (20). In the present study, EIF3B expression are provided. GSEA was performed in the ‘h.all.v6.2.symbols.gmt’ and ‘c2. cp.biocarta.v6.2.symbols.gmt’ gene sets using GSEA3.0 Expression of EIF3B in liver tissues. Boxplots revealed that software. The standardized enrichment fraction was obtained EIF3B was significantly upregulated in liver cancer compared by 1,000 permutation analyses.
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Nancy L. Maas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Maas, Nancy L., "A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk" (2014). Publicly Accessible Penn Dissertations. 1354. https://repository.upenn.edu/edissertations/1354 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1354 For more information, please contact [email protected]. A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Abstract Cells constantly encounter changing environments that challenge the ability to adapt and survive. Signal transduction networks enable cells to appropriately sense and respond to these changes, and are often mediated through the activity of protein kinases. Protein kinases are a class of enzyme responsible for regulating a broad spectrum of cellular functions by transferring phosphate groups from ATP to substrate proteins, thereby altering substrate activity and function. PERK is a resident kinase of the endoplasmic reticulum, and is responsible for sensing perturbations in the protein folding capacity of the ER. When the influx of unfolded, nascent proteins exceeds the folding capacity of the ER, PERK initiates a cascade of signaling events that enable cell adaptation and ER stress resolution. These signaling pathways are not only essential for the survival of normal cells undergoing ER stress, but are also co-opted by tumor cells in order to survive the oxygen and nutrient-restricted conditions of the tumor microenvironment.
    [Show full text]
  • Early Alterations of RNA Metabolism and Splicing from Adult Corticospinal Neurons In
    bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Early alterations of RNA metabolism and splicing from adult corticospinal neurons in 2 an ALS mouse model 3 4 Christine Marques1,2, Mathieu Fischer1,3, Céline Keime4, Thibaut Burg1, Aurore Brunet1, 5 Jelena Scekic-Zahirovic1 & Caroline Rouaux1* 6 7 8 9 1Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, 10 Faculté de Médecine, Université de Strasbourg, Strasbourg, France. 11 2Current address: Department of Neurobiology, Harvard Medical School, Boston, MA, USA; 12 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. 13 3Current address: Department of Paediatrics, John Radcliffe Hospital, University of Oxford, 14 Oxford, UK. 15 4Inserm UMR_S 1258, CRNS UMR_S 7104, Université de Strasbourg, IGBMC, Strasbourg, 16 France. 17 18 *Correspondence should be addressed to: C.R. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease clinically defined as the combined degeneration of corticospinal and corticobulbar neurons (CSN), and bulbar and spinal motor neurons (MN). A growing body of evidence points to the motor cortex, where CSN are located, as the potential initiation site of ALS. However, little is known about the spatiotemporal dynamics of CSN degeneration and the molecular pathways involved.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Quantitative Analysis of the Human Ovarian Carcinoma Mitochondrial Phosphoproteome
    www.aging-us.com AGING 2019, Vol. 11, No. 16 Research Paper Quantitative analysis of the human ovarian carcinoma mitochondrial phosphoproteome Na Li1,2,3, Shehua Qian1,2,3, Biao Li1,2,3, Xianquan Zhan1,2,3,4 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China 4National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan P. R. China Correspondence to: Xianquan Zhan; email: [email protected] Keywords: ovarian cancer, mitochondria, TiO2 enrichment, iTRAQ quantitative proteomics, mitochondrial phosphoprotein (mtPP) Received: June 15, 2019 Accepted: August 10, 2019 Published: August 22, 2019 Copyright: Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT To investigate the existence and their potential biological roles of mitochondrial phosphoproteins (mtPPs) in human ovarian carcinoma (OC), mitochondria purified from OC and control tissues were analyzed with TiO2 enrichment-based iTRAQ quantitative proteomics. Totally 67 mtPPs with 124 phosphorylation sites were identified, which of them included 48 differential mtPPs (mtDPPs). Eighteen mtPPs were reported previously in OCs, and they were consistent in this study compared to previous literature.
