An E Cient System for Intestinal On-Site Butyrate Production Using
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Insights Into Clostridia Through Comparative Analyses of Their 40 Genomes
Bioenerg. Res. DOI 10.1007/s12155-014-9486-9 New Insights into Clostridia Through Comparative Analyses of Their 40 Genomes Chuan Zhou & Qin Ma & Xizeng Mao & Bingqiang Liu & Yanbin Yin & Ying Xu # Springer Science+Business Media New York 2014 Abstract The Clostridium genus of bacteria contains the gene groups are shared by all the strains, and the strain- most widely studied biofuel-producing organisms such as specific gene pool consists of 22,668 genes, which is consis- Clostridium thermocellum and also some human pathogens, tent with the fact that these bacteria live in very diverse plus a few less characterized strains. Here, we present a environments and have evolved a very large number of comparative genomic analysis of 40 fully sequenced clostrid- strain-specific genes to adapt to different environments. ial genomes, paying a particular attention to the biomass Across the 40 genomes, 1.4–5.8 % of genes fall into the degradation ones. Our analysis indicates that some of the carbohydrate active enzyme (CAZyme) families, and 20 out Clostridium botulinum strains may have been incorrectly clas- of the 40 genomes may encode cellulosomes with each ge- sified in the current taxonomy and hence should be renamed nome having 1 to 76 genes bearing the cellulosome-related according to the 16S ribosomal RNA (rRNA) phylogeny. A modules such as dockerins and cohesins. A phylogenetic core-genome analysis suggests that only 169 orthologous footprinting analysis identified cis-regulatory motifs that are enriched in the promoters of the CAZyme genes, giving rise to 32 statistically significant motif candidates. Keywords Clostridium . Comparative genomics . -
The Multifunctional Sactipeptide Ruminococcin C1 Displays Potent Antibacterial Activity in Vivo As Well As Other Beneficial Properties for Human Health
International Journal of Molecular Sciences Article The Multifunctional Sactipeptide Ruminococcin C1 Displays Potent Antibacterial Activity In Vivo as Well as Other Beneficial Properties for Human Health Clarisse Roblin 1,2 , Steve Chiumento 3,Cédric Jacqueline 4 , Eric Pinloche 2, Cendrine Nicoletti 1 , Hamza Olleik 1 , Elise Courvoisier-Dezord 1, Agnès Amouric 1, Christian Basset 3, Louis Dru 1,3, Marie Ollivier 5, Aurélie Bogey-Lambert 5, Nicolas Vidal 6, Mohamed Atta 3, Marc Maresca 1 , Estelle Devillard 2 , Victor Duarte 3, Josette Perrier 1 and Mickael Lafond 1,* 1 CNRS, Aix-Marseille University, Centrale Marseille, iSm2, 13013 Marseille, France; [email protected] (C.R.); [email protected] (C.N.); [email protected] (H.O.); [email protected] (E.C.-D.); [email protected] (A.A.); [email protected] (L.D.); [email protected] (M.M.); [email protected] (J.P.) 2 Centre d’Expertise et de Recherche en Nutrition, ADISSEO France SAS, 03600 Commentry, France; [email protected] (E.P.); [email protected] (E.D.) 3 University Grenoble Alpes, CEA, IRIG, CBM, CNRS UMR5249, 38054 Grenoble, France; [email protected] (S.C.); [email protected] (C.B.); [email protected] (M.A.); [email protected] (V.D.) 4 EA3826, IRS2 Nantes-Biotech, Université de Nantes, 44200 Nantes, France; [email protected] 5 BioAzur Biogroup-Vet’Analys Laboratory, 83400 Hyères, France; [email protected] (M.O.); Citation: Roblin, C.; Chiumento, S.; [email protected] (A.B.-L.) 6 Jacqueline, C.; Pinloche, E.; Nicoletti, Yelen Analytics, Aix-Marseille University ICR, 13013 Marseille, France; [email protected] * Correspondence: [email protected] C.; Olleik, H.; Courvoisier-Dezord, E.; Amouric, A.; Basset, C.; Dru, L.; et al. -
Single-Cell Genomics of Uncultured Bacteria Reveals Dietary Fiber
