Real Reductive Groups. I, by Nolan R. Wallach. Academic Press, Pure and Applied Mathematics, San Diego, 1988, Xix + 412 Pp., $59.95
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Reducible Principal Series Representations, and Langlands Parameters for Real Groups3
REDUCIBLE PRINCIPAL SERIES REPRESENTATIONS, AND LANGLANDS PARAMETERS FOR REAL GROUPS DIPENDRA PRASAD May 15, 2018 Abstract. The work of Bernstein-Zelevinsky and Zelevinsky gives a good under- standing of irreducible subquotients of a reducible principal series representation of GLn(F), F a p-adic field induced from an essentially discrete series representation of a parabolic subgroup (without specifying their multiplicities which is done by a Kazhdan-Lusztig type conjecture). In this paper we make a proposal of a similar kind for principal series representations of GLn(R). Our investigation on principal series representations naturally led us to consider the Steinberg representation for real groups, which has curiuosly not been paid much attention to in the subject (unlike the p-adic case). Our proposal for Steinberg is the simplest possible: for a real reductive group G, the Steinberg of G(R) is a discrete series representation if and only if G(R) has a discrete series, and makes up a full L-packet of representations of G(R) (of size WG/WK), so is typically not irreducible. Contents 1. Introduction 1 2. Notion of Segments for GLn(R) 4 3. The Steinberg representation for real groups 4 4. Paraphrasing the work of Speh 8 5. A partial order on the set of irreducible representations 9 6. Principal series representations for GL3(R), GL4(R) 9 7. An Example 10 References 11 arXiv:1705.01445v2 [math.RT] 14 May 2018 1. Introduction Although irreducible representations of GLn(R) and GLn(C) are well understood, and so are their Langlands parameters, the author has not found a place which dis- cusses Langlands parameters of irreducible subquotients of principal series represen- tations on these groups. -
An Introduction to the Trace Formula
Clay Mathematics Proceedings Volume 4, 2005 An Introduction to the Trace Formula James Arthur Contents Foreword 3 Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J T (f) 46 10. The coarse geometric expansion 53 11. Weighted orbital integrals 56 12. Cuspidal automorphic data 64 13. A truncation operator 68 14. The coarse spectral expansion 74 15. Weighted characters 81 Part II. Refinements and Applications 89 16. The first problem of refinement 89 17. (G, M)-families 93 18. Localbehaviourofweightedorbitalintegrals 102 19. The fine geometric expansion 109 20. Application of a Paley-Wiener theorem 116 21. The fine spectral expansion 126 22. The problem of invariance 139 23. The invariant trace formula 145 24. AclosedformulaforthetracesofHeckeoperators 157 25. Inner forms of GL(n) 166 Supported in part by NSERC Discovery Grant A3483. c 2005 Clay Mathematics Institute 1 2 JAMES ARTHUR 26. Functoriality and base change for GL(n) 180 27. The problem of stability 192 28. Localspectraltransferandnormalization 204 29. The stable trace formula 216 30. Representationsofclassicalgroups 234 Afterword: beyond endoscopy 251 References 258 Foreword These notes are an attempt to provide an entry into a subject that has not been very accessible. The problems of exposition are twofold. It is important to present motivation and background for the kind of problems that the trace formula is designed to solve. -
Automorphism Groups of Locally Compact Reductive Groups
PROCEEDINGS OF THE AMERICAN MATHEMATICALSOCIETY Volume 106, Number 2, June 1989 AUTOMORPHISM GROUPS OF LOCALLY COMPACT REDUCTIVE GROUPS T. S. WU (Communicated by David G Ebin) Dedicated to Mr. Chu. Ming-Lun on his seventieth birthday Abstract. A topological group G is reductive if every continuous finite di- mensional G-module is semi-simple. We study the structure of those locally compact reductive groups which are the extension of their identity components by compact groups. We then study the automorphism groups of such groups in connection with the groups of inner automorphisms. Proposition. Let G be a locally compact