Natural History and Taxonomic Notes On

Total Page:16

File Type:pdf, Size:1020Kb

Natural History and Taxonomic Notes On Herpetological Conservation and Biology 9(2):406–416. Submitted: 27 March 2014; Accepted: 25 May 2014; Published: 12 October 2014. NATURAL HISTORY AND TAXONOMIC NOTES ON LIOPHOLIDOPHIS GRANDIDIERI MOCQUARD, AN UPLAND RAIN FOREST SNAKE FROM MADAGASCAR (SERPENTES: LAMPROPHIIDAE: PSEUDOXYRHOPHIINAE) JOHN E. CADLE1, 2 1Centre ValBio, B.P. 33, 312 Ranomafana-Ifanadiana, Madagascar 2Department of Herpetology, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118, USA, e-mail: [email protected] Abstract.––Few observations on living specimens of the Malagasy snake Liopholidophis grandidieri Mocquard have been previously reported. New field observations and specimens from Ranomafana National Park amplify knowledge of the natural history of this species. Liopholidophis grandidieri is known from above 1200 m elevation in pristine rain forests with a high diversity of hardwoods and bamboo. In some areas of occurrence, the forests are of short stature (15–18 m) as a result of lying atop well-drained boulder fields with a thin soil layer. Dietary data show that this species consumes relatively small mantellid and microhylid frogs obtained on the ground or in phytotelms close to the ground. A female collected in late December contained four oviductal eggs with leathery shells. One specimen formed a rigid, loose set of coils and body loops, and hid the head as presumed defensive behaviors; otherwise, all individuals were complacent when handled and showed no tendency to bite. I describe coloration and present photographs of living specimens from Ranomafana National Park. The ventral colors of L. grandidieri were recently said to be aposematic, but I discuss other plausible alternatives. Key Words.––conservation; diet; habitat; reproduction; snakes; systematics exhibits the greatest sexual dimorphism in tail length and INTRODUCTION the greatest reported relative tail length of any snake (tails average 18% longer than body length in males; The natural history and systematics of many snake Cadle 2009). Several hypotheses that might explain species from Madagascar remain poorly documented. In these extraordinary characteristics have been considered some cases, morphological characters, geographic (morphological constraint, antipredator defense, sexual ranges, natural history, and colors in life are poorly selection) but no explanation is yet entirely satisfactory documented because observations on living snakes are (Cadle 2009, Glaw et al. 2014). A recent molecular unavailable and few specimens may exist in museum phylogeny of all species of Liopholidophis indicated a collections. Among these is Liopholidophis grandidieri sister relationship between L. grandidieri and the species Mocquard (1904), which was known only from the most similar to it in external characters, L. dolicocercus holotype until the mid-1990s, by which time one (Glaw et al. 2014). additional specimen had been collected and two others At the time of the previous review (Cadle 1996a), no were identified in old museum materials (Cadle 1996a). observations on living specimens of Liopholidophis Liopholidophis grandidieri is still known from few grandidieri were available. Yet detailed natural history specimens and few observations on its behavior or data will ultimately be necessary to fully understand the natural history have been reported. significance of the exceptional morphology of these Eight species of Liopholidophis are currently snakes. The data I report here are based on five recognized (Cadle 1996a; Glaw et al. 2007, 2014). Five specimens of Liopholidophis grandidieri obtained since species (L. dimorphus, L. dolicocercus, L. grandidieri, L. the species was last reviewed (Cadle 1996a). All of the rhadinaea, and L. sexlineatus) are characterized by new observations are from Ranomafana National Park remarkable sexual dimorphism in tail length and (RNP) and vicinity, obtained in January 2001 and exceptionally long tails in males (Cadle 1996a, 2009; December 2003 during 17 days at two field sites. The Glaw et al. 2007, 2014). Liopholidophis varius is less main purpose of this report is to present new data on the exceptional in both characters (Cadle 2009) and these natural history and behavior of L. grandidieri based on features are unknown in L. oligolepis and L. baderi field observations and specimens obtained since the because specimens of only one sex are known for these previous character summaries (Cadle 1996a). I put into species (Glaw et al. 2014). Liopholidophis grandidieri broader context here data on four specimens of L. Copyright © 2014. John Cadle. All Rights Reserved. 