52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1568.pdf SPECTRAL ANALYSIS OF LUNAR PYROCLASTIC DEPOSITS IN THE MONTES APENNINUS REGION. L.M. Pigue1,2, K.A. Bennett2, B.H.N Horgan3, L.R. Gaddis2,4 1Northern Arizona University, Department of Astronomy and Planetary Science, Flagstaff, AZ (
[email protected]), 2US Geological Survey, Astrogeology Science Center, Flagstaff, AZ, 3Earth Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, 4Lunar and Planetary Institute, Houston, TX. Introduction: Lunar Pyroclastic Deposits (LPDs) color composites of the spectral parameter maps and the are the surface materials left on the Moon that have been 1µm band center and 2µm band depth (Figure 2). produced by explosive eruptions. Spectral analyses of Study Area: Montes Apenninus is a northeast- the composition and distribution of these volcanic southwest trending chain of mountains that are part of deposits can reveal information about lunar formation the rim of the Imbrium basin. West of Montes and evolution because they are relatively pristine Apenninus is the Apennine Bench Formation, a light samples thought to be sourced from deep within the plains unit determined to be older than the surrounding Moon. Their distribution in time and space captures Mare Imbrium [3]. Ten LPDs have previously been information about changes in the composition, identified within this study area, including examples temperature, and structure of the lunar mantle and classified by size as regional (>1000 km2) and localized perched magma sources. In order to relate the surface (<1000 km2) [4]. expression of LPD compositions back to their source LPD and identifier Area Geologic Setting within the lunar interior, the degree and type of (km2) magmatic evolution prior to eruption and the style of 1.