Two-Dimensional Nanomaterials
Science Bulletin 64 (2019) 1707–1727 Contents lists available at ScienceDirect Science Bulletin journal homepage: www.elsevier.com/locate/scib Review Two-dimensional nanomaterials: fascinating materials in biomedical field ⇑ Tingting Hu a, Xuan Mei a, Yingjie Wang b, Xisheng Weng b, , Ruizheng Liang a,*, Min Wei a,* a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China b Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China article info abstract Article history: Due to their high anisotropy and chemical functions, two-dimensional (2D) nanomaterials have attracted Received 23 July 2019 increasing interest and attention from various scientific fields, including functional electronics, catalysis, Received in revised form 22 August 2019 supercapacitors, batteries and energy materials. In the biomedical field, 2D nanomaterials have made sig- Accepted 12 September 2019 nificant contributions to the field of nanomedicine, especially in drug/gene delivery systems, multimodal Available online 20 September 2019 imaging, biosensing, antimicrobial agents and tissue engineering. 2D nanomaterials such as graphene/ graphene oxide (GO)/reduced graphene oxide (rGO), silicate clays, layered double hydroxides (LDHs), Keywords: transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP), graphi- 2D nanomaterials tic carbon nitride (g-C N ), hexagonal boron nitride (h-BN), antimonene (AM), boron nanosheets (B NSs) Drug delivery 3 4 Tissue engineering and tin telluride nanosheets (SnTe NSs) possess excellent physical, chemical, optical and biological prop- Biosensing erties due to their uniform shapes, high surface-to-volume ratios and surface charge. In this review, we first introduce the properties, structures and synthetic strategies of different configurations of 2D nano- materials.
[Show full text]