Sharp Altitudinal Gradients in Magellanic Sub-Antarctic Streams: Patterns Along a Fluvial System in the Cape Horn Biosphere Rese

Total Page:16

File Type:pdf, Size:1020Kb

Sharp Altitudinal Gradients in Magellanic Sub-Antarctic Streams: Patterns Along a Fluvial System in the Cape Horn Biosphere Rese Author's personal copy Polar Biol DOI 10.1007/s00300-015-1746-4 ORIGINAL PAPER Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55°S) 1,2,3,6 1,2,3,4 1,2,3,5,6 Tamara Contador • James H. Kennedy • Ricardo Rozzi • Jaime Ojeda Villarroel1,2,3,6 Received: 17 July 2014 / Revised: 20 June 2015 / Accepted: 22 June 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Magellanic Sub-Antarctic streams run through Antarctic watershed is characterized by a sharp thermal steep, low-altitude mountainous gradients characterized by gradient, in which cumulative degree-days (°C) per year a topography that supports a mosaic of evergreen, mixed, sharply increase through a relatively short altitudinal gra- and deciduous forests, peat lands, and scrublands. Here, the dient (0–600 m above sea level). With the results from this macroinvertebrate fauna and their ecological interactions study, we can now study thermal tolerances of altitude- are poorly known. This study linked the distribution, restricted species or project changes in their distributions community composition, and functional feeding structure and voltinism patterns according to climate change sce- of benthic macroinvertebrates with physicochemical and narios. Ecosystems at higher latitudes and altitudes are thermal patterns along the altitudinal gradient of a Mag- experiencing some of the fastest rates of warming on the ellanic Sub-Antarctic watershed. Invertebrates were col- planet, and Magellanic Sub-Antarctic watersheds could be lected during the austral summers of 2008, 2009, and 2010 considered as ‘‘sentinel systems,’’ providing early warning at five different altitudes. Our results indicate that benthic of wider scale change. macroinvertebrate community distributions are predomi- nantly affected by temperature and certain species show Keywords Altitudinal gradient Benthic distribution restrictions through the altitudinal gradient macroinvertebrate Sub-AntarcticÁ Functional feeding Á Á studied. Temperature profiles indicate that this Sub- group Climate change Á Introduction Electronic supplementary material The online version of this article (doi:10.1007/s00300-015-1746-4) contains supplementary The Sub-Antarctic Magellanic ecoregion, immersed within material, which is available to authorized users. the South American temperate forest biome, has been identified as one of the 24 true wilderness areas remaining & Tamara Contador [email protected]; [email protected] on the planet. More than 70 % of the original vegetation cover is still extant, over an area greater than 10,000 km2, 1 Universidad de Magallanes, Avenida Bulnes, which lacks significant industrial and urban development 01855 Punta Arenas, Chile (Mittermeier et al. 2003). It spans a myriad of archipela- 2 Sub-Antarctic Biocultural Conservation Program, goes from 47°S to 56°S unique in the world, in a latitudinal Punta Arenas, Chile range of almost 10° well to the south of the southernmost 3 Omora Ethnobotanical Park, Puerto Williams, Chile forests in New Zealand and Australia (Rozzi et al. 2012). 4 Department of Biological Sciences, University of North Furthermore, South American Sub-Antarctic ecosystems Texas, Denton, TX, USA sharply contrast with their northern hemisphere latitudinal 5 Department of Philosophy and Religion Studies, University counterparts in terms of the land-to-ocean ratio, generating of North Texas, Denton, TX, USA sharp inter-hemispheric climatic and biotic differences in 6 Instituto de Ecologı´a y Biodiversidad-Chile, Santiago, Chile temperate and subpolar latitudes (Rozzi et al. 2012). 