Chijiiwa et al. Microbiome (2020) 8:5 https://doi.org/10.1186/s40168-019-0779-2 RESEARCH Open Access Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota Rieka Chijiiwa1,2†, Masahito Hosokawa3,4,5*† , Masato Kogawa1,2, Yohei Nishikawa1,2, Keigo Ide1,2, Chikako Sakanashi3, Kai Takahashi1 and Haruko Takeyama1,2,3,4* Abstract: Background: The gut microbiota can have dramatic effects on host metabolism; however, current genomic strategies for uncultured bacteria have several limitations that hinder their ability to identify responders to metabolic changes in the microbiota. In this study, we describe a novel single-cell genomic sequencing technique that can identify metabolic responders at the species level without the need for reference genomes, and apply this method to identify bacterial responders to an inulin-based diet in the mouse gut microbiota. Results: Inulin-feeding changed the mouse fecal microbiome composition to increase Bacteroides spp., resulting in the production of abundant succinate in the mouse intestine. Using our massively parallel single-cell genome sequencing technique, named SAG-gel platform, we obtained 346 single-amplified genomes (SAGs) from mouse gut microbes before and after dietary inulin supplementation. After quality control, the SAGs were classified as 267 bacteria, spanning 2 phyla, 4 classes, 7 orders, and 14 families, and 31 different strains of SAGs were graded as high- and medium-quality draft genomes. From these, we have successfully obtained the genomes of the dominant inulin-responders, Bacteroides spp., and identified their polysaccharide utilization loci and their specific metabolic pathways for succinate production. Conclusions: Our single-cell genomics approach generated a massive amount of SAGs, enabling a functional analysis of uncultured bacteria in the intestinal microbiome. -
Establishment and Assessment of an Amplicon Sequencing Method Targeting the 16S-ITS-23S Rrna Operon for Analysis of the Equine Gut Microbiome
Establishment and Assessment of An Amplicon Sequencing Method Targeting The 16S-ITS-23S rRNA Operon For Analysis of The Equine Gut Microbiome Yuta Kinoshita ( [email protected] ) Japan Racing Association Hidekazu NIWA Japan Racing Association Eri UCHIDA-FUJII Japan Racing Association Toshio NUKADA Japan Racing Association Research Article Keywords: Microbial communities, rRNA, CCMetagen pipeline, archaeal microbiota Posted Date: February 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-156589/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had >90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a third to almost a half, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to reect archaeal genomes, whereas full- length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of bacterial and archaeal microbiota. -
Muribaculaceae Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183202; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice Byron J. Smitha,* Richard A. Millerb Thomas M. Schmidta,c,# aDepartment of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA. bDepartment of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA. cDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USA. *Present address: J. David Gladstone Institutes, San Francisco, CA, USA. #Correspondence: [email protected] Running title: Genomes of acarbose-responsive Muribaculaceae Word Count: Abstract: 249 Importance: 149 Manuscript: 6,369 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183202; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 Abstract The drug acarbose (ACA) is used to treat diabetes, and, by inhibiting α-amylase in the small intestine, increases the amount of starch entering the lower digestive tract. This results in changes to the composition of the microbiota and their fermentation products. Acarbose also increases longevity in mice, an effect that has been correlated with increased production of the short-chain fatty acids propionate and butyrate. -
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment. -
Sporulation in Bacteria: Beyond the Standard Model
