Evolution Der Algen Und Plastiden (T

Total Page:16

File Type:pdf, Size:1020Kb

Evolution Der Algen Und Plastiden (T Georg-August-Universität Göttingen Vorlesung 63052 Biodiversität: Evolution der Algen EvolutionEvolution derder AlgenAlgen undund PlastidenPlastiden Teil 5: Viridiplantae Thomas Friedl Abteilung Experimentelle Phykologie undund Sammlung von Algenkulturen Albrecht-von-Haller-Institut für Pflanzenwissenschaften www.epsag.uni-goettingen.de Biodiversität: Evolution der Algen WS 2007/8 Mi 12:15 - 13:00 im Seminarraum 1.213 oder kleinen Hörsaal Evolution der Algen und Plastiden (T. Friedl) 17.10. Einführung, Übersicht über die Algen, Vorstellung der Abteilung EPSAG 24.10. Cyanobakterien 31.10. - Besichtigung der Abteilung und SAG (I. Lang) - 07.11. -- 14.11. Primäre Endosymbiose 21.11. Glaucophyta, Rotalgen 28.11. Grünalgen und Entstehung der Landpflanzen 05.12. Sekundäre Endosymbiose, Cryptophyta, Chlorarachniophyta 12.12. Stramenopiles + Haptophyta = "Chromista"? 19.12. Alveolates,Euglenozoa, Abschlußbetrachtung 09.01. Imke Lang: Cryokonservierung 16.01. Imke Lang: Anwendung von Algen in der Biotechnologie 23.01 Kathrin Mohr: Erfassen von Algenbiodiversität mit molekularen Methoden. I 30.01 Kathrin Mohr: Erfassen von Algenbiodiversität mit molekularen Methoden. II Benutzername: evolution Passwort: ers01ter www.epsag.uni-goettingen.de Primary endosymbiosis Secondary endosymbiosis Tertiary endosymbiosis Cyanobacterium Ciliates primary host Rhodophyta Sporozoa Glaucophyta Chlorophyta secondary host peridinin-containing Dinoflagellates Heterokontophyta, secondary host Haptophyta tertiary host fucoxanthin-containing Dinoflagellates Oomycetes heteroloboseid Cryptophyta Amoeboflagellates Chlorarachniophyta Dinoflagellates with cryptophyte-like Euglenophyta tertiary host reduced endosymbiont Entstehung der Plastiden durch primäre Endosymbiose Grüne Pflanzen und Grünalgen Rotalgen (Chl a und b, ß-Carotin) (Chl a und Phykobiline, Phycobilisomen) Grünalgen Landpflanzen Glaucophyta (Plastiden ähnlich Rotalgen, aber Peptidoglukan-Schicht) Kern- und Plastidengene zeigen übereinstimmend diese Beziehungen: erweiterter Begriff „Plantae“ Verlust der Peptidoglukan-Wand GreenGreen AlgaeAlgae Viridiplantae What are green algae? • double membrane-bound plastids • containing chlorophyll a and b,beta carotene and xanthophylls • a unique stellate structure linking nine pairs of microtubules in the flagellar base • starch is stored inside the plastid • cell walls when present are usually composed of cellulose Stellate structure in Volvox globator Melkonian M. 1987, Systematics of the Green Algae, p. 89 Schema einer Grünalgenzelle: Chlamydomonas sp. Geißel (Flagellum) Geißelapparat Plastidenhülle (2 Membranen) Thylakoide (in Stapeln) Zellwand Augenfleck Zellkern mit Nukleolus Pyrenoid Stärkekörner Evolution der Grünalgen • Vielfalt an Organisationsformen • Entstehung der Landpflanzen A. Pascher's view of the phylogeny Traditional system of the Green Algae of Green Algae and Plants based on the level of organization Adolf Pascher (1881 - 1945) see also Fritsch 1935, Fott 1971 GreenGreen AlgaeAlgae Viridiplantae Ultrastructure of flagellated cells Ultrastructure of flagellated cells Cytokinesis / Mitosis Lewis L.A. & McCourt R.M. (2004) Am. J. Bot. 91: 1535-1556. The Viridiplantae (= Green plants) are divided into two major lineages synapomorphies? flagellar roots in cruciate condition phycoplast unilateral flagellar root (maximum parsimony analysis, 70 ingroup taxa phragmoplast 1679 pos., bootstrap teststests with 500 repl. from NJ and MP, thick lines indicate support >70% ) 18S rDNA phylogeny of the Green Algae synapomorphies? Chlorophyta no MLS (multi-layered structure) flagellar roots in cruciate condition Streptophyta MLS (multi-layered structure) Mesostigma viride flagellar roots in cruciate condition ! (maximum parsimony analysis, 70 ingroup taxa 1679 pos., bootstrap teststests with 50000 repl. from NJ and MP, thick lines indicndicate support >70% ) Marin B. & Melkonian M. 1999, Protist 150, p.409. MLS (multilayered structure) in flagellar roots of Mesostigma viride Melkonian M. 1987, Pl. Syst. Evol. 164, 93-122. • flagellates basal, but of multiple origins Chlorophyta Pyramimonas lunata Pyramimonas propulsa Prasinophytes Streptophyta Mesostigma viride The Charales is a sister-group with all Landplants (revealed by multigene analyses; Karol et al. 2001) (maximum parsimony analysis, 70 ingroup taxa 1679 pos., bootstrap teststests with 500 repl. from NJ and MP, thick lines indicate support >70% ) Lebenszyklus von Chara Thallusspitze, quer Coronula ("Krönchen") Seitenzweige Oogon Achsenzelle (mit Berindung) (mit steriler Hülle !) Spermatozoide Oogon + vegetativer Antheridium Thallus B! efruchtung: (gegliedert in Nodien und Internodien) Oogamie Antheridium Spermatozoid Zygote (2n) R! eduktionsteilung (nach van den Hoek 1993) Keimung der Zygote: junger