Flood Mitigation Benefits of Rainwater Tanks

Total Page:16

File Type:pdf, Size:1020Kb

Flood Mitigation Benefits of Rainwater Tanks Flood Mitigation Benefits of Rainwater Tanks S. A. Gato-Trinidad1, D. Alexander, 1 J. Barker1 and T. Postlewaithe 1Centre for Sustainable Infrastructure, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia 1. INTRODUCTION Flood mitigation can be achieved through on-site detention methods which also offers associated economic, environmental and social benefits. The purpose of this paper was to assess the flood mitigation benefits and the associated environmental, social and economic benefits of decentralised tanks within each household. The paper focused on how much reduction in peak flood volumes and other associated benefits can be achieved from rainwater tanks when calculated at a lot-scale in an existing catchment. The catchment in study is Sutton Lakes within Knox City Council, Victoria, Australia where there are several storm water related issues, including the traditional inadequate piped storm water network and various water quality concerns within the lake system. Based on flooding and water quality computer modelling it was revealed that during the 5 year ARI storm there was a 12.6% reduction in pipe flows from the outlet of the system and a reduction of 1.7% in a 100- year ARI event. A reduction of 17% and 11% in overland flows for 5-year and 100-year ARI events respectively and a decrease of 18% in wetland area required were also achieved. 1.1. Background Many of the developed parts of Australia have suffered severe drought conditions for more than a decade which makes water as a precious commodity. Yet some Australian cities also suffer from flooding. The growing population and booming economy means increasing water demand and competing uses of water. Greater Melbourne, Australia experienced low rainfall in the last 18 years which resulted to low inflows to storages (Figure 1). The reduction in inflows to storages forced water authorities to impose water restrictions and implementation of water conservation programs. Figure 1 Water flowing into Melbourne’s main water supply reservoirs – annual totals (GL/year), MW 2016 While other areas are experiencing drought, flooding especially flash flooding occurs in some areas due to increasing urbanisation which change the natural drainage regime. Increasing urbanisation leads to increasing runoff volume and increasing runoff speed as shown in Figure 2. -1- Figure 2 Typical hydrograph changes due to increase in impervious surfaces, Zevenbergen, et al (2010) 1.2. Measures in Place With drought and flooding affecting some areas of Australia, it has been recognised that an appropriate management of water cycle is the best way forward. This recognition has led to the development of the concept using runoff from city areas as a potential source of water supply. This enables a hybrid of decentralised and centralised water management solutions that ensure resilience to both water poor and water abundant areas at the same time delivers multiple benefits to people and environment. Rainwater tanks are essential resource that provides a renewable supply of water and can be used for a range of purposes including drinking, washing, bathing, laundry and gardening. In some parts of Australia it may be the main source of household water, while in others, it can supplement existing mains or town water supplies. Rainwater can assist self sufficiency and can provide a valuable alternative supply in times of drought or water restrictions. In March 2013, 34% of Australian households living in a dwelling suitable for a rainwater tank had a rainwater tank compared with 32% in 2010 and 24% in 2007 (ABS, 2013). The increase from 2007 to 2013 may be attributed to water restrictions, government rebate schemes, water regulations and water pricing (Figure 3). Rainwater tanks were a more prevalent feature for households residing outside capital cities (44%) compared with those living in capital cities (28%). Around 86% of South Australian households living outside of Adelaide had a rainwater tank installed at their dwelling, followed by 56% of Victorian households living outside of Melbourne. Of those households living in a state capital city, households in Brisbane and Adelaide were more likely to have a rainwater tank installed at their dwelling (47% and 44% respectively) followed by households in Melbourne (31%). In Victoria, rebates to install rainwater tanks were given since 2007 till June 2015. From then on, new housing construction are mandated to have rainwater tanks Figure 3. Percentage of Households with a rainwater tank installed by State Capital City, ABS 2013 -2- 1.3. Objectives of the Study While a number of previous studies were conducted on the cost benefit of rainwater tanks, the focus was more on water and cost savings for household owners and the government providing the rebates (Gato, 2014). Other studies focused on the efficient sizing of rainwater tanks and reliability. And although there are a number of studies in these areas, limitations on these studies still exist due to limitations of data and others were conducted based on hypothetical studies (Eroksuz and Rahman, 2010). Previous studies recognised the water savings from rainwater tanks, however, the full benefits of rainwater tanks is not limited to water savings and the corresponding cost benefits from the water saved. In order to determine the full extent of the benefits of rainwater tanks, there is a need to study the benefits of these tanks from the flood mitigation point of view. It cannot be denied that these tanks collect water from the roofs during rainfall events thus decreasing the amount of runoff and reducing peak flows and the time to peak. In this regard, the objective of this paper is to preliminary assess the effectiveness of household rainwater tanks in terms of flood mitigation. Specifically, to determine the reduction in peak flood volumes and other associated environmental, social and economic benefits. 