406 Herpetological Conservation and Biology grandidieri previously examined (Cadle 1996a: 460), days field work) and the 2003 locality as “Anjamba” update basic taxonomic data for the species, and provide (nine days). for the first time color descriptions and photographs of The following describes habitats at localities within RNP L. grandidieri in life from RNP. where L. grandidieri was observed in 2001 and 2003; local Malagasy names for the trees and bamboos are MATERIALS AND METHODS given. A field team of three logged on average eight hours Amindrabe.––Between the villages of Ambendrana per day during daylight hours and four to six hours at and Amindrabe a trail passes through rice fields and night while making a general faunal inventory secondary forest, with patches of what seem to be (herpetofauna, birds, and mammals); streambeds and relatively undisturbed stunted forest mainly along ridge existing footpaths allowed access to the forest. tops; one specimen of Liopholidophis grandidieri was Liopholidophis grandidieri were encountered found in these ridge-top forests. In the vicinity of the opportunistically and captured by hand (none were Amindrabe field camp (Fig. 1), terrain varies from captured by pitfall trap lines set at each site). I recorded 1200–1250 m elevation and much of it is characterized snout-vent length (SVL, in mm), measured from the tip by ravines separating sharp ridges. A small river, the of the snout to the posterior edge of the anal plate, and Apepina River, occasionally disappears under boulder tail length, measured from the posterior edge of the anal jumbles for tens of meters at a stretch and then reappears plate to the tip of the tail. Relative tail length (RTL) is on the surface. Boulders within the riverbed are covered here defined as tail length divided by SVL. I recorded with a thin to moderately thick layer of moss on exposed mass (g) using Pesola© scales (Pesola AG, Baar, Switzerland). portions. The forest canopy is 15–18 m in higher parts I acquired stomach contents of snakes by regurgitation but patches within the forest are sometimes less, after capture. I prepared vouchers as standard museum especially on ridge tops. I attribute the short stature of specimens by fixation in 10% formalin for the forest to its growth on top of an extensive boulder approximately one month, followed by storage in 70– field. Soil may also be of poor quality and thin. 75% ethanol. Specimens discussed herein were Bamboos are especially dense, including large stands of deposited in the California Academy of Sciences (CAS, the giant species known locally as volotsangana San Francisco), The Field Museum (FMNH, Chicago), (Bambusa madagascariensis; Poaceae). Prominent large the Museum of Comparative Zoology (MCZ, hardwood trees in this forest were tavolo (Cryptocarya Cambridge), the Muséum National d’Histoire Naturelle sp.; Lauraceae), ramy (Carnarium madagascariensis; (MNHN, Paris), The Natural History Museum (BMNH, Burseraceae), and hazondrano (Ilex mitis; London), and the Université d’Antananarivo Aquifoliaceae). Département de Biologie Animale (UADBA, Antananarivo). Anjamba.––The terrain in the vicinity of the field camp was a series of ridges separated by valleys with RESULTS small streams. The streams have substrates of rocks and boulders toward headwaters and sand or gravel Habitats and environments.––I found five new downstream. Uncommonly, the streams have cut to specimens of Liopholidophis grandidieri at three sites bedrock and sometimes flow over steep precipices, from upland rain forests (1200–1250 m; Fig. 1). Details forming small waterfalls. The Iarena River at the of the collection sites are as follows (specimen vouchers campsite has a streambed 3–4 m wide, low current from each locality follow the coordinates): 4 January velocity, and was fairly shallow (300–500 mm) during 2001 on a trail between the villages of Ambendrana and the fieldwork because no substantial rain had fallen for Amindrabe, about 1200 m elevation (21.3833°S, several days. The river had a sand and gravel substrate 47.3600°E; FMNH 261185); 8 and 11 January 2001 near at the camp but contained boulders upstream ~75 m. a field camp approximately 4 km (Euclidean distance) Jumbles of huge boulders were present in some areas, east of Amindrabe village, 1200–1250 m elevation with small caves present among some of these. A trail (21.3833S, 47.4000E; FMNH 261186–87); and 20 and heading east from camp passed over several low ridges 27 December 2003 near a field camp 9 km (Euclidean and arrived at a somewhat larger stream, the distance) east of Anjamba village, 1200 m elevation Ambohibory River. All of the local streams ultimately (21.3255S, 47.4027E; CAS 250594, UADBA–JE flow into the Andranaroa River to the west according to Cadle 15035). The localities are just within the western a local informant. boundary of RNP, or just outside the park near its At Anjamba the forest
Recommended publications
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • 0 Natural Selection