123 Author's personal copy Polar Biol Southern South America’s Sub-Antarctic freshwater the heterogeneity in habitats and marked gradients in ecosystems temperature and rainfall over a relatively small land area (Rozzi et al. 2012). Among the freshwater fauna, inverte- South America’s Sub-Antarctic freshwater ecosystems are brates are strongly affected by thermal variation across positioned in a region shaped by the glacial erosion of the latitudinal and altitudinal scales (Sweeney et al. 1990). The continent during the Last Glacial Maximum, between thermal environment directly affects their metabolism and 23,000 and 19,000 BP (Hulton et al. 2002). In contrast with growth rates, and hence their ability to survive when high-latitude environments in the northern hemisphere, temperature variation exceeds their range of thermal tol- these ecosystems present marked changes in microclimate erance (Ward and Stanford 1982). Thus, obtaining basic with small changes in elevation. The modulating effect of information about the diversity, distributions and life his- the ocean drastically diminishes with altitude, and the tree tory of freshwater benthic macroinvertebrates associated line appears at only 600 m above sea level (Rozzi et al. with Magellanic Sub-Antarctic rivers are extremely 2010). These steep altitudinal gradients are characterized important to assess the possible implications of climate by a diverse topography that supports evergreen forests, change in this region of the world. mixed evergreen/deciduous forests, peat lands, grasslands, The goals of this study were to: (1) provide a concise and scrublands over a relatively small area (Pisano 1980). description of the benthic fauna associated to the steep Marked topographic and climatic barriers have isolated this altitudinal gradient of a Sub-Antarctic fluvial system in the austral vegetation from the nearest subtropical forests by Cape Horn Biosphere Reserve, Chile (55°S); (2) to assess 1500–2000 km, generating high levels of endemism and a the relationships between richness, density, and distribution unique biodiversity of vertebrates, invertebrates, and non- of benthic macroinvertebrates with temperature and other vascular and vascular plants (Armesto et al. 1998; Rozzi physicochemical variables along the altitudinal gradient; et al. 2012). For example, close to 90 % of woody plant and (3) to provide the basis for future research regarding species, 33 % of woody genera, and about 60 % of bryo- southern South American Sub-Antarctic freshwater phyte species (mosses and liverworts) are endemic to this ecosystems in the context of climate change. region (Rozzi et al. 2012). Indeed, the Sub-Antarctic ecoregion is a ‘‘hotspot’’ of bryophyte biodiversity, one factor that led UNESCO to declare the territory and its Materials and methods waters the Cape Horn Biosphere Reserve. Overall, though, despite the unique biogeographic setting and the high fre- Study area quency of endemisms encountered to date, the biological richness of the Cape Horn archipelago and the Magellanic The Ro´balo River (54°S, 067°W), with an extension of Sub-Antarctic ecoregion is understudied (Contador et al. approximately 12 km, runs through the altitudinal gradient 2012). Many areas have not been systematically explored, of the Dientes of Navarino mountain range, located on even on small, well-defined, and accessible land masses, Navarino Island (55°S). The river provides drinking water and many of the less charismatic taxa, such as aquatic to the city of Puerto Williams, Capital of the Chilean insects, have barely been surveyed at all (Convey and Antarctic Province and the world’s southernmost town. Stevens 2007; Contador et al. 2012). Navarino Island lies south of the Beagle Channel and north Furthermore, climate change is affecting not only polar of Cape Horn (Fig. 1). The Cape Horn archipelago became regions but also subpolar regions. For example, models of the Cape Horn Biosphere Reserve (CHBR) in 2005, and it temperature change for New Zealand predict the shrinking hosts the world’s southernmost-forested ecosystem, and ultimate disappearance of South Island glaciers, encompassing all of the islands south of the Beagle resulting in the lost of habitats suitable for cold-water Channel, as well as the Chilean portion of Tierra del Fuego specialists (Winterbourn et al. 2008). Additionally, Island located south of the highest peaks in the Darwin although the system of South America’s Sub-Antarctic Mountain Range (Rozzi et al. 2010). The study site lies channels and fjords houses one of the most important ice within this biosphere reserve and the Omora Ethnobotani- fields after Antarctica, the loss of mass and freshwater cal Park, part of Chile’s long-term socio-ecological input has been dramatic in recent years due to global research sites (LTSER) network (Rozzi et al. 2010). It warming (Porter and Santana 2003). In this context, the belongs to the Magellanic Sub-Antarctic ecoregion (Mit- Sub-Antarctic islands of southern South America provide a termeier et al. 2003), which has a strong dominance of unique opportunity for understanding the past and present Austral and also Nearctic and Brasilic elements (Mis- climate change in the southern hemisphere to assess its erendino and Pizzolon 2000). consequences to the biota. Comparative studies of the The forests of this region are composed primarily of responses of the biota to climate change are facilitated by three members of the genus Nothofagus (Pisano 1980) and 123 Author's personal copy Polar Biol Fig. 1 Map of Navarino Island showing its location within the Cape Horn Biosphere Reserve. The map details the location of the Ro´balo River watershed, located on the north side of the island. Sampling sites along the watershed are shown are part of the South American temperate forest biome, Puerto Williams is 6.0 °C and 467.3 mm, respectively, and occurring
Recommended publications
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems
    Article Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems Yulia Ivanova 1,* and Vlad Soukhovolsky 2 1 Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Academgorodok 50-50, 600036 Krasnoyarsk, Russia 2 V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Academgorodok 50-28, 600036 Krasnoyarsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-391-249-4328; Fax: +7-391-243-3400 Academic Editors: Isabel Cañellas and Timothy A. Martin Received: 30 August 2016; Accepted: 5 November 2016; Published: 12 November 2016 Abstract: The ecological second-order phase transition model has been used to describe height-dependent changes in the species composition of mountain forest ecosystems. Forest inventory data on the distribution of various tree species in the Sayan Mountains (south Middle Siberia) are in good agreement with the model proposed in this study. The model was used to estimate critical heights for different altitudinal belts of vegetation, determine the boundaries and extents of ecotones between different vegetation belts, and reveal differences in the ecotone boundaries between the north- and south-facing transects. An additional model is proposed to describe ecotone boundary shifts caused by climate change. Keywords: ecotone; boundaries of ecotones; mountain forest ecosystems; biodiversity 1. Introduction Any plant community has its own species composition and spatial structure. Within the space occupied by the community, it may be regarded as uniform and characterized by spatially invariable parameters. The boundaries of a community are determined by the effects of external modifying factors (such as temperature) on the plants and competitive interactions between the species that are not characteristic of this community but are present in the neighboring one [1,2].
    [Show full text]
  • 2.2 Ecosystems of the World E
    Ecotoxicology and Climate Edited by P. Bourdeau, J. A. Haines, W. Klein and C. R. Krishna Murti @ 1989 SCOPE. Published by John Wiley & Sons Ltd 2.2 Ecosystems of the World E. F. BRUENIG 2.2.1 DEFINITION An ecosystem is a community of organisms and their physical and chemical environment interacting as an ecological unit. It represents all biological and abiotic components, including man, within a defined and delimited biotope, and is characterized by distinct ecological biocoenotic features of structure and functioning. The ecosystem relates to many different scales. At the lowest end of the scale, the ecosystem may comprise a rock, a fallen tree, or a certain layer in a plant community (pico-ecosystem, as described by Ellenberg, 1973). At the largest end of the scale it relates to life support media and covers oceanic, terrestrial, limnic, or urban ecosystem categories (mega-ecosystem). The present description is restricted to terrestrial ecosystems and focuses in particular on potential natural vegetation. Centred on the plant formation, it classes natural forests and woodlands in hot and cold climates at macro-ecosystem level. The description is structured by classifying the forests and woodlands at micro- ecosystem (formation group) level according to major physiognomic, pheno- logical, and growth features in relation to the site and environmental conditions. These units correspond roughly to the bioclimatic life zones of Holdridge (1967). The description is patterned on the serial structure of the physiognomic- ecological classification of plant formations of the earth (Miiller-Dombois and Ellenberg, 1974, pp. 466-488) commonly quoted as the UNESCO Classification. 2.2.2 NATURAL VEGETATIONAL ZONES 2.2.2.1 Latitudinal Zonation The characteristic features of the zonal vegetation in each latitudinal zone are primarily determined and shaped by climate.