SUNY Geneseo KnightScholar Biology Faculty/Staff Works Department of Biology 2014 Sporulation in Bacteria: Beyond the Standard Model Elizabeth Hutchison SUNY Geneseo, [email protected] Follow this and additional works at: https://knightscholar.geneseo.edu/biology Part of the Bacteriology Commons Recommended Citation Hutchison, E. A., Miller, D. A., & Angert, E. R. (2014). Sporulation in Bacteria: Beyond the Standard Model. Microbiology Spectrum, 2(5). This Article is brought to you for free and open access by the Department of Biology at KnightScholar. It has been accepted for inclusion in Biology Faculty/Staff Works by an authorized administrator of KnightScholar. For more information, please contact [email protected]. SporulationinBacteria: Beyond the Standard Model ELIZABETH A. HUTCHISON,1 DAVID A. MILLER,2 and ESTHER R. ANGERT3 1Department of Biology, SUNY Geneseo, Geneseo, NY 14454; 2Department of Microbiology, Medical Instill Development, New Milford, CT 06776; 3Department of Microbiology, Cornell University, Ithaca, NY 14853 ABSTRACT Endospore formation follows a complex, highly in nature (1). These highly resistant, dormant cells can regulated developmental pathway that occurs in a broad range withstand a variety of stresses, including exposure to Firmicutes Bacillus subtilis of . Although has served as a powerful temperature extremes, DNA-damaging agents, and hy- model system to study the morphological, biochemical, and drolytic enzymes (2). The ability to form endospores genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, appears restricted to the Firmicutes (3), one of the ear- it is entirely unknown how most lineages within the Firmicutes liest branching bacterial phyla (4). Endospore formation regulate entry into sporulation. -
Cellulosilyticum Ruminicola Gen. Nov., Sp. Nov., Isolated from the Rumen of Yak, and Reclassification of Clostridium Lentocellum As Cellulosilyticum Lentocellum Comb
International Journal of Systematic and Evolutionary Microbiology (2010), 60, 845–849 DOI 10.1099/ijs.0.014712-0 Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Shichun Cai1,2 and Xiuzhu Dong1 Correspondence 1State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Xiuzhu Dong Sciences, Beijing 100101, PR China [email protected] 2Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China An obligate anaerobic, Gram-staining-negative, mesophilic, cellulolytic bacterium, strain H1T, was isolated from the rumen content of yak. Cells were straight to slightly curved rods, 0.8–1.0¾3.0– 4.0 mm in size, non-motile and encapsulated with mucous materials. Elliptical and terminal spores that swelled the cells were produced occasionally. The strain grew at 25–45 6C (optimum, 38 6C) and pH 6.0–7.8 (optimum, pH 6.7). Cellulose, cellobiose, xylan, xylose and maltose were used as carbon and energy sources, but not glucose. Products from cellulose and cellobiose fermentation were formic acid, acetic acid, carbon dioxide and trace amounts of ethanol, lactic acid and succinic acid. The genomic DNA G+C content was 33.7±1.2 mol%. The predominant fatty acids were C16 : 0 (27.1 %), C14 : 0 (9.2 %) and iso-C16 : 0 (6.4%). Based on the 16S rRNA gene sequence analysis, strain H1T was affiliated to the clostridial rRNA cluster XIVb and showed the highest 16S rRNA gene sequence similarity to Clostridium lentocellum DSM 5427T (96.0 %). -
An Integrated Investigation of Ruminal Microbial Communities
AN INTEGRATED INVESTIGATION OF RUMINAL MICROBIAL COMMUNITIES USING 16S rRNA GENE-BASED TECHNIQUES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Min Seok Kim Graduate Program in Animal Sciences The Ohio State University 2011 Dissertation Committee: Dr. Mark Morrison, Advisor Dr. Zhongtang Yu, Co-Advisor Dr. Jeffrey L. Firkins Dr. Michael A. Cotta ABSTRACT Ruminant animals obtain most of their nutrients from fermentation products produced by ruminal microbiome consisting of bacteria, archaea, protozoa and fungi. In the ruminal microbiome, bacteria are the most abundant domain and greatly contribute to production of the fermentation products. Some studies showed that ruminal microbial populations between the liquid and adherent fraction are considerably different. Many cultivation-based studies have been conducted to investigate the ruminal microbiome, but culturable species only accounted for a small portion of the ruminal microbiome. Since the 16S rRNA gene (rrs) was used as a phylogenetic marker in studies of the ruminal microbiome, the ruminal microbiome that is not culturable has been