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/94566 Please be advised that this information was generated on 2021-09-30 and may be subject to change. 170 Natural Selection: Finding Specimens in a Natural History Collection Marieke van Erp1, Antal van den Bosch2, Steve Hunt2, Marian van der Meij3, René Dekker3 and Piroska Lendvai4 1VU University Amsterdam, Department of Computer Sciences 2Tilburg center for Cognition and Communication, Tilburg University 3Netherlands Centre for Biodiversity Naturalis 4Research Institute for Linguistics, Hungarian Academy of Sciences 1,2,3The Netherlands 4Hungary 1. Introduction The natural history domain is rich in information. For hundreds of years, biodiversity researchers have collected specimens and samples, and meticulously recorded the how, what, and where of these objects of research. To retrace this information, however, deep knowledge of the collection and patience is necessary. Whereas traditional access methods (e.g., analysing paper logs of specimen finds) can be used for smaller collections, the sheer size of most current natural history collections prohibits this. At the same time, information technology has advanced to the point where it is able to capture the intricacies of biodiversity collection information and provide the first steps towards full digital access. The need for collection information access is dire, as lack of access impairs our ability to answer questions about species biodiversity, diversity and change through time (Scoble, 2010). Examples from the young field of biodiversity informatics stress that in order to assess and tackle problems such as predicting a species’ reaction to changing environment or prioritisation of preservation policies, digitisation of and access to (large) collection databases is imperative (Guralnick & Hill, 2009; Johnson, 2007; Raes, 2009; Soberón & Peterson, 2004).
    [Show full text]
  • Cop13 Analyses Cover 29 Jul 04.Qxd
    IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 13th Meeting of the Conference of the Parties Bangkok, Thailand 2-14 October 2004 Prepared by IUCN Species Survival Commission and TRAFFIC Production of the 2004 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: The Commission of the European Union Canadian Wildlife Service Ministry of Agriculture, Nature and Food Quality, Department for Nature, the Netherlands Federal Agency for Nature Conservation, Germany Federal Veterinary Office, Switzerland Ministerio de Medio Ambiente, Dirección General para la Biodiversidad (Spain) Ministère de l'écologie et du développement durable, Direction de la nature et des paysages (France) IUCN-The World Conservation Union IUCN-The World Conservation Union brings together states, government agencies and a diverse range of non-governmental organizations in a unique global partnership - over 1 000 members in some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels. The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions. With 8 000 scientists, field researchers, government officials and conservation leaders, the SSC membership is an unmatched source of information about biodiversity conservation. SSC members provide technical and scientific advice to conservation activities throughout the world and to governments, international conventions and conservation organizations.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Print This Article
    VOLUME 3 ISSUE 1 DECEMBER 2008 MADAGASCAR CONSERVATION & DEVELOPMENT INVESTING FOR A SUSTAINABLE NATURAL ENVIRONMENT FOR FUTURE GENERATIONS OF HUMANS, ANIMALS AND PLANTS OF MADAGASCAR IN THIS ISSUE Taboos & Social Contracts Bats & Bushmeat in Madagascar Endemic Plants in the Mandena Mining Area Radio for Sustain- able Development MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 3 | ISSUE 1 — DECEMBER 2008 PAGE 2 TABLE OF CONTENTS EDITORIAL 2 Editorial by Wilmé, L. and Waeber, P. O. 5 Foreword by Camara, C. Image in Action 85 Impressum The attachment that we feel to Madagascar compels us to talk ARTICLES about it – its richness, its values, its people and about life lessons 7 Taboos and social contracts: Tools for ecosystem learned and taught. As these experiences may differ in many management – lessons from the Manambolomaty aspects, a journal is the ideal place for sharing our common Lakes RAMSAR site, western Madagascar. Rabearivony J., ideas, as well as expressing our divergent thoughts and theories. Fanameha, E, Mampiandra, J. and Thorstom R. It is also a conduit for the exchange and transmission of our 17 Three flying fox (Pteropodidae: Pteropus rufus) ideas and perspectives to the world. Thus, it is the ambition roosts, three conservation challenges in southeastern of this journal to talk about Madagascar – it’s natural richness Madagascar. Rahaingodrahety, V. N., Andriafidison, D., and its conservation, about development and challenges in the Ratsimbazafy, J., Racey, P. A. and Jenkins, R. K. B. country, and more generally about components and facets of 22 Bats as bushmeat in Madagascar. Jenkins, R. K. B and conservation and development. Racey, P.
