Molecular Dynamics Beyond the Born-Oppenheimer Approximation: Mixed Quantum–Classical Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Landau-Zener Transition and the Surface Hopping Method for the 2D Dirac Equation for Graphene
Commun. Comput. Phys. Vol. 21, No. 2, pp. 313-357 doi: 10.4208/cicp.020515.250716a February 2017 The Landau-Zener Transition and the Surface Hopping Method for the 2D Dirac Equation for Graphene 1,2 3,4, Ali Faraj and Shi Jin ∗ 1 Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China. 2 Grenoble INP, ESISAR, 26902 Valence Cedex 9, France. 3 Department of Mathematics, Institute of Natural Sciences, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, P.R. China. 4 Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA. Received 2 May 2015; Accepted (in revised version) 25 July 2016 Abstract. A Lagrangian surface hopping algorithm is implemented to study the two dimensional massless Dirac equation for Graphene with an electrostatic potential, in the semiclassical regime. In this problem, the crossing of the energy levels of the system at Dirac points requires a particular treatment in the algorithm in order to describe the quantum transition—characterized by the Landau-Zener probability— between different energy levels. We first derive the Landau-Zener probability for the underlying problem, then incorporate it into the surface hopping algorithm. We also show that different asymptotic models for this problem derived in [O. Morandi, F. Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301] may give different transition prob- abilities. We conduct numerical experiments to compare the solutions to the Dirac equation, the surface hopping algorithm, and the asymptotic models of [O. Morandi, F. Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301]. AMS subject classifications: 35Q41, 37M05, 65M70, 65Z05, 81-08, 81Q20, 81V99 Key words: Dirac equation, Wigner transform, semiclassical model, band crossing, Landau-Zener formula, surface hopping algorithm, spectral methods. -
Avoided Crossings in Photochemistry
AVOIDED CROSSINGS IN PHOTOCHEMISTRY ALAIN DEVAQUET Laboratoire de Chimie Theorique, Centre Scientflque d'Orsay, Université de Paris-Sud, 91405 ORSA Y, France ABSTRACT Two families of avoided crossings exist: (a) geometry-dependent, and (b) model-dependent. They are consequences of one of three possible molecular orbital patterns (allowed crossing, weakly avoided crossing and near-touching situations). All these cases are illustrated here and their mechanistic implications investigated both in terms of static potential energy surfaces and of dynamic Landau—Zener transition probabilities. The non-crossing rule for potential energy curves of diatomic molecules was demonstrated fifty years ago"2. Its extension to the general case of the potential energy surfaces of polyatomic molecules was only published very recently3'4. This long period of time might indicate that this fundamental rule, though invoked very frequently, has not yet received the full attention it deserves. Indeed, in organic photochemistry, its mechanistic implications have only been recognized during the past ten years. This was mainly due to the Woodward and Hoffmann pioneering study of forbidden thermal and allowed photochemical reactions5. On the other hand Van der Lugt and Oosterhoff were the first to emphasize the importance of avoided crossing regions as likely leakage channels from an excited state toward the ground state of reacting systems. Their calculations of the potential energy surfaces for the photochemically allowed closure of butadiene to cyclobutene beauti- fully illustrate this fact6. Our goal in this paper is to review the various aspects of the avoided crossing problem. After a brief outline of its theoretical treatment we shall discuss this phenomenon in terms of electronic states and then, more precisely, at the molecular orbital level. -
Performance of Trajectory Surface Hopping Method in the Treatment of Ultrafast Intersystem Crossing Dynamics
Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics Jiawei Peng1,2,4, Yu Xie1, Deping Hu3, and Zhenggang Lan1,a) 1SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China 2Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 2066101, China 3MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China 4University of Chinese Academy of Sciences, Beijing 100049, P. R. China We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce the good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. -
Lecture 6: Introduction to Surface Hopping and to Sharc
Introduction Ehrenfest Surface Hopping Sharc Example Lecture 6: Introduction to Surface Hopping and to Sharc Sebastian Mai Sharc Workshop Vienna, October 3rd–7th, 2016 Sebastian Mai Lecture 6:Introduction to Surface Hopping and to Sharc 1 / 34 Introduction Ehrenfest Surface Hopping Sharc Example Introduction What we already have heard during the last days: I Classical nuclear dynamics I Ab initio dynamics I Born-Oppenheimer approximation I Excited states Goal: Perform excited-state dynamics with classical nuclei. We need to consider the Born-Oppenheimer approximation: I The electronic wavefunction can change during dynamics. I The electronic wavefunction has an eect on the nuclear motion. Sebastian Mai Lecture 6:Introduction to Surface Hopping and to Sharc 3 / 34 Introduction Ehrenfest Surface Hopping Sharc Example Electronic wavefunction evolution Classical nuclear dynamics No nuclear wavefunction! ) Electronic wavefunction as linear combination of basis functions: X Ψ(t) = c (t) ϕ (1) j i α j α i α Inserting this into the TDSE: @ i~ Ψ(t) = Hˆ el Ψ(t) (2) @t j i j i and premultiplying with ϕ gives: h β j * + X @c (t) D E @ X D E i~ α ϕ ϕ + c (t) ϕ ϕ = c (t) ϕ Hˆ el ϕ (3) @t β α α β @t α α β α 2 α 3 α 6 7 6 7 46 57 Sebastian Mai Lecture 6:Introduction to Surface Hopping and to Sharc 4 / 34 Introduction Ehrenfest Surface Hopping Sharc Example Electronic equation of motion From last slide: * + X @c (t) D E @ X D E i~ α ϕ ϕ + c (t) ϕ ϕ = c (t) ϕ Hˆ el ϕ (4) @t β α α β @t α α β α 2 α 3 α 6 7 6 7 Defining46 matrix elements: 57 X @c (t) X i~ α δ + c (t) T = c (t) H (5) @t βα α βα α βα 62 α 73 α 6 7 Rearranging:46 57 @cβ (t) X i = c (t) H + T (6) @t − α ~ βα βα α As matrix equation with atomic units: @ c(t) = [iH + T] c(t) (7) @t − Sebastian Mai Lecture 6:Introduction to Surface Hopping and to Sharc 5 / 34 Introduction Ehrenfest Surface Hopping Sharc Example Electronic wavefunction interpretation Complex electronic wavefunction represented through vector c(t). -
Semiclassical Computational Methods for Quantum Dynamics with Band
Semiclassical computational methods for non-adiabatic quantum dynamics with uncertainty Shi Jin University of Wisconsin-Madison, USA collaborators • Nicolas Crouseilles, Rennes • Mohammed Lemou, Rennes • Liu Liu, Austin (UQ part) The prototype PDEs to be solved • Systems of linear transport equations with oscillatory forces or initial data • The system is coupled through the force • Part of the force simulates the (non-adiabatic) phase information; • The interaction term resembles the Berry connection in quantum dynamics • Random uncertainty in band-gap, or initial data • Solutions highly oscillatory in space, time and uncertainty variables Computational difficulty • Nyquist-Shannon sampling theorem: need a few grid points per wave length • This is a daunting talk for most high frequency waves, including quantum dynamics, compuations in high dimensions Goal develop schemes that can get the correct (pointwise) solutions without resolving the oscillations and the numerical schemes converge uniformly in \epsilon -- defies the Nyquist-Shannon sampling restriction in certain degree Motivation: Band crossings: non-adiabatic qunatum phenomena Inter-band transition is a general quantum mechanical Phenomenon; it causes difficulties in semi-classical approximations • Born-Oppenheimer approximation: non-adiabatic surface hopping • Bloch decomposition in quantum dynamic with periodic potentials: crossing of Bloch bands or influence of external potentials • elastic and electromagnetic waves with polarization effect • Graphene: coupling of different -