reductive group such that G/Gq is compact. Then /(Go) is dense in Aq(G) . Let G be a locally compact topological group. Let A(G) be the group of all bi-continuous automorphisms of G. Then A(G) has the natural topology (the so-called Birkhoff topology or ^-topology [1, 3, 4]), so that it becomes a topo- logical group. We shall always adopt such topology in the following discussion. When G is compact, it is well known that the identity component A0(G) of A(G) is the group of all inner automorphisms induced by elements from the identity component G0 of G, i.e., A0(G) = I(G0). This fact is very useful in the study of the structure of locally compact groups. On the other hand, it is also well known that when G is a semi-simple Lie group with finitely many connected components A0(G) - I(G0). The latter fact had been generalized to more general groups ([3]). -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Reducibility of Generalized Principal Series Representations
REDUCIBILITY OF GENERALIZED PRINCIPAL SERIES REPRESENTATIONS BY BIRGIT SPEH and DAVID A. VOGAN, JR(1) Mathematische Institut Massachusetts Institute der Universitlit Bonn of Technology, Cambridge Bonn, West Germany Massachusetts, U.S.A. 1. Introduction Let G be a connected semisimple matrix group, and P___ G a cuspidal parabolic~sub- group. Fix a Langlands decomposition P = MAN of P, with N the unipotent radical and A a vector group. Let ~ be a discrete series re- presentation of M, and v a (non-unitary) character of A. We call the induced representation ~(P, ~ | v) = Ind~ (6 | v | 1) (normalized induction) a generalized principal series representation. When v is unitary, these are the representations occurring in Harish-Chandra's Plancherel formula for G; and for general v they may be expected to play something of the same role in harmonic analysis on G as complex characters do in R n. Langlands has shown that any irreducible admissible representation of G can be realized canonically as a subquotient of a generalized principal series representation (Theorem 2.9 below). For these reasons and others (some of which will be discussed below) one would like to understand the reducibility of these representa- tions, and it is this question which motivates the results of this paper. We prove THEOREM 1.1. (Theorems 6.15 and 6.19). Let g(P, 5| be a generalized principal series representation. Fix a compact Caftan subgroup T + o/M (which exists because M has a discrete series). Let ~)= t++a, g (') Support by an AMS Research Fellowship. 228 B. SPEll AlgD D. -
1:34 Pm April 11, 2013 Red.Tex
1:34 p.m. April 11, 2013 Red.tex The structure of reductive groups Bill Casselman University of British Columbia, Vancouver [email protected] An algebraic group defined over F is an algebraic variety G with group operations specified in algebraic terms. For example, the group GLn is the subvariety of (n + 1) × (n + 1) matrices A 0 0 a with determinant det(A) a = 1. The matrix entries are well behaved functions on the group, here for 1 example a = det− (A). The formulas for matrix multiplication are certainly algebraic, and the inverse of a matrix A is its transpose adjoint times the inverse of its determinant, which are both algebraic. Formally, this means that we are given (a) an F •rational multiplication map G × G −→ G; (b) an F •rational inverse map G −→ G; (c) an identity element—i.e. an F •rational point of G. I’ll look only at affine algebraic groups (as opposed, say, to elliptic curves, which are projective varieties). In this case, the variety G is completely characterized by its affine ring AF [G], and the data above are respectively equivalent to the specification of (a’) an F •homomorphism AF [G] −→ AF [G] ⊗F AF [G]; (b’) an F •involution AF [G] −→ AF [G]; (c’) a distinguished homomorphism AF [G] −→ F . The first map expresses a coordinate in the product in terms of the coordinates of its terms. For example, in the case of GLn it takes xik −→ xij ⊗ xjk . j In addition, these data are subject to the group axioms. I’ll not say anything about the general theory of such groups, but I should say that in practice the specification of an algebraic group is often indirect—as a subgroup or quotient, say, of another simpler one. -
