Importance of CNOT8 Deadenylase Subunit in DNA Damage Responses Following Ionizing Radiation (IR)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Trans Esnps Infers Regulatory Network Architecture
Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation. -
Transcriptional Targets of Hepatocyte Growth Factor Signaling and Ki-Ras Oncogene Activation in Colorectal Cancer
Oncogene (2006) 25, 91–102 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer IM Seiden-Long1,2, KR Brown1,2, W Shih1, DA Wigle3, N Radulovich1, I Jurisica1,2,4 and M-S Tsao1,2,5 1Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; 3Department of Surgery, University of Toronto, Toronto, Ontario, Canada; 4Department of Computer Science, University of Toronto, Toronto, Ontario, Canada and 5Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Both Ki-ras mutation and hepatocyte growth factor Introduction (HGF) receptor Met overexpression occur at high frequency in colon cancer. This study investigates the Colorectal carcinogenesis is characterized by a well- transcriptional changes induced by Ki-ras oncogene and delineated series of genetic mutations and aberrant gene HGF/Met signaling activation in colon cancer cell lines in expression events (Fearon and Vogelstein, 1990). Ki-ras vitro and in vivo. The model system used in these studies oncogene activation and the overexpression of growth included the DLD-1 colon cancer cell line with a mutated factor receptors on the cell surface have been shown to Ki-ras allele, and the DKO-4 cell line generated from play important rolesin colon cancer progression DLD-1, with its mutant Ki-ras allele inactivated by (Shirasawa et al., 1993; Fazekas et al., 2000). Ki-ras is targeted disruption. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Complexity of Mirna-Mediated Repression
Cell Death and Differentiation (2015) 22, 22–33 & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Review The complexity of miRNA-mediated repression A Wilczynska*,1 and M Bushell*,1 Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (B22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes. They have critical roles in virtually every cellular process, particularly determination of cell fate in development and regulation of the cell cycle. Although it has long been known that miRNAs bind to mRNAs to trigger translational repression and degradation, there had been much debate regarding their precise mode of action. It is now believed that translational control is the primary event, only later followed by mRNA destabilisation. This review will discuss the most recent advances in our understanding of the molecular underpinnings of miRNA-mediated repression. Moreover, we highlight the multitude of regulatory mechanisms that modulate miRNA function. Cell Death and Differentiation (2015) 22, 22–33; doi:10.1038/cdd.2014.112; published online 5 September 2014 Facts impact their protein output. The dysregulation of miRNA expression in many disease conditions has been thoroughly miRNA-mediated translational repression is a pre-requisite documented (for details see Croce1). In addition, extensive for target mRNA degradation. shortening of mRNA 30UTRs, which causes loss of miRNA RNA helicases are critical to the inhibition of translation target sites resulting in the post-transcriptional upregulation initiation by miRNA. of critical oncogenes, has been observed in cancer cells Modifications of RISC components have critical roles in (Figure 2d).2,3 Conversely, lengthening of 30UTRs and thus an controlling the miRNA pathway. -
A Study on Acute Myeloid Leukemias with Trisomy 8, 11, Or 13, Monosomy 7, Or Deletion 5Q
Leukemia (2005) 19, 1224–1228 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q C Schoch1, A Kohlmann1, M Dugas1, W Kern1, W Hiddemann1, S Schnittger1 and T Haferlach1 1Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany We performed microarray analyses in AML with trisomies 8 aim of this study to investigate whether gains and losses on the (n ¼ 12), 11 (n ¼ 7), 13 (n ¼ 7), monosomy 7 (n ¼ 9), and deletion genomic level translate into altered genes expression also in 5q (n ¼ 7) as sole changes to investigate whether genomic gains and losses translate into altered expression levels of other areas of the genome in AML. genes located in the affected chromosomal regions. Controls were 104 AML with normal karyotype. In subgroups with trisomy, the median expression of genes located on gained Materials and methods chromosomes was higher, while in AML with monosomy 7 and deletion 5q the median expression of genes located in deleted Samples regions was lower. The 50 most differentially expressed genes, as compared to all other subtypes, were equally distributed Bone marrow samples of AML patients at diagnosis were over the genome in AML subgroups with trisomies. In contrast, 30 and 86% of the most differentially expressed genes analyzed: 12 cases with trisomy 8 (AML-TRI8), seven with characteristic for AML with 5q deletion and monosomy 7 are trisomy 11 (AML-TRI11), seven with trisomy 13 (AML-TRI13), located on chromosomes 5 or 7. -
CNOT4 Antibody (Pab)