Exact Solution of Multi State Problems in Quantum and Statistical Mechanics
Exact solution of Multi state problems in Quantum and Statistical Mechanics A THESIS submitted by DIWAKER for the award of the degree of DOCTOR OF PHILOSOPHY SCHOOL OF BASIC SCIENCES INDIAN INSTITUTE OF TECHNOLOGY MANDI. MANDI-175005 (H. P.) INDIA AUGUST, 2015 c 2015 - Diwaker All rights reserved. I dedicate this thesis to my parents, my brothers, my sisters and to my teachers. Indian Institute of Technology BArtFy þODOEgkF s\-TAn Mandi, Mandi (H. P.)-175005, m\ÚF, m\ÚF,(Eh. þ.)-175005, India, Govt. of India BArt, BArt srkAr THESIS CERTIFICATE This is to certify that the thesis titled Exact Solution of Curve Crossing Problems in Quantum Mechanics, submitted by Diwaker, to the Indian Institute of Technology, Mandi, for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work done by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma. Dr. Aniruddha Chakraborty Research Guide Associate Professor School of Basic Sciences IIT-Mandi, 175005 Phone-01905-237930 Email-achakraborty @iitmandi.ac.in http://www.aniruddhachakraborty.org/ Place: Mandi (H. P.) Date: 1st august 2015 Phone: 01905-237949/237944/267001, Fax: 01905-267009, www.iitmandi.ac.in Indian Institute of Technology BArtFy þODOEgkF s\-TAn Mandi, Mandi (H. P.)-175005, m\ÚF, m\ÚF,(Eh. þ.)-175005, India, Govt. of India BArt, BArt srkAr DECLARATION BY RESEARCH SCHOLAR I hereby declare that the entire work assimilated in this thesis entitled Exact Solution of Curve Crossing Problems in Quantum Mechanics is the result of investigations carried out by me in the School of Basic Sciences, Indian Institute of Technology Mandi, under the supervision of Dr. -
A One-Slide Summary of Quantum Mechanics
A One-Slide Summary of Quantum Mechanics Fundamental Postulate: What is !? ! is an oracle! O ! = a ! operator (scalar) observable Where does ! come from? ! is refined wave function Variational Process electronic road map: systematically improvable by going to higher resolution convergence of E H ! = E ! Energy (cannot go lower than "true" energy) Hamiltonian operator (systematically improvable) truth What if I can't converge E ? Test your oracle with a question to which you already know the right answer... Photoaffinity Labeling 1 N3 h! NH binder binder –N2 singlet nitrene covalently ligand with attached modifies enzyme — active photoaffinity label in site can be identified by enzyme active site sequencing of protein Photoaffinity Labeling 2 Attractive features of aromatic nitrenes as photoaffinity labels: 1) Generated with light outside of protein absorption bands 2) Highly reactive singlets 3) N2 is an innocuous byproduct of activation But: bond insertion k1 N3 N h! kISC ISC to triplet state (H-atom abstraction) –N2 k3 N singlet Practical concern—must minimize didehydroazepine Photoaffinity Labeling 3 bond insertion k1 N3 N h ! kISC ISC to triplet state (H-atom abstraction) –N2 k3 N singlet didehydroazepine N N N F F F F k3 > k1 k1 > k3 k3 > k1 Platz et al. Configuration Cartoons N N 3 1 A2 (T0) A2 (S1) N N 1 1 1 A1 (S2) 2 A1 (S3) Relative E (kcal/mol) for PhN ! . N : . 3 1 1 1 " A2 A2 1 A1 2 A1 MRCISD/DZP 0.0 21.0 39.8 (52) CASPT2N(8,8)/TZP 0.0 19.3 34.8 54.5 CCSD(T)/DZP 0.0 — 35.2 (47.2) BLYP/TZP 0.0 (14.3) 29.5 (41.0) Expt. -
How to Detect Level Crossings Without Looking at the Spectrum
How to detect level crossings without looking at the spectrum M. Bhattacharya Department of Physics, University of Arizona, Tucson, Arizona 85721 (Dated: October 22, 2018) We remind the reader that it is possible to tell if two or more eigenvalues of a matrix are equal, without calculating the eigenvalues. We then use this property to detect (avoided) crossings in the spectra of quantum Hamiltonians representable by matrices. This approach provides a pedagogical introduction to (avoided) crossings, is capable of handling realistic Hamiltonians analytically, and offers a way to visualize crossings which is sometimes superior to that provided by the spectrum. We illustrate the