    [Show full text]
  • Membrane Proteomics of Cervical Cancer Cell Lines Reveal Insights on the Process of Cervical Carcinogenesis
    INTERNATIONAL JOURNAL OF ONCOLOGY 53: 2111-2122, 2018 Membrane proteomics of cervical cancer cell lines reveal insights on the process of cervical carcinogenesis KALLIOPI I. PAPPA1,2, POLYXENI CHRISTOU3,4, AMARILDO XHOLI3, GEORGE MERMELEKAS3, GEORGIA KONTOSTATHI3,4, VASILIKI LYGIROU3,4, MANOUSOS MAKRIDAKIS3, JEROME ZOIDAKIS3 and NICHOLAS P. ANAGNOU1,4 1Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, 11527 Athens; 2First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, 11528 Athens; 3Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens; 4Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece Received March 22, 2018; Accepted May 4, 2018 DOI: 10.3892/ijo.2018.4518 Abstract. The available therapeutic approaches for cervical biological pathways relevant to malignancy, including ‘HIPPO cancer can seriously affect the fertility potential of patient; signaling’, ‘PI3K/Akt signaling’, ‘cell cycle: G2/M DNA thus, there is a pressing requirement for less toxic and damage checkpoint regulation’ and ‘EIF2 signaling’. These targeted therapies. The membrane proteome is a potential unique membrane protein identifications offer insights on a source of therapeutic targets; however, despite the signifi- previously inaccessible region of the cervical cancer proteome, cance of membrane proteins in cancer, proteomic analysis and may represent putative
    [Show full text]
  • Systematically Profiling the Expression of Eif3 Subunits in Glioma Reveals
    Chai et al. Cancer Cell Int (2019) 19:155 https://doi.org/10.1186/s12935-019-0867-1 Cancer Cell International PRIMARY RESEARCH Open Access Systematically profling the expression of eIF3 subunits in glioma reveals the expression of eIF3i has prognostic value in IDH-mutant lower grade glioma Rui‑Chao Chai1,4,6†, Ning Wang2†, Yu‑Zhou Chang3, Ke‑Nan Zhang1,6, Jing‑Jun Li1,6, Jun‑Jie Niu5, Fan Wu1,6*, Yu‑Qing Liu1,6* and Yong‑Zhi Wang1,3,4,6* Abstract Background: Abnormal expression of the eukaryotic initiation factor 3 (eIF3) subunits plays critical roles in tumo‑ rigenesis and progression, and also has potential prognostic value in cancers. However, the expression and clinical implications of eIF3 subunits in glioma remain unknown. Methods: Expression data of eIF3 for patients with gliomas were obtained from the Chinese Glioma Genome Atlas (CGGA) (n 272) and The Cancer Genome Atlas (TCGA) (n 595). Cox regression, the receiver operating characteristic (ROC) curves= and Kaplan–Meier analysis were used to study= the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were utilized for functional prediction. Results: In both the CGGA and TCGA datasets, the expression levels of eIF3d, eIF3e, eIF3f, eIF3h and eIF3l highly were associated with the IDH mutant status of gliomas. The expression of eIF3b, eIF3i, eIF3k and eIF3m was increased with the tumor grade, and was associated with poorer overall survival [All Hazard ratio (HR) > 1 and P < 0.05]. By contrast, the expression of eIF3a and eIF3l was decreased in higher grade gliomas and was associated with better overall sur‑ vival (Both HR < 1 and P < 0.05).