Linear Algebraic Groups
Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G. -
Real Group Orbits on Flag Manifolds
Real group orbits on flag manifolds Dmitri Akhiezer Abstract In this survey, we gather together various results on the action of a real form G0 of a complex semisimple group G on its flag manifolds. We start with the finiteness theorem of J. Wolf implying that at least one of the G0-orbits is open. We give a new proof of the converse statement for real forms of inner type, essentially due to F.M. Malyshev. Namely, if a real form of inner type G0 ⊂ G has an open orbit on a complex algebraic homogeneous space G/H then H is parabolic. In order to prove this, we recall, partly with proofs, some results of A.L. Onishchik on the factorizations of reductive groups. Finally, we discuss the cycle spaces of open G0-orbits and define the crown of a symmetric space of non- compact type. With some exceptions, the cycle space agrees with the crown. We sketch a complex analytic proof of this result, due to G. Fels, A. Huckleberry and J. Wolf. 1 Introduction The first systematic treatment of the orbit structure of a complex flag manifold X = G/P under the action of a real form G0 ⊂ G is due to J. Wolf [38]. Forty years after his paper, these real group orbits and their cycle spaces are still an object of intensive research. We present here some results in this area, together with other related results on transitive and locally transitive actions of Lie groups on complex manifolds. The paper is organized as follows. In Section 2 we prove the celebrated finiteness theorem for G0-orbits on X (Theorem 2.3). -
NON-SPLIT REDUCTIVE GROUPS OVER Z Brian Conrad
NON-SPLIT REDUCTIVE GROUPS OVER Z Brian Conrad Abstract. | We study the following phenomenon: some non-split connected semisimple Q-groups G admit flat affine Z-group models G with \everywhere good reduction" (i.e., GFp is a connected semisimple Fp-group for every prime p). Moreover, considering such G up to Z-group isomorphism, there can be more than one such G for a given G. This is seen classically for types B and D by using positive-definite quadratic lattices. The study of such Z-groups provides concrete applications of many facets of the theory of reductive groups over rings (scheme of Borel subgroups, auto- morphism scheme, relative non-abelian cohomology, etc.), and it highlights the role of number theory (class field theory, mass formulas, strong approximation, point-counting over finite fields, etc.) in analyzing the possibilities. In part, this is an expository account of [G96]. R´esum´e. | Nous ´etudions le ph´enom`ene suivant : certains Q-groupes G semi-simples connexes non d´eploy´es admettent comme mod`eles des Z-groupes G affines et plats avec \partout bonne r´eduction" (c'est `adire, GFp est un Fp- groupe Q-groupes G pour chaque premier p). En outre, consid´erant de tels G `a Z-groupe isomorphisme pr`es, il y a au plus un tel G pour un G donn´e.Ceci est vu classiquement pour les types B et D en utilisant des r´eseaux quadratiques d´efinis positifs. L'´etude de ces Z-groupes donne lieu `ades applications concr`etes d'aspects multiples, de la th´eorie des groupes r´eductifs sur des anneaux (sch´emas de sous-groupes de Borel, sch´emas d'automorphismes, cohomologie relative non ab´elienne, etc.), et met en ´evidence le r^ole de la th´eorie des nombres (th´eorie du corps de classes, formules de masse, approximation forte, comptage de points sur les corps finis, etc.) dans l'analyse des possibilit´es.En partie, ceci est un article d'exposition sur [G96]. -
Classification of Special Reductive Groups 11