1.4. Project Area Sutton Lakes is a residential subdivision located in Rowville approximately 26km South East of Melbourne CBD and is currently experiencing flooding (Figure 4). The total catchment size is 52.6 ha consisting of open space areas, approximately 400 households with an average block size of 740m2 and an average roof size of 280m2, and a trio of ornamental lakes that aid in flood mitigation. These lakes are serviced by both Melbourne Water and Knox City Council and suffer from water quality issues such as algal blooms that can be harmful to residents in the area. The catchment consists of traditional drainage pipe network connecting into the lakes/retarding basins which then flows into downstream Corhanwarrabul Creek. Figure 4 The Sutton Lakes Catchment 2. MODELLING Prior to the modelling of the pipe network and any additions of decentralised stormwater systems certain aspects of the project site had to be manipulated for the purpose of research. Given the current retarding basins service significant upstream catchments, a new retarding basin design was developed to focus only on the project site and best gauge the effects of any stormwater system additions to the catchment. The current retarding basin -3- system limits post development flows for 100 year ARI to those of predevelopment conditions. Therefore the new retarding basin system was designed to mimic these parameters in order to service the project site only. Decentralised stormwater systems were then added to this model in order to gauge any flood mitigation benefits through the analysis of reduction in pipe sizes required to convey flows and any overland flows. Environmental and economic benefits were determined through a pollutant and flow generation model which calculated the reduction in pollutant levels through various stormwater systems as well as various flow reductions through stormwater detention and re-use. 2.1. RORB and Retarding Basin Design In order to match predevelopment flows from the site a retarding basin was resized to allow a discharge from the site equivalent to predevelopment flows and a runoff model was created using an industry standard commercial program, RORB. A sub catchment analysis was required to be performed prior to model construction in order to determine appropriate catchments and their properties using the corresponding Rainfall Intensity-Frequency- Duration data of the project site (Bureau of Meteorology 2015). Critical flows for 100 year ARI are 2.35m3/s and occur at 9 hours duration. Therefore post development flows for the 100 year ARI were restricted to these flows through an appropriate retarding basin design. The retarding basin design is governed by the inflows to the system and the restrictions of the outlet structure. The depth of detention zone of the basin has a maximum value due to downstream boundary conditions, therefore the conditions that required designing included length, width and equivalent storage and the size of the outlet. Through the use of the orifice equation the outlet structure was determined to have a diameter of 930mm. RORB required the insertion of an elevation vs storage vs discharge relationship which was determined through use of the equivalent height above the orifice and the basin volume, in accordance with open water safety guidelines for slopes of the basin (Melbourne Water 2005). Once outflows were limited to 2.35m3/s the basin physical characteristics were determined to include a length of 80m, width of 60m and a total detention volume of 8,800m3. 2.2. Drains The following steps present the process taken in setting up the stages 2 and 3 models that have been configured in DRAINS. Before utilising the DRAINS program, extensive manipulation and data collection of the subcatchment was performed via a desktop study using GIS software, AutoCAD and Google maps Street view. The following data was created in order to fulfill the DRAINS stormwater management model: Contour smoothing (acts as a guide to develop sub-catchments) Pit identification including elevation sourced from LIDAR data (Pit types: Closed, sag or on-grade pit and AHD values) Pipe network simplification.
Recommended publications
  • A Smart Water Grid for Micro-Trading Rainwater: Hydraulic Feasibility Analysis
    water Article A Smart Water Grid for Micro-Trading Rainwater: Hydraulic Feasibility Analysis Elizabeth Ramsey* , Jorge Pesantez , Mohammad Ali Khaksar Fasaee , Morgan DiCarlo , Jacob Monroe and Emily Zechman Berglund Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA; [email protected] (J.P.); [email protected] (M.A.K.F.); [email protected] (M.D.); [email protected] (J.M.); [email protected] (E.Z.B.) * Correspondence: [email protected] Received: 30 September 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: Water availability is increasingly stressed in cities across the world due to population growth, which increases demands, and climate change, which can decrease supply. Novel water markets and water supply paradigms are emerging to address water shortages in the urban environment. This research develops a new peer-to-peer non-potable water market that allows households to capture, use, sell, and buy rainwater within a network of water users. A peer-to-peer non-potable water market, as envisioned in this research, would be enabled by existing and emerging technologies. A dual reticulation system, which circulates non-potable water, serves as the backbone for the water trading network by receiving water from residential rainwater tanks and distributing water to households for irrigation purposes. Prosumer households produce rainwater by using cisterns to collect and store rainwater and household pumps to inject rainwater into the network at sufficiently high pressures. The smart water grid would be enabled through an array of information and communication technologies that provide capabilities for automated and real-time metering of water flow, control of infrastructure, and trading between households.