    [Show full text]
  • 0 Natural Selection
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/94566 Please be advised that this information was generated on 2021-09-27 and may be subject to change. 170 Natural Selection: Finding Specimens in a Natural History Collection Marieke van Erp1, Antal van den Bosch2, Steve Hunt2, Marian van der Meij3, René Dekker3 and Piroska Lendvai4 1VU University Amsterdam, Department of Computer Sciences 2Tilburg center for Cognition and Communication, Tilburg University 3Netherlands Centre for Biodiversity Naturalis 4Research Institute for Linguistics, Hungarian Academy of Sciences 1,2,3The Netherlands 4Hungary 1. Introduction The natural history domain is rich in information. For hundreds of years, biodiversity researchers have collected specimens and samples, and meticulously recorded the how, what, and where of these objects of research. To retrace this information, however, deep knowledge of the collection and patience is necessary. Whereas traditional access methods (e.g., analysing paper logs of specimen finds) can be used for smaller collections, the sheer size of most current natural history collections prohibits this. At the same time, information technology has advanced to the point where it is able to capture the intricacies of biodiversity collection information and provide the first steps towards full digital access. The need for collection information access is dire, as lack of access impairs our ability to answer questions about species biodiversity, diversity and change through time (Scoble, 2010). Examples from the young field of biodiversity informatics stress that in order to assess and tackle problems such as predicting a species’ reaction to changing environment or prioritisation of preservation policies, digitisation of and access to (large) collection databases is imperative (Guralnick & Hill, 2009; Johnson, 2007; Raes, 2009; Soberón & Peterson, 2004).
    [Show full text]
  • FAUNE DE MADAGASCAR Publiée Sous Les Auspices Du Gouvernement De La République Malgache
    FAUNE DE MADAGASCAR Publiée sous les auspices du Gouvernement de la République Malgache 47 REPTILES SAURIENS CHAMAELEONIDAE Genre Brookesia et complément pour le genre Chamae/eo par E.-R. BRYGûû (Mu.séUTn national dHistoire naturelle) Volume honoré d'une subvention de l'Agence de Coopération culturelle et technIque ÜR5TûM CNRS Paris 1978 FAUNE DE MADAGASCAR Collection fondée en 1956 par M. le Recteur Renaud PA LIAN Corre pondant de l'Institut Recteur de l'Académie de Bordeaux (alors Dirocteur adjoint de 1'1 RSM) Collection honorée d'une subvention de l'Académie des Scienoes (fonds Loutreuil) Comité de patronage M.le Dr RAIWTO RATSIMA~fANGA, membre correspondant de l'Institut, Paris.­ M.le Ministre de l1tducation nati nale, Tananarive. - M. le Président de l'Académie Malgache, Tananarive. - M. le Recteur de 1Université de Tananarive. - M. le Professeur de Zoologie de 1 niversité de Tananariv .- f. le DU'ecteur général du CNRS, Paris. - M. le Directeur général ct l üRSTüM, Pari. M. le Professeur Dr J. MILLOT, membre de l'ln titut, fondateur et ancien directeur de l'IRSM, Parjs. - M. Je Profe ur R. HEIM, fi mbre de lIn titut, Paris. MM. les Professeur J. DOR. T, membre de l'Institut, diJ'ecteul' du Muséum national, Paris; J.-M. PÉRÈS, membre de l'ln titut, Marseille; A. CILU3AUD, Paris; C. DELAMARE DEBouTTEVlLLE, Pari; P. LEHM ,Paris; M. RAKOTOMARIA, Tananarive. Comité de rédaction: M. R. PAlJLIA 1 Président; MM. C. DELAMARE DEBouTTEvILLE, P. DRACH, P. GRIVEA D, A. GRJEBINE, J.-J. PETTER, G. RAMANANTSOAVINA, P. ROEDERER, P. Vn:TTE ( ecrétaire). Les volumes de la «Faune de Madagascar », honorés d'une subvention de la République Malgache, sont publiés avec le concours financier du Centre National de la Recherche Scientifique et de l'Office de la Recherche Scientifique et Technique Outre-Mer.
