Higher Orbit Integrals, Cyclic Cocyles, and K-theory of Reduced Group C∗-algebra Yanli Song,∗ Xiang Tang† Abstract Let G be a connected real reductive group. Orbit integrals define traces on the group algebra of G. We introduce a construction of higher orbit integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz algebra of G. We analyze these higher orbit integrals via Fourier transform by expressing them as integrals on the tempered dual of G. We obtain explicit formulas for the pairing between the higher orbit integrals and the K- theory of the reduced group C∗-algebra, and discuss their applications to representation theory and K-theory. Contents 1 Introduction 2 2 Preliminary 5 2.1 Reductive Lie group and Cartan subgroups . ....... 5 2.2 Harish-Chandra’sSchwartzfunction . ........ 6 2.3 Cycliccohomology ................................ .. 7 3 Higher orbit integrals 7 3.1 Highercycliccocycles .. .... .... ... .... .... .... ... .... 7 3.2 Cocyclecondition................................ ... 9 3.3 Cycliccondition................................. ... 12 4 The Fourier transform of Φx 14 arXiv:1910.00175v2 [math.KT] 7 Nov 2019 4.1 Parabolicinduction .... .... .... ... .... .... .... ... .... 14 4.2 Wavepacket...................................... 15 4.3 DerivativesofFouriertransform . ....... 16 4.4 Cocycles on Gtemp ................................... 19 4.5 ProofofTheorem4.15 .............................. .. 21 4.6 ProofofTheorem4.18b .............................. .. 21 ∗Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO, 63130, U.S.A.,
[email protected]. †Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO, 63130, U.S.A.,
[email protected]. 1 5 Higher Index Pairing 24 ∗ 5.1 Generators of K(Cr(G)) ................................ 24 5.2 Themainresults.................................. .. 26 5.3 Regularcase ..................................... 27 5.4 Singularcase...................................