    [Show full text]
  • Climate Change Mitigation in the Water Sector Or How to Reduce the Carbon Footprint of Water
    Climate change mitigation in the water sector or How to reduce the carbon footprint of water by Taryn Pereira Table of contents Executive Summary .................................................................................... 4 Introduction ................................................................................................5 Water and climate change mitigation ..........................................................7 The water-energy nexus ............................................................................. 9 Bulk water supply .....................................................................................11 Treatment of raw water .............................................................................16 Wastewater treatment .............................................................................. 20 Conclusions and recommendations ........................................................... 24 References .................................................................................................23 Acknowledgements Thanks to all who contributed ideas and information to this paper – particularly Jessica Wilson and other colleagues at EMG, Victor Munnik, Shafick Hoossein and others. Thanks also to all who kindly agreed to be interviewed. This research was partially funded by Masibambane, and the printing of this paper was funded by HBS. EMG gratefully acknowledges the support of the Heinrich Böll Foundation and Masibambane for funding this research’. Executive Summary CLIMATE CHANGE IS HAPPENING
    [Show full text]
  • A PDF of Harvest Water in Rainwater Tanks
    ! Growing Edible Arizona Forests, An Illustrated Guide Excerpt from leafnetworkaz.org Edible Tree Guide CHOOSE Planting Site and Design Network • Rainwater Tanks Linking Edible Arizona Forests Rainwater Tanks Having made the most of passive water harvesting, consider collecting rainwater runoff from roofs into tanks to allow you to store rainwater for later use—a strategy sometimes called active water harvesting. Follow rainwater harvesting principles for tanks for efficient and safe design. Tanks can be placed above ground or underground, and range from 50 gallons to tens of thousands of gallons in capacity. Tanks are available in plastic, metal, fiberglass, concrete and other materials. If the water level in a tank is higher than the ground level of a tree-planting site you want to water, a valve or hose bib installed in the tank Metal tank is filled with rainfall runoff from a large roof through can allow delivery of tank water via gravity flow. an adjacent gutter and downspout. Water is conveyed down Install the tank tap ≥ 4 inches above the bottom of the wall and underground into the tank in a water-tight pipe. the tank to reduce disturbance of any sediment in Tank is tapped with a hose bib. A garden hose delivers water to a nearby landscape via gravity flow. The tank is positioned the bottom. You can attach a garden hose to away from the building to protect the foundation in case the distribute water to trees, or install a permanent tank leaks. pipe and rainwater faucet close to trees to make rainwater convenient to use.
    [Show full text]
  • Rainwater Harvesting BEST PRACTICES GUIDEBOOK
    GREEN BUILDING SERIES Rainwater Harvesting BEST PRACTICES GUIDEBOOK DEVELOPED FOR HOMEOWNERS of the REGIONAL DISTRICT OF NANAIMO British Columbia, Canada Residential Rainwater Harvesting Design and Installation REGIONAL DISTRICT OF NANAIMO — GREEN BUILDING BEST PRACTICES GUIDEBOOK SYMBOLS MESSAGE FROM THE CHAIR Special symbols throughout REGIONAL DISTRICT OF NANAIMO this guidebook highlight key information and will help you As one of the most desirable areas to live in Canada, the Regional District of Nanaimo to find your way. will continue to experience population growth. This growth, in turn, triggers increased demands on our resources. At the same time, residents of the region are extremely focused on protecting our water supplies, and are keen to see progressive and proactive HANDY CHECKLISTS approaches taken to manage water in a sustainable manner. The RDN is committed to protecting the Region’s watersheds through water conservation. Conservation will be accomplished by sharing knowledge and supporting innovative actions that achieve more efficient and sustainable water use. One such action is the harvesting of rainwater. EXTRA CARE & PRECAUTIONS Rainwater harvesting is the collection and storage of rainwater for potable and non- potable uses. With the right controls in place, harvested rainwater can be used for irrigation, outdoor cleaning, flushing toilets, washing clothes, and even drinking water. CONSULT A PROFESSIONAL Replacing municipally-treated water or groundwater with rainwater for these uses alleviates pressure on regional aquifers and sensitive ecosystems, and reduces demands on municipal infrastructure. Stored rainwater provides an ideal source of readily available water, particularly during the long dry summers or in locations facing declining REFER TO ANOTHER SECTION groundwater levels.