21.10.2014CNOT4 antibody (pAb) Rabbit Anti-Human/Mouse/Rat CCR4-NOT Transcription Complex Subunit 4 (NOT4, NOT4H) Instruction Manual Catalog Number PK-AB718-4813 Synonyms CNOT4 Antibody: CCR4-NOT transcription complex subunit 4, NOT4, NOT4H Description CNOT4 is a component of the CCR4-NOT transcription complex, a complex that is implicated in the repression of RNA polymerase II transcription. In the CCR4-NOT complex, CNOT4 acts as an E3 ubiquitin-protein ligase and interacts with a subset of E2 ubiquitin-conjugating enzymes through a unique C4C4 RING domain. This E3 ligase activity was shown to be dependent on the selective and specific interaction with the ubiquitin conjugating enzyme UbcH5B. In yeast, mutations in CNOT4 that prevented its interaction with the UbcH5B homolog UBC4 caused increased sensitivity to hydroxyurea, heat shock, and hygromycin B, suggesting that CNOT4 and UbcH5B are involved in stress response in vivo. Multiple isoforms of CNOT4 are known to exist. Quantity 100 µg Source / Host Rabbit Immunogen CNOT4 antibody was raised against a 19 amino acid peptide near the amino terminus of the human CNOT4. Purification Method Affinity chromatography purified via peptide column. Clone / IgG Subtype Polyclonal antibody Species Reactivity Human, Mouse, Rat Specificity Formulation Antibody is supplied in PBS containing 0.02% sodium azide. Reconstitution During shipment, small volumes of antibody will occasionally become entrapped in the seal of the product vial. For products with volumes of 200 μl or less, we recommend gently tapping the vial on a hard surface or briefly centrifuging the vial in a tabletop centrifuge to dislodge any liquid in the container’s cap. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Dissertation
Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay. -
BTG2 Bridges PABPC1 RNA-Binding Domains and CAF1 Deadenylase to Control Cell Proliferation
ARTICLE Received 21 May 2015 | Accepted 24 Jan 2016 | Published 25 Feb 2016 DOI: 10.1038/ncomms10811 OPEN BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation Benjamin Stupfler1,2,3,4, Catherine Birck1,2,3,4, Bertrand Se´raphin1,2,3,4 & Fabienne Mauxion1,2,3,4 While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. 1 Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, 67404 Illkirch, France. 2 Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France. 3 Institut National de la Sante´ et de la Recherche Me´dicale U964, 67404 Illkirch, France. 4 Universite´ de Strasbourg, 67404 Illkirch, France. Correspondence and requests for materials should be addressed to B.Se. (email: [email protected]) or to F.M. -
Tob2 Phosphorylation Regulates Global Mrna Turnover to Reshape Transcriptome and Impact Cell Proliferation
Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Research Article (Revised) Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation Chyi-Ying A. Chen1, Krista Strouz1, Kai-Lieh Huang1, 2, and Ann-Bin Shyu1, * 1Department of Biochemistry and Molecular Biology, McGovern Medical School The University of Texas Health Science Center at Houston, Houston, Texas 77030 Running Title: Tob2-promoted deadenylation reshapes transcriptome Keywords: mRNA turnover, deadenylation, transcriptome programming, PABP interaction, Ccr4-Not complex, phosphorylation 2Current Address: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550 *Corresponding author: Tel: (713) 500-6068; Fax: (713) 500-0652; E-mail address: Ann- [email protected]. Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Tob2, an anti-proliferative protein, promotes deadenylation through recruiting Caf1 deadenylase to the mRNA poly(A) tail by simultaneously interacting with both Caf1 and poly(A)-binding protein (PABP). Previously, we found that changes in Tob2 phosphorylation can alter its PABP- binding ability and deadenylation-promoting function. However, it remained unknown regarding the relevant kinase(s). Moreover, it was unclear whether Tob2 phosphorylation modulates the transcriptome and whether the phosphorylation is linked to Tob2’s anti-proliferative function. In this study, we found that c-Jun N-terminal kinase (JNK) increases phosphorylation of Tob2 at many Ser/Thr sites in the intrinsically disordered region (IDR) that contains two separate PABP- interacting PAM2 motifs. JNK-induced phosphorylation or phosphomimetic mutations at these sites weaken the Tob2-PABP interaction. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Structural Model of the Ubch5b/CNOT4 Complex Revealed by Combining NMR, Mutagenesis, and Docking Approaches
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 12, 633–644, April, 2004, 2004 Elsevier Science Ltd. All rights reserved. DOI 10.1016/j.str.2004.03.004 Structural Model of the UbcH5B/CNOT4 Complex Revealed by Combining NMR, Mutagenesis, and Docking Approaches Cyril Dominguez,1 Alexandre M.J.J. Bonvin,1 Weissman, 2001). Different classes of E3 ligases have G. Sebastiaan Winkler,2 Frederik M.A. van Schaik,2 been found that mediate substrate ubiquitination. E3 H.Th. Marc Timmers,2 and Rolf Boelens1,* enzymes can be distinguished by their E2-interacting 1Department of NMR Spectroscopy domains, which include the HECT and the RING domains Bijvoet Center for Biomolecular Research (Glickman and Ciechanover, 2002; Pickart, 2001). There- Utrecht University fore, specific E2/E3 pairs are thought to be responsible Padualaan 8 for mediating target recognition and subsequent ubiqui- 3584 Utrect tination. Structures of nine E2 enzymes from different 2 Department of Physiological Chemistry species in the free form have been solved by X-ray University Medical Center Utrecht crystallography (Cook et al., 1992, 1993, 1997; Hamilton Universiteitsweg 100 et al., 2001; Jiang and Basavappa, 1999; Lin et al., 2002; 3584 CG Utrecht Tong et al., 1997; VanDemark et al., 2001; Worthylake The Netherlands et al., 1998) and one was solved by NMR (Miura et al., 2002). The structure of the human E2 enzyme UbcH5B, however, has not been determined. Furthermore, five Summary structures of E2 in complex with various other proteins have been solved by X-ray crystallography (Bernier-Vil- The protein CNOT4 possesses an N-terminal RING lamor et al., 2002; Huang et al., 1999; Moraes et al., finger domain that acts as an E3 ubiquitin ligase and 2001; VanDemark et al., 2001; Zheng et al., 2000).