    [Show full text]
  • Mangrove Assessment in Manamoc Island for Coastal Retreat Mitigation
    Journal of Marine and Island Cultures, v7n1 — Martinez & Buot Mangrove assessment in Manamoc Island for coastal retreat mitigation Mylene R. Martinez Inocencio E. Buot Jr. (corresponding author) School of Environmental Science and Management, University of the Philippines Los Baños, College, Laguna School of Environmental Science and Management, University of Institute of Biological Sciences, College of Arts and Sciences, the Philippines Los Baños, College, Laguna University of the Philippines Los Baños, College, Laguna [email protected] Faculty of Management and Development Studies, University of the Philippines Open University, Los Baños, Laguna Publication Information: Received 5 April 2018, Accepted 11 May 2018, Available online 30 June 2018 DOI: 10.21463/jmic.2018.07.1.05 Abstract Manamoc Island is experiencing coastline retreat and is in urgent need of economical mitigating measures. This study explored the role of mangroves in the mitigation of coastal retreat in Manamoc Island. Assessment of mangroves through standard vegetation analysis was done in relation to the topography and coastal dynamics prevalent in Manamoc Island. Time series analysis of sand and mangrove cover change was carried out to determine the role of mangroves in coastal retreat mitigation. Cluster analysis revealed five clusters named after the dominant species: Cluster I – Avicennia marina (Forsk.) Vierh.; Cluster II – Bruguiera sexangula (Lour.) Poir.; Cluster III – Rhizophora apiculata Blume and Rhizophora mucronata Lam.; Cluster IV – Rhizophora mucronata Lam.; and Cluster V – Sonneratia alba J. Smith. The clustering pattern followed that of typical mangrove zonation landward, middleward, and seaward although with a relatively short width. Canonical correspondence analysis (CCA) indicated that environmental factors like soil texture, pH, N, and P influenced mangrove distribution in Manamoc Island.
    [Show full text]
  • Classification of Wetlands and Deepwater Habitats of the United States
    FGDC–STD-004-2013 Second Edition Classification of Wetlands and Deepwater Habitats of the United States Adapted from Cowardin, Carter, Golet and LaRoe (1979) Wetlands Subcommittee Federal Geographic Data Committee August 2013 Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Energy, Housing and Urban Development, the Interior, State, and Transportation; the Environmental Protection Agency (EPA); the Federal Emergency Management Agency (FEMA); the Library of Congress; the National Aeronautics and Space Administration (NASA); the National Archives and Records Administration; and the Tennessee Valley Authority. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of geographic data to reduce duplication of effort. Working groups are established for issues that transcend data categories. For more information about the committee, or to be added to the committee’s newsletter mailing list, please contact: Federal Geographic Data Committee Secretariat c/o U.S. Geological Survey 590 National Center Reston, Virginia 22092 Telephone: (703) 648-5514 Facsimile: (703) 648-5755 Internet (electronic mail): [email protected] Anonymous FTP: ftp://fgdc.er.usgs.gov/pub/gdc/ World Wide Web: http://fgdc.er.usgs.gov/fgdc.html This standard should be cited as: Federal Geographic Data Committee.
    [Show full text]
  • Altitudinal Zonation of Bryophytes on the Huon Peninsula, Papua New Guinea. a Floristic Approach, with Phytogeogra- Phic Considerations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main 61 Tropical Bryology 2: 61-90, 1990 Altitudinal zonation of Bryophytes on the Huon Peninsula, Papua New Guinea. A floristic approach, with phytogeogra- phic considerations Johannes Enroth Department of Botany, University of Helsinki, Unioninkatu 44, SF-00170, Helsinki, Finland. Abstract. The study is based on the major part of the bryophyte material collected during the Koponen-Norris expedition on the Huon Peninsula, Papua New Guinea, in 1981. Only taxa which were collected at least twice are included. Five altitudinal zones, the boundaries of which are indicated by discontinuities in the bryophyte flora, are distinguished: 0 - 300 m, 300 - 1200 m, 1200 - 2200(-2300) m, 2200(-2300) - 2800(- 2900) m, and 2800(-2900) -3400 m. These zones, each characterized by a typical species assemblage, are well in accordance with some earlier New Guinean zonation schemes based on the phanerogamic flora and vegetation. The most obvious correlations between bryophytes’ altitudinal ranges on the Huon Peninsula and their general phytogeography are: New Guinean or Western Melanesian endemics, as well as Malesian endemics, are concentrated at relatively high altitudes (zones III-V); Asian - Oceanian and Asian - Oceanian - Australian taxa, notably mosses, are relatively strongly represented at low to moderate altitudes (zones I-III); species which have their main distribution in the northern hemisphere occur at high altitudes; 'cosmopolitan' species either have wide vertical ranges or are restricted to high altitudes. Introduction Nadkarni (1978), and Johns (1982). Robbins (1959) and Royen (1980) mainly The altitudinal zonation of vegetation in dealt with the New Guinean mountain the tropics is distinct and, in many regions, vegetation.