    [Show full text]
  • Optimizing Rainwater Harvesting Systems in Urban Areas
    Optimizing rainwater harvesting systems in urban areas. By María Violeta Vargas Parra A thesis submitted in fulfillment of the requirements for the PhD degree in Environmental Science and Technology September 2015 The present doctoral thesis has been developed thanks to the project “Análisis ambiental del aprovechamiento de aguas pluviales” financed by Spanish Ministry for Science and Innovation, ref. CTM 2010-17365 as well as the pre-doctoral grant awarded to M. Violeta Vargas-Parra by Conacyt (National Council of Science and Technology, decentralized public agency of Mexico’s federal government). The present thesis entitled Optimizing rainwater harvesting systems in urban areas by María Violeta Vargas Parra has been carried out at the Institute of Environmental Science and Technology (ICTA) at Universitat Autònoma de Barcelona (UAB). M. Violeta Vargas Parra under the supervision of Dr. Xavier Gabarrell and Dr. Gara Villalba from ICTA and the Department of Chemical, Biological and Environmental Engineering at the UAB, and Dr. María Rosa Rovira Val, from ICTA and the Business School at the UAB Dr. Xavier Gabarrell Dr. Gara Villalba Dr. M. Rosa Rovira Bellaterra (Cerdanyola del Vallès), September 2015. “I keep turning over new leaves, and spoiling them, as I used to spoil my copybooks; and I make so many beginnings there never will be an end. (Jo March)” - Louisa May Alcott, Little Woman V Table of Contents Acknowledgements.................................................................................. XI Summary ............................................................................................
    [Show full text]
  • Platin Underground Rainwater Tank Technical Guide SW 25
    Platin Underground Rainwater Tank Technical Guide SW 25 A superior underground rainwater tank that is easy to transport, handle and install. NK A T water IN A IN R at F PL RA SW25 G | STORMWATER STORMWATER | 05.20 Applications Ribbed construction for unbeatable Approvals/Standards stability and strength Ideal for the underground capture and Certified to AS/NZS 1546.1:2008 storage of rainwater Link tanks for increased capacity 15 year warranty, when installed according Quality Product Attributes to manufacturer’s guidelines ISO 9001:2008 Quality Tank, lid shaft and lid are all fully sealed Robust and lightweight HDPE construction Management Standard meaning no seepage or dirt can enter the Shallow dig for easy installation tank 50 year design life We are the supply partner of choice for New Zealand’s stormwater management and treatment solutions. A superior underground rainwater tank that is easy to transport, handle and install. Features ■ Lightweight, robust HDPE construction. ■ Easy transport due to low weight. ■ Secure investment thanks to 15-year warranty. ■ Specifically designed to be buried, and compliant with AS/NZS1546.1:2008. ■ Minimum installation depth means a short installation time and low installation costs. ■ Suitable for vehicle loading (in combination with a Telescopic dome shaft with cast iron lid). The Platin tank can therefore also be installed under your driveway. ■ Groundwater-stable up to the tank shoulder thanks to 2 extremely stable design. PG | ■ R Attractive tank lid that can be telescoped and tilted in a E continuously variable manner up to 5°. ■ Optional Integrated filter technology. STORMWAT | ■ Large tank dome for easy filter installation.