identified. Most of previous studies were dependent on sequences recovered using DGGE and construction of rrs clone libraries, but these two techniques could recover only small number of rrs sequences. Recently microarray or pyrosequencing analysis have been used to examine microbial communities in various environmental samples and greatly contributed to identifying numerous rrs sequences at the same time. However, few studies have used the microarray or pyrosequencing analysis to investigate the ruminal microbiome. The overall objective of my study was to examine ruminal microbial diversity as affected by dietary modification and to compare microbial diversity between the liquid and adherent fractions using the microarray and pyrosequencing analysis. -
Mining the Microbiome to Modulate Host Defense Against Clostridioides Difficile Infections
Mining the Microbiome to Modulate Host Defense Against Clostridioides difficile Infections Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nathiana Smit aus Haarlem, Niederlande 1. Referent: Prof. Dr. Dieter Jahn 2. Referent: Prof. Dr. Till Strowig eingereicht am: 18-12-2019 mündliche Prüfung (Disputation) am: 01-09-2020 Druckjahr 2020 II Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Lagkouvardos, I., Lesker, T.R., Hitch, T.C.A., Gálvez, E.J.C., Smit, N., Neuhaus, K., Wang, J., Bained, J.F., Abt, B., Stecher, B., Overmann, J., Strowig, T., Clavel, T.: Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7: 28 (2019). doi:10.1186/s40168-019-0637-2 Ünal C.M., Berges, M., Smit, N., Schiene-Fischer, C., Priebe C., Strowig, T., Jahn, D., Steinert, M.: PrsA2 (CD630_35000) of Clostridioides difficile is an active parvulin-type PPIase and a virulence modulator. Frontiers of Microbiology 9: 2913 (2018). doi: 10.3389/fmicb.2018.02913 Tagungsbeiträge Smit, N., Lesker, TR., Kirstein, S., Neumann-Schaal, M., Stecher, B., Clavel, T., Strowig, T.: Exploring Oligo-MM12 mice to study precision microbiome reconstitution against Clostridium difficile infections. (Presentation). Vortragstagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie, Bochum, Deutschland (2018). Posterbeiträge Smit, N., Lesker, TR., Kirstein, S., Neumann-Schaal, M., Stecher, B., Clavel, T., Strowig, T.: Exploring Oligo-MM mice to study precision microbiome reconstitution against Clostridioides difficile infections. -
Expansion of and Reclassification Within the Family Lachnospiraceae
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2016 Expansion of and reclassification within the family Lachnospiraceae Kelly N. Haas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biodiversity Commons, Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, Evolution Commons, Genomics Commons, Microbial Physiology Commons, Organismal Biological Physiology Commons, Other Ecology and Evolutionary Biology Commons, Other Microbiology Commons, and the Systems Biology Commons Recommended Citation Haas, Kelly N., "Expansion of and reclassification within the family Lachnospiraceae" (2016). Doctoral Dissertations. 843. https://doi.org/10.7275/9055799.0 https://scholarworks.umass.edu/dissertations_2/843 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. EXPANSION OF AND RECLASSIFICATION WITHIN THE FAMILY LACHNOSPIRACEAE A dissertation presented by KELLY NICOLE HAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2016 Microbiology Department © Copyright by Kelly Nicole Haas 2016 -
Sequence and Cultivation Study of Muribaculaceae Reveals Novel
Lagkouvardos et al. Microbiome (2019) 7:28 https://doi.org/10.1186/s40168-019-0637-2 RESEARCH Open Access Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family Ilias Lagkouvardos1,TillR.Lesker2, Thomas C. A. Hitch3, Eric J. C. Gálvez2,NathianaSmit2, Klaus Neuhaus1, Jun Wang4, John F. Baines4,5, Birte Abt6,8,BärbelStecher7,8,JörgOvermann6,8,TillStrowig2* and Thomas Clavel1,3* Abstract Background: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. Methods: We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. Results: A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. Conclusions: We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.