    [Show full text]
  • A Geographical Model for the Altitudinal Zonation of Mire Types in the Uplands of Western Europe: the Example of Les Monts Du Forez in Eastern France
    A geographical model for the altitudinal zonation of mire types in the uplands of western Europe: the example of Les Monts du Forez in eastern France H. Cubizolle1 and G. Thebaud2 1Lyon University, EVS-ISTHME UMR 5600 CNRS, Saint-Etienne, France 2Herbarium Institute, Blaise Pascal University, Clermont-Ferrand, France _______________________________________________________________________________________ SUMMARY The geographical distribution of mires in the oceanic mountain ranges of western Europe cannot be explained without bringing together a number of physical and human factors. In Les Monts du Forez, which are granitic and metamorphic mountains covering an area of 1800 km2 and rising to an altitude of 1634 m in the east of the French Massif Central, a series of mires on long slopes reflects the effects of changing combinations of these factors with altitude. The scale of variation falls within the limits of bioclimatic levels and is manifest as: the absence of mires at foothill levels below 900 m; small mires of anthropogenic origin and remnant peat at lower mountain levels between 900 m and 1100 m; peat systems where evolution has been more or less affected by human intervention at median mountain levels between 1100 m and 1250 m; large ombrotrophic mires, often naturally convex and dating from the first half of the Holocene epoch, at upper mountain levels between 1250 m and 1450 m; and small established mires that are more or less directly linked to human intervention at sub-alpine levels above 1450 m. The role of human societies appears to dominate, with exceptions in the upper mountain levels. Human influence presents in two forms, both of which are related to the old traditional farming methods of the region: the first is destruction of mires, mostly by drainage, and the second is mire creation through modifications of the hydrology of the valley floor and the vegetation cover.
    [Show full text]
  • Climate Effects on the Vitality of Boreal Forests at the Treeline in Different Ecozones of Mongolia” by Michael Klinge Et Al
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-220-RC1, 2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Interactive comment on “Climate effects on the vitality of boreal forests at the treeline in different ecozones of Mongolia” by Michael Klinge et al. U. Schickhoff (Referee) [email protected] Received and published: 8 December 2017 The paper is of considerable interest to a broad readership of Biogeosciences since it is one of very few studies that focus on the relationship of forest distribution and treeline positions with climatic parameters in Mongolia. Especially the combination with remote sensing indices (NDVI) had been rather neglected so far. The paper is an important original contribution, and I recommend it for publication after - from my perspective - necessary revisions. In my view, the usage of the term ‘ecozone’ in the paper (in the title, throughout the text, in the figures) is not appropriate. The term ’ecozone’ is as- sociated with large-scale units (biomes) such as humid mid-latitudes, dry mid-latitudes etc. I believe it is confusing to use it for small-scale units as in this paper. The authors should apply a consistent, generally accepted terminology for habitats / vegetation for- C1 mations along horizontal and altitudinal zonations (see below). Without explicitly saying so the authors suggest that treeline positions (upper and lower treelines) are in accor- dance with present climatic conditions. This must not necessarily be the case. Most treelines are in a process of climate tracking, and lag behind climatic changes, in par- ticular when those changes take place very fast.
    [Show full text]
  • Ecological Studies of Epiphytic Bryophytes Along Altitudinal Gradients in Southern Thailand
    Ecological studies of epiphytic bryophytes along altitudinal gradients in Southern Thailand Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen-Friedrich-Wilhelms-Universität Bonn vorgelegt von Sahut Chantanaorrapint aus Thailand Bonn, Januar 2010 Archive for Bryology Special Volume 7 ISSN 0945-3466 Angefertigt mit Genehmigung der Mathematisch – Naturwissenschaftlichen Fakultät der Rheinischen-Friedrich-Wilhelms-Universität Bonn. 1. Erstgutachter: Prof. Dr. Jan-Peter Frahm 2. Zweitgutachter: Prof. Dr. Dietmar Quandt 3. Fachnahes Mitglied: PhD Dr. Klaus Riede 4. Fachangrenzendes Mitglied: Prof. Dr. Thomas Litt Tag der Promotion: Januar 2010 Archive for Bryology Special Volume 7 ISSN 0945-3466 Archive for Bryology Special Volume 7 ISSN 0945-3466 Contents IV Table contents Table contents IV Chapter 1: General Introduction 1 1.1 Tropical Forest 1 1.2 Bryophytes in Tropical Rain Forests 2 1.3 Epiphytic bryophytes 3 1.4 Ecological study of epiphytic bryophytes in tropical rain forests 4 1.5 Aims, outline and contents of the present study 5 Chapter 2: Study area 7 2.1 Location and Topography 7 2.2 Climate 8 2.3 Vegetation 9 2.4 Study sites 9 Chapter 3: Biomass and ecology of epiphytic bryophyte along altitudinal gradients in Southern Thailand 16 3.1 Abstract 16 3.2 Introduction 16 3.3 Material and Methods 17 3.4 Results and Discussions 19 Chapter 4: Ecology and community of epiphytic bryophytes along an altitudinal gradient of Tarutao Island, southern Thailand 30 4.1 Abstract