    [Show full text]
  • Rainwater Harvesting: a Lifeline for Human Well-Being
    3BJOXBUFSIBSWFTUJOHGPSBEBQUBUJPOUPDMJNBUFDIBOHF "GSJDBIBTTVSQMVTSBJOXBUFSGPS FOWJSPONFOU 5IFDIBMMFOHFJTFDPOPNJDBOEOPUQIZTJDBMXBUFSTDBSDJUZ Rainwater harvesting: a lifeline for human well-being 3BJOXBUFSPGGFSTUIF QPUFOUJBMUPTVQQMZ LNGPSUIF TVTUBJOBODFPG GPSFTUT XFUMBOETBOE HSBTTMBOETJO"GSJDB )BSWFTUJUUPDPQFXJUI DMJNBUFDIBOHF RAINWATER HARVESTING: A LIFELINE FOR HUMAN WELL-BEING A report prepared for UNEP by Stockholm Environment Institute Fist published by United Nations Environment Programme and Stockholm Environment Institute in 2009 Copyright© 2009, United Nations Environment Programme/SEI This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes, without special permission from the copyright holder(s) provided acknowledgement of the source is made. The United Nations Environment Programme would appreciate receiving a copy of any publication that uses this publication as a source No use of this publication may be made for resale or other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Application for such permission, with a statement of purpose and extent of production should be addressed to the Director, DCPI, P.O. Box 30552, Nairobi, 00100 Kenya. The designation employed and the presentation of material in this publi- cation do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory or city or its authorities, or concerning the delimi- tation of its frontiers or boundaries. Mention of a commercial company or product in this publication does not imply endorsement by the United Nations Environment Programme. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. Layout: Richard Clay/SEI Cover photo: © ICRAF Rainwater Harvesting - UNEP ISBN: 978 - 92 - 807 - 3019 - 7 Job No.
    [Show full text]
  • Rainwater Harvesting for Non-Potable Use and Evidence of Risk Posed to Human Health
    Rainwater Harvesting for Non-potable Use and Evidence of Risk Posed to Human Health Sylvia Struck Introduction While collecting and storing rainwater for use is an ancient practice, there has been a resurgence in popularity with the promotion of green and sustainable building practices, such as Leadership in Energy and Environmental Design (LEED), and in areas where water insecurity or lack of municipal supply make it an attractive or necessary supplement or alternative. One of the features of LEED certification is assessing water efficiency, whereby points are granted; e.g., if the use of potable water is reduced or eliminated for activities such as landscape irrigation. A benefit of implementing rainwater collection is that the demand for potable water supplied from municipal sources can be reduced. In water stressed areas, homes and commercial buildings are often outfitted with roof collection systems to capture rainfall runoff that can be diverted to storage for later use. While rainwater harvesting is used for both potable and non-potable purposes, this paper will primarily focus on potential health risks of rainwater reuse for non-potable applications, namely: spray irrigation, use in fountains, toilet and urinal flushing). Also, while rainwater can be collected from other surfaces, such as courtyards, streets, and other impermeable surfaces, the focus is on roof- collected and therefore the discussion on contaminants will concentrate on those found primarily in roof-harvested rainwater. Initially, scholarly (peer-reviewed) journal articles with content relevant to Legionnaire’s disease and rainwater reuse were searched. The search was extended to consider rainwater reuse with respect to irrigation (or associated with spray), fountains, toilet and urinal flushing, and any health risks exposure, legionnaires, E.
    [Show full text]
  • (GHG) Emissions from Rainwater Harvesting Systems
    A Dissertation entitled Life Cycle Assessment of Rainwater Harvesting Systems at Building and Neighborhood Scales and for Various Climatic Regions of the U.S. by Jay P. Devkota Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering Dr. Defne Apul, Committee Chair Dr. Steven Burian, Committee Member Dr. Ashok Kumar, Committee Member Dr. Cyndee Gruden, Committee Member Dr. Youngwoo Seo, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2015 Copyright 2015, Jay P. Devkota This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Life Cycle Assessment of Rainwater Harvesting Systems at Building and Neighborhood Scales and for Various Climatic Regions of the U.S. By Jay P. Devkota Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Civil Engineering The University of Toledo December 2015 Rainwater harvesting can be a strategy to address challenges with urban water and wastewater infrastructure such as leakage, underfunding energy usage and combined sewer overflow. Rainwater harvesting system has been used for centuries to meet urban water demands such as toilet flushing, lawn irrigation, cleaning and recreational activities. Of these uses of harvested rainwater, toilet flushing is more common as it constitutes a higher percentage of indoor water use. Life cycle assessment is becoming a powerful tool to estimate environmental sustainability of rainwater harvesting systems. With growing interest in rainwater harvesting systems, it is now essential to understand and estimate the factors affecting its environmental sustainability to better design the system as well as to provide a framework for future researchers.