CLASSIFICATION OF SPECIAL REDUCTIVE GROUPS ALEXANDER MERKURJEV Abstract. We give a classification of special reductive groups over arbitrary fields that improves a theorem of M. Huruguen. 1. Introduction An algebraic group G over a field F is called special if for every field extension K=F all G-torsors over K are trivial. Examples of special linear groups include: 1. The general linear group GLn, and more generally the group GL1(A) of invertible elements in a central simple F -algebra A; 2. The special linear group SLn and the symplectic group Sp2n; 3. Quasi-trivial tori, and more generally invertible tori (direct factors of quasi-trivial tori). 4. If L=F is a finite separable field extension and G is a special group over L, then the Weil restriction RL=F (G) is a special group over F . A. Grothendieck proved in [3] that a reductive group G over an algebraically closed field is special if and only if the derived subgroup of G is isomorphic to the product of special linear groups and symplectic groups. In [4] M. Huruguen proved the following theorem. Theorem. Let G be a reductive group over a field F . Then G is special if and only if the following three condition hold: (1) The derived subgroup G0 of G is isomorphic to RL=F (SL1(A)) × RK=F (Sp(h)) where L and K are ´etale F -algebras, A an Azumaya algebra over L and h an alternating non-degenerate form over K. (2) The coradical G=G0 of G is an invertible torus. -
Examples of the Atlas of Lie Groups and Representations
Examples of the Atlas of Lie Groups and Representations Jeffrey Adams September 9, 2007 1 Introduction The Atlas of Lie Groups and Representations is a project in representation theory of real reductive groups. The main goal of the atlas computer soft- ware, currently under development, is to compute the unitary dual of any real reductive Lie group G. As a step in this direction it currently computes the admissible representations of G. The underlying mathematics of the software is described in Algorithms for Representation Theory of Real Reductive Groups [1]. This paper is a com- plement, and contains examples illustrating the algorithm and the software. 1.1 How to read this paper A brief summary of the main constructions and results of Algorithms for Representation Theory of Real Reductive Groups is given in Section 2. We recommend the reader have the paper [1] available. Unexplained notation is as in [1]. We also recommend the reader download the software from the At- las web site, www.liegroups.org; also see the www.liegroups.org/papers. The online help commands are another a useful source of information. The software is currently in an early stage of development (version 0.2.6). There will be substantial changes to the interface for version 1.0, and some additional features, which we hope to release in fall 2008. Most of the changes in the interface will be in the input methods, and we do not expect the format of ouptut to change significantly. 1 We plan to publish a manual for the software at the time version 1.0 is released. -
Linear Algebraic Groups
Linear algebraic groups N. Perrin November 9, 2015 2 Contents 1 First definitions and properties 7 1.1 Algebraic groups . .7 1.1.1 Definitions . .7 1.1.2 Chevalley's Theorem . .7 1.1.3 Hopf algebras . .8 1.1.4 Examples . .8 1.2 First properties . 10 1.2.1 Connected components . 10 1.2.2 Image of a group homomorphism . 10 1.2.3 Subgroup generated by subvarieties . 11 1.3 Action on a variety . 12 1.3.1 Definition . 12 1.3.2 First properties . 12 1.3.3 Affine algebraic groups are linear . 14 2 Tangent spaces and Lie algebras 15 2.1 Derivations and tangent spaces . 15 2.1.1 Derivations . 15 2.1.2 Tangent spaces . 16 2.1.3 Distributions . 18 2.2 Lie algebra of an algebraic group . 18 2.2.1 Lie algebra . 18 2.2.2 Invariant derivations . 19 2.2.3 The distribution algebra . 20 2.2.4 Envelopping algebra . 22 2.2.5 Examples . 22 2.3 Derived action on a representation . 23 2.3.1 Derived action . 23 2.3.2 Stabilisor of the ideal of a closed subgroup . 24 2.3.3 Adjoint actions . 25 3 Semisimple and unipotent elements 29 3.1 Jordan decomposition . 29 3.1.1 Jordan decomposition in GL(V ).......................... 29 3.1.2 Jordan decomposition in G ............................. 30 3.2 Semisimple, unipotent and nilpotent elements . 31 3.3 Commutative groups . 32 3.3.1 Diagonalisable groups . 32 3 4 CONTENTS 3.3.2 Structure of commutative groups . 33 4 Diagonalisable groups and Tori 35 4.1 Structure theorem for diagonalisable groups .