    [Show full text]
  • Sharp Altitudinal Gradients in Magellanic Sub-Antarctic Streams: Patterns Along a Fluvial System in the Cape Horn Biosphere
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279783565 Contador, T., Kennedy, J.H., Ojeda, J. Rozzi, R. (2015). Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere... Article in Polar Biology · June 2015 Impact Factor: 1.59 · DOI: 10.1007/s00300-015-1746-4 CITATIONS READS 2 71 4 authors: Tamara Contador James Kennedy University of Magallanes University of North Texas 26 PUBLICATIONS 44 CITATIONS 6 PUBLICATIONS 51 CITATIONS SEE PROFILE SEE PROFILE Jaime Ojeda Ricardo Rozzi University of Magallanes University of North Texas 28 PUBLICATIONS 41 CITATIONS 223 PUBLICATIONS 1,587 CITATIONS SEE PROFILE SEE PROFILE Available from: Ricardo Rozzi Retrieved on: 14 April 2016 Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55°S) Tamara Contador, James H. Kennedy, Ricardo Rozzi & Jaime Ojeda Villarroel Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-015-1746-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website.
    [Show full text]
  • Taiga Shield
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Shield Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories 2008 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA SHIELD This report may be cited as: Ecosystem Classification Group. 2008. Ecological Regions of the Northwest Territories – Taiga Shield. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 146 pp. + insert map. ISBN 978-0-7708-0173-1 Web Site: http://www.enr.gov.nt.ca For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small digital images in the inset boxes are enlarged with captions on pages 24 (Taiga Shield High Subarctic (HS) Ecoregion), 44 (Taiga Shield Low Subarctic (LS) Ecoregion), 66 (Taiga Shield High Boreal (HB) Ecoregion) and 78 (Taiga Shield Mid-Boreal (MB) Ecoregion). Aerial images and main cover image: Dave Downing, Timberline Natural Resource Group. Ground images and plant images: Bob Decker, Government of the Northwest Territories. Document images: Except where otherwise credited, aerial images in the document were taken by Dave Downing, Timberline Natural Resource Group, and ground-level images were taken by Bob Decker, Government of the Northwest Territories. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories.
    [Show full text]
  • Changes of Arthropod Diversity Across an Altitudinal Ecoregional Zonation in Northwestern Argentina
    Changes of arthropod diversity across an altitudinal ecoregional zonation in Northwestern Argentina Andrea X. González-Reyes1, Jose A. Corronca2 and Sandra M. Rodriguez-Artigas1 1 IEBI-Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina 2 CONICET-IEBI-Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina ABSTRACT This study examined arthropod community patterns over an altitudinal ecoregional zonation that extended through three ecoregions (Yungas, Monte de Sierras y Bolsones, and Puna) and two ecotones (Yungas-Monte and Prepuna) of Northwestern Argentina (altitudinal range of 2,500 m), and evaluated the abiotic and biotic factors and the geographical distance that could influence them. Pitfall trap and suction samples were taken seasonally in 15 sampling sites (1,500–4,000 m a.s.l) during one year. In addition to climatic variables, several soil and vegetation variables were measured in the field. Values obtained for species richness between ecoregions and ecotones and by sampling sites were compared statistically and by interpolation–extrapolation analysis based on individuals at the same sample coverage level. Effects of predictor variables and the similarity of arthropods were shown using non-metric multidimensional scaling, and the resulting groups were evaluated using a multi-response permutation procedure. Polynomial regression was used to evaluate the relationship between altitude with total species richness and those of hyperdiverse/abundant higher taxa and the latter taxa with each predictor variable. The species richness pattern displayed a decrease in species diversity as the elevation increased at the bottom wet part (Yungas) of our altitudinal zonation until the Monte, and a unimodal pattern of diversity in the top dry part (Monte, Puna).
    [Show full text]