    [Show full text]
  • Low Impact Development in Coastal South Carolina: a Planning and Design Guide
    LOW IMPACT DEVELOPMENT IN COASTAL SOUTH CAROLINA: A PLANNING AND DESIGN GUidE Low Impact Development in Coastal South Carolina: A Planning and Design Guide This publication was made possible through support from the National Estuarine Research Reserve System Sci- ence Collaborative, a partnership of the National Oceanic and Atmospheric Administration and the University of New Hampshire. The Science Collaborative advances the use of science in coastal decision making by engag- ing intended users of the science in the research process—from problem definition to practical application of results. Cover Photo credits: Kathryn Ellis, Kathryn Ellis, Seamon Whiteside + Associates, Erik Smith. Recommended Citation for this Guidebook: Ellis, K., C. Berg, D. Caraco, S. Drescher, G. Hoffmann, B. Keppler, M. LaRocco, and A.Turner. 2014. Low Impact Development in Coastal South Carolina: A Planning and Design Guide. ACE Basin and North Inlet – Winyah Bay National Estuarine Research Reserves, 462 pp. Download a digital copy of this document and the spreadsheet tools at http://www.northinlet.sc.edu/LID Low Impact Development in Coastal South Carolina: A Planning and Design Guide ACKNOWLEDGEMENTS Project Team Sadie Drescher, Center for Watershed Protection Kathryn Ellis, EIT, North Inlet-Winyah Bay National Estuarine Research Reserve Greg Hoffmann, P.E., Center for Watershed Protection Blaik Keppler, SC Department of Natural Resources & ACE Basin National Estuarine Research Reserve April Turner, South Carolina Sea Grant Consortium Michelle LaRocco, North Inlet-Winyah Bay National Estuarine Research Reserve; University of South Carolina Wendy Allen, North Inlet-Winyah Bay National Estuarine Research Reserve; University of South Carolina Advisory Committee The Advisory Committee provided guidance and feedback on the content of this document, devel- oped and participated in workshops, and engaged stakeholders.
    [Show full text]
  • 2 Stormwater Storage and Use
    2 Stormwater Storage and Use 2. Rainwater Storage Systems Figure 1. Rainwater tank components. (Coombes and Kuzcera 2001.) Background At the lot scale, rainwater storage tank systems are an effective way of capturing stormwater for non-potable use (such as garden watering, toilet flushing, in washing machines and for car washing) and therefore helping to conserve scheme drinking water supplies. There are increasingly innovative designs which hold rainwater in a range of forms including bags, fences, walls and roof gutters, with these systems designed for different uses, volumes and aesthetic requirements. Slimline plastic or metal tanks are increasingly popular in urban areas due to the unobtrusive form of the tanks adjacent to or beneath buildings. Rainwater storage systems can also be applied at a larger scale, for example high volume underground storage systems applied to capture runoff from paved or parking areas or the roofs of buildings. There are a number of new below-ground storage propriety devices that are designed for both roof water catchments and impervious surface catchments, such as hardstand areas. The storage systems are modular and their volumes can be anything from 5 kL to 5 ML. These devices have different filtration systems over the inlet for primary treatment and some have a secondary filter, depending on the quality of the runoff and the desired water use. A pump system returns the collected water to provide a non-potable supply for domestic, commercial, industrial and municipal buildings, such as sports centres and community halls. Collected stormwater could be used for irrigation, vehicle washing, art/water features, toilet flushing, cooling water systems and many other applications that currently use high grade potable water.
    [Show full text]
  • Rainwater Tanks
    Rainwater tanks Efficient use of water has become a priority for many people. By installing a rainwater tank, you can use your rain water regardless of restrictions—for gardens, lawns, washing the car or any other outdoor purpose. Before you buy Do your research before making a purchase. Here are some tips on what you should do before buying. 6 Find out whether you are entitled to any local council or federal government rebates and check for all mandatory requirements. For example, to be eligible for a rebate you may be required to connect the tank to your laundry or a toilet, or to have your tank installed by a licensed plumber. 6 Check if there are any council regulations about where you may put your tank. For example, in some areas there is a minimum distance from the side property boundary. 6 There are other mandatory installation requirements, such as mosquito-proof screens, stormwater connection and the fitting of a first flush diverter. 6 Chose an energy-efficient pump that will be suitable for your needs. Note: If your tank is connected to a laundry or toilet, you need to connect the mains water supply to your tank to top up the supply. In this situation you will be subject to any local water restrictions. Costs Local rainfall Tank prices vary depending on type, size and materials. Also think about the pattern of rainfall in your district. Additional costs to consider include: Do you need to store enough water for a 10-month dry spell or do you receive rainfall on a more regular basis? 6 transportation 6 installation Tank Material 6 alterations to guttering and downpipes Tanks can be made from a range of materials, and the 6 tank stand or foundation choice of material is largely a matter of personal 6 additional plumbing preference.
    [Show full text]