method using the Breit-Rabi Hamiltonian to describe the hyperfine-Zeeman structure of the ground state hydrogen atom in a uniform magnetic field. PACS numbers: 03.75.Be, 03.75.Lm, 84.40.Az, 73.21.Cd I. INTRODUCTION In this article we employ an algebraic method that ad- dresses these basic questions as well as some others. It Crossings and avoided crossings occur in the spectra allows for a simple but systematic approach to (avoided) of many physical systems such as atoms,1 molecules,2 crossings. In describing this approach we reintroduce to semiconductors3 and microwave cavities.4 They can oc- the study of (avoided) crossings a very useful but perhaps 10,11,12,13 cur as a result of tuning an external (e.g. electric) field5 neglected mathematical tool, the discriminant. 14,15,16 or as the consequence of varying an internal (e.g. in- In a series of articles, we have demonstrated in de- ternuclear) coordinate,6 for instance. -
Frozen Gaussian Approximation with Surface Hopping for Mixed Quantum-Classical Dynamics: a Mathematical Justification of Fewest Switches Surface Hopping Algorithms
FROZEN GAUSSIAN APPROXIMATION WITH SURFACE HOPPING FOR MIXED QUANTUM-CLASSICAL DYNAMICS: A MATHEMATICAL JUSTIFICATION OF FEWEST SWITCHES SURFACE HOPPING ALGORITHMS JIANFENG LU AND ZHENNAN ZHOU ABSTRACT. We develop a surface hopping algorithm based on frozen Gaussian approximation for semiclassical matrix Schrödinger equations, in the spirit of Tully’s fewest switches surface hopping method. The algorithm is asymptoti- cally derived from the Schrödinger equation with rigorous approximation error analysis. The resulting algorithm can be viewed as a path integral stochastic representation of the semiclassical matrix Schrödinger equations. Our results provide mathematical understanding to and shed new light on the important class of surface hopping methods in theoretical and computational chemistry. 1. INTRODUCTION The surface hopping algorithms, in particular the celebrated Tully’s fewest switches surface hopping (FSSH) al- gorithm [7,29], are widely used in theoretical and computational chemistry for mixed quantum-classical dynamics in the non-adiabatic regime. The Schrödinger equation, which is often high dimensional in chemistry applications, is impractical to solve directly due to curse of dimensionality. Thus, development of algorithms based on semiclassical approximation, which only involve solving ODEs, is necessary. Within the Born-Oppenheimer approximation, the resulting algo- rithm from the semiclassical approximation is the familiar ab initio molecular dynamics and related semiclassical algorithms. However, in many applications, -
Surface Hopping Dynamics with Direct Semiempirical Solution of the Electronic Problem. Maurizio Persico Universit`A Di Pisa Dipa
Surface hopping dynamics with direct semiempirical solution of the electronic problem. Maurizio Persico Universit`adi Pisa Dipartimento di Chimica e Chimica Industriale Thanks to the work of Giovanni Cosimo Silvia Teodoro Alessandro Granucci Ciminelli Inglese Laino Toniolo Teresa Valentina Gloria Andi Luigi Cusati Cantatore Spighi Shehu Creatini Outline of this talk. Goals and problems • Trajectory based methods and the like • On the fly calculation of PES and couplings • An example from atmospheric chemistry: ClOOCl on ice • More examples from material science: the azobenzene chromophore • Trying to overcome size and time limitations: a proposal • Goals and problems. Simulate photophysical and photochemical processes, spin-changing reac- • tions, and electron transfer reactions, to interpret time-resolved experiments and propose new ones, and to help designing new materials and molecu- lar devices = Calculate excited electronic states, correctly represent the ⇒ nonadiabatic dynamics. Treat large systems: extended or multiple chromophores and reactive centers, • interacting with solvent, surfaces, proteins etc = Cannot apply (uniformly) ⇒ high level methods for electronic structure. Many nuclear degrees of freedom are important. Consider the interplay of processes with (sometimes slightly) different time • scales = Integration times from several picoseconds to several nanoseconds. ⇒ Trajectory surface hopping simulations. The nuclear dynamics is represented by a swarm of classical trajectories; each • trajectory runs on a given adiabatic PES, but it may jump to another PES at any time (surface hopping). The electronic wavefunction Ψ(t) evolves in time according to the TDSE: • i d Ψ(t) = ˆ (t) Ψ(t) dt | i Hel | i Ψ(t) is expanded in the basis of the N lowest adiabatic states ψ : • K Ψ(t) = K AK(t) ψK(t) | i P | i and P (t) = A 2 are the adiabatic probabilities. -