    [Show full text]
  • The J-Subunit of Human Translation Initiation Factor Eif3 Is Required for the Stable Binding of Eif3 and Its Subcomplexes to 40 S Ribosomal Subunits in Vitro*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 10, Issue of March 5, pp. 8946–8956, 2004 © 2004 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. The j-Subunit of Human Translation Initiation Factor eIF3 Is Required for the Stable Binding of eIF3 and Its Subcomplexes to 40 S Ribosomal Subunits in Vitro* Received for publication, November 21, 2003, and in revised form, December 18, 2003 Published, JBC Papers in Press, December 19, 2003, DOI 10.1074/jbc.M312745200 Christopher S. Fraser‡, Jennifer Y. Lee, Greg L. Mayeur, Martin Bushell§, Jennifer A. Doudna¶, and John W. B. Hersheyʈ From the Department of Biological Chemistry, School of Medicine, University of California, Davis, California 95616 Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein subunits, named in order of decreasing molecular protein complex that plays a central role in binding of weight as recommended (4): eIF3a, eIF3b, eIF3c, eIF3d, eIF3l, initiator methionyl-tRNA and mRNA to the 40 S riboso- eIF3e, eIF3f, eIF3g, eIF3h, eIF3i, eIF3j, and eIF3k (5, 6). Spe- mal subunit to form the 40 S initiation complex. The cific functions for mammalian eIF3 have been identified by a molecular mechanisms by which eIF3 exerts these func- variety of in vitro experiments. It binds directly to 40 S ribo- tions are poorly understood. To learn more about the somal subunits in the absence of other initiation components structure and function of eIF3 we have expressed and (1), and affects the association/dissociation of ribosomes (7–10). purified individual human eIF3 subunits or complexes It promotes the binding of Met-tRNA and mRNA to the 40 S of eIF3 subunits using baculovirus-infected Sf9 cells.
    [Show full text]
  • Translation Initiation Factor Eif3h Targets Specific Transcripts To
    Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis Avik Choudhuria,b, Umadas Maitraa,1, and Todd Evansb,1 aDepartment of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461; and bDepartment of Surgery, Weill Cornell Medical College, New York, NY 10065 Edited by Igor B. Dawid, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and approved April 30, 2013 (received for review February 14, 2013) Eukaryotic translation initiation factor 3 (eIF3) plays a central role eukaryotes. These—eIF3d, eIF3e, eIF3f, eIF3h, eIF3j, eIF3k, in translation initiation and consists of five core (conserved) sub- eIF3l, and eIF3m—were designated “non-core” subunits (4). units present in both budding yeast and higher eukaryotes. Higher In contrast to the budding yeast, the genome of the fission eukaryotic eIF3 contains additional (noncore or nonconserved) yeast Schizosaccharomyces pombe contains structural homologs subunits of poorly defined function, including sub-unit h (eIF3h), of at least five noncore (nonconserved) eIF3 subunits—eIF3d, which in zebrafish is encoded by two distinct genes (eif3ha and eIF3e, eIF3f, eIF3h, and eIF3m. The gene encoding eIF3f is eif3hb). Previously we showed that eif3ha encodes the predominant essential for growth, whereas eIF3d, eIF3e, and eIF3h are dis- isoform during zebrafish embryogenesis and that depletion of this pensable for growth and viability (5–11). However, deleted factor causes defects in the development of the brain and eyes. To strains show specific phenotypes including defects in meiosis/ investigate the molecular mechanism governing this regulation, we sporulation (6, 9, 11).
    [Show full text]
  • 1 1 2 Pharmacological Dimerization and Activation of the Exchange
    1 2 3 Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the 4 integrated stress response 5 6 7 *Carmela Sidrauski1,2, *Jordan C. Tsai1,2, Martin Kampmann2,3, Brian R. Hearn4, Punitha 8 Vedantham4, Priyadarshini Jaishankar4 , Masaaki Sokabe5, Aaron S. Mendez1,2, Billy W. 9 Newton6, Edward L. Tang6.7, Erik Verschueren6, Jeffrey R. Johnson6,7, Nevan J. Krogan6,7,, 10 Christopher S. Fraser5, Jonathan S. Weissman2,3, Adam R. Renslo4, and Peter Walter 1,2 11 12 1Department of Biochemistry and Biophysics, University of California, San Francisco, United 13 States 14 2Howard Hughes Medical Institute, University of California, San Francisco, United States 15 3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 16 United States 17 4Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University 18 of California at San Francisco, United States 19 5Department of Molecular and Cellular Biology, College of Biological Sciences, University of 20 California, Davis, United States 21 6QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, 22 United States 23 7Gladstone Institutes, San Francisco, United States 24 25 * Both authors contributed equally to this work 26 27 28 Abstract 29 30 The general translation initiation factor eIF2 is a major translational control point. Multiple 31 signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting 32 nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells 33 insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking 34 long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism 35 of action remained unknown.
    [Show full text]
  • Relevance of Translation Initiation in Diffuse Glioma Biology and Its
    cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation.
    [Show full text]