    [Show full text]
  • PNA Couleuvre De Mayotte 2021-2030 Consultation
    Plan national d’actions 2021 - 2030 En faveur de la Couleuvre de Mayotte Liophidium mayottensis Avril 2021 PLAN NATIONAL D’ACTIONS | Couleuvre de Mayotte 2021-2030 Remerciements pour leur contribution : Abassi Dimassi (Conservatoire Botanique de Mascarin) Anna Roger (RNN M’Bouzi) Annabelle Morcrette (ONF) Antoine Baglan (Eco-Med Océan Indien) Axel Marchelie (photographe indépendant) Emilien Dautrey (GEPOMAY) Gaspard Bernard (naturaliste indépendant) Ivan Ineich (MNHN) Julien Paillusseau (ZOSTEROPS Créations) Laurent Barthe (Société Herpétologique de France) Mathieu Booghs (DAAF Mayotte) Michel Charpentier (association des Naturalistes de Mayotte) Norbert Verneau (naturaliste indépendant) Oliver Hawlitschek (Université de Hambourg) Patrick Ingremeau (naturaliste indépendant) Raïma Fadul (Conseil départemental de Mayotte) Rémy Eudeline (naturaliste indépendant) Romain Delarue (GAL Nord et Centre de Mayotte) Stéphanie Thienpont (Société Herpétologique de France) Thomas Ferrari (GEPOMAY) Yohann Legraverant (Conservatoire du littoral) Citation 2021. Augros S. et al. (Coord.) Plan National d’Actions en faveur de la Couleuvre de Mayotte (Liophidium mayottensis) 2021-2030. DEAL Mayotte. 111 p. Couverture : Liophidium mayottensis, photo réalisée par Patrick Ingremeau Ministère de la transition écologique et solidaire 2 PLAN NATIONAL D’ACTIONS | Couleuvre de Mayotte 2021-2030 Table des matières RESUME / ABSTRACT ......................................................................................................................... 6 1. BILAN DES
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]
  • Amblyodipsas Polylepis (Bocage, 1873) Feeding on the Amphisbaenid Monopeltis Luandae Gans, 1976
    Herpetology Notes, volume 14: 205-207 (2021) (published online on 26 January 2021) A snake with an appetite for the rare: Amblyodipsas polylepis (Bocage, 1873) feeding on the amphisbaenid Monopeltis luandae Gans, 1976 Werner Conradie1,* and Pedro Vaz Pinto2,3 Specimens in natural history museum collections catalogue number PEM R22034. The snake measured represent a unique snapshot of the time and place they 634 mm in snout–vent length (no tail length is provided were collected, while the analysis of stomach contents as the tail was truncated). Identification to the nominate often leads to unexpected results and new discoveries. For subspecies A. p. polylepis was based on a series of example, the Angolan lizard Ichnotropis microlepidota characteristics (fide Broadley, 1990), including enlarged Marx, 1956 was described based on material recovered fangs below a small eye; loreal absent; preocular absent; from the crop of a Dark Chanting Goshawk (Melierax one postocular; seven supralabials, with the 3rd and metabates), and the species has not been collected since 4th entering the orbit; seven infralabials, with the first (Marx, 1956; van den Berg, 2018). Specifically, such four in contact with a single pair of genials; temporal an approach is known to provide extremely valuable formula 0+1 on both sides; 19-19-17 midbody scale insights into highly cryptic and rarely sighted fossorial rows; 227 ventrals; 16+ paired subcaudals (truncated). species, such as amphisbaenids (Broadley, 1971; Shine The specimen was re-examined in mid-2019 and it was et al., 2006). These tend to be generally underrepresented discovered that the stomach was full. Upon dissection, a in museum collections and, therefore, make a case for fully intact amphisbaenian was removed (Fig.
    [Show full text]