Research 1..5
Letter pubs.acs.org/JPCL Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings Markus Kowalewski,* Kochise Bennett, and Shaul Mukamel* Chemistry Department, University of California, Irvine, California 92697-2025, United States ABSTRACT: Molecular potential energy surfaces can be actively manipulated by light. This is usually done by strong classical laser light but was recently demonstrated for the quantum field in an optical cavity. The photonic vacuum state of a localized cavity mode can be strongly mixed with the molecular degrees of freedom to create hybrid field-matter states known as polaritons. We simulate the avoided crossing of sodium iodide in a cavity by incorporating the quantized cavity field into the nuclear wave packet dynamics calculation. The quantized field is represented on a numerical grid in quadrature space, thus avoiding the limitations set by the rotating wave approximation (RWA) when the field is expanded in Fock space. This approach allows the investigation of cavity couplings in the vicinity of naturally occurring avoided crossings and conical intersections, which is too expensive in the fock space expansion when the RWA does not apply. Numerical results show how the branching ratio between the covalent and ionic dissociation channels can be strongly manipulated by the optical cavity. he photochemistry of molecules can be significantly level system linearly coupled to a quantized radiation field is − T influenced by specially tailored electromagnetic fields.1 7 given by the quantum Rabi model27 While control is usually achieved with classical laser fields, a ̂ strong coupling with the vacuum state of a cavity utilizes the Hec=++HHH e c I quantum nature of the electromagnetic mode. -
Avoided Level Crossings in Open Quantum Systems
Avoided level crossings in open quantum systems Hichem Eleuch and Ingrid Rotter∗ Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany (Dated: June 12, 2012) Abstract At high level density, two states avoid usually crossing at the critical value acr of the parameter a by which the system is controlled. The wavefunctions of the two states are mixed in a finite parameter range around acr. This holds true for discrete states as well as for narrow resonance states which are coupled via the environment of scattering wavefunctions. We study the influence of avoided level crossings onto four overlapping complex eigenvalues of a symmetric non-Hermitian operator. The mixing of the two wavefunctions around acr is simulated, in each case, by assuming a Gaussian distribution around acr. At high level density, the Gaussian distributions related to avoided crossings of different levels may overlap. Here, new effects arise, especially from the imaginary part of the coupling term via the environment. The results show, moreover, the influence of symmetries onto the multi-level avoided crossing phenomenon. arXiv:1206.2162v1 [quant-ph] 11 Jun 2012 ∗ [email protected] 1 I. INTRODUCTION Avoided level crossings play an important role in quantum mechanics. They are known for about 80 years [1]. In the case that the Hamilton operator of the system is Hermitian and the real eigenvalues Ei provide the energies of the discrete states of the system, two of its states never will cross. Instead they avoid crossing when controlled by a parameter. This phenomenon is an observable effect: it consists in an exchange of the two states, including their populations, in a many-particle system.