Thallus Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) Streptophyta Chlorophyta 18S rDNA phylogeny of the Green Algae Trebouxiophyceae • mainly soil algae, lichen symbionts • mainly coccoids Chlorophyceae • mainly freshwater • incl. colonial flagellates Ulvophyceae • morphologically very diverse Chlorophyta • marine and freshwater • incl. Cladophorales and Dasycladales ? Prasinophytes • scaled flagellates Streptophyta • few "algal lineages" - the Charophytes Streptophyta • land plants (maximum parsimony analysis, 70 ingroup taxa 1679 pos., bootstrap teststests with 50000 repl. from NJ and MP, thick lines indicndicate support >70% ) Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) Streptophyta Chlorophyta Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) StreptophytaMesostigma viride Chlorophyta Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) Streptophyta Chlorophyta Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) Streptophyta Chlorophyta Phylogenie der Charophyta kombinierter 4-Gene-Datensatz, Karol et al., Science 294: 2351-2353 (2001) Streptophyta Chlorophyta.
Recommended publications
  • Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
    Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction.
    [Show full text]
  • Detergent-Extracted Volvox Model Exhibits an Anterior–Posterior Gradient in Flagellar Ca2+ Sensitivity
    Detergent-extracted Volvox model exhibits an PNAS PLUS + anterior–posterior gradient in flagellar Ca2 sensitivity Noriko Uekia and Ken-ichi Wakabayashia,1 aLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama-shi, Kanagawa 226-8503, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved December 8, 2017 (received for review September 1, 2017) Volvox rousseletii is a multicellular spheroidal green alga contain- suggested by studies using demembranated and reactivated cells ing ∼5,000 cells, each equipped with two flagella (cilia). This or- and flagella (5, 6). ganism shows striking photobehavior without any known Multicellular spheroidal species of Volvocales, including Volvox intercellular communication. To help understand how the behav- species, have often been regarded as colonial Chlamydomonas. ior of flagella is regulated, we developed a method to extract the However, alignment of Chlamydomonas cells on the surface of a whole organism with detergent and reactivate its flagellar motil- spheroid, with each cell displaying breaststroke-like flagellar ity. Upon addition of ATP, demembranated flagella (axonemes) in beating, would result in spheroids unable to swim in one direction. the spheroids actively beat and the spheroids swam as if they Unlike a C. reinhardtii cell, each cell in a Volvox spheroid has two + were alive. Under Ca2 -free conditions, the axonemes assumed flagella beating in the same direction. A Volvox spheroid has an planar and asymmetrical waveforms and beat toward the poste- anterior–posterior (A–P) axis, and its ∼10,000 flagella beat toward rior pole, as do live spheroids in the absence of light stimulation.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Some Algae in Lakes Hume and Mulwala Victoria
    S0£.1E ALGAE IN LAKES HUHE AND HUT~WALA (1974) VICTORIA ·By KANJANA VIYAKORNVILAS B.Sc. (Tas.) A Thesis submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours at the University of Tasmania. I hereby declare that this thesis contains no material which has been accepted for the award of any other degree in any university and that, to the best of my kno\vledge, the thesis contains no copy or paraphase of material previously published or written by another person, except when due reference is made in the text. -•ACKNO\'/I,EDGEl·fEN a---1:es I wish to express my sincere thanks to Dr .. P@A~Tyler, my supervisor, for his helpful advice and criticism .. Hr .. R.L.Croome for collecting all the samples .. Mrs .. R .. ivickham for her technical advice. All members of the Botany Dept .. for their assistance at various times of the year .. K.. Viyalwrnvilas, Botany Dept .. , University of Tasmania, November 1974 .. CONTENTS·-«"· .... Page Summary 1 Introduction 2 Materials and Method 2 Results 4 Systematic account 13 Division Chlorophyta-Class Chlorophyceae 13 Chrysophyta-Class Chrysophyceae 65 Class Bacteriophyceae 68 II Euglenophyta-Class Euglenophyceae 79 It Pyrrhophyta-Class Dinophyceae 86 Cyanophyta -Class Cyanophyceae 87 Discussion The trophic status of Lakes Hume and Hulwala 93 Geographical distribution of desmids seen 95 Plates 1-14 and Explana·tion of plates 96 Literature cited 116 l SUNMARY Lakes IIume and Hulwala have very similar plankton communi ties in which N.e.l.?.si,r.a .Ei.X:~£U~ Ralfs is dominant .. The species composition and the plankton quotients show the t\<IO lakes are mesotrophic.Host of the algae seen are well-lmown and widespread .
    [Show full text]
  • 2013 Program Brochure START
    !"#$%&'$()!#*)+!(,)+-$.,-.,/$0,)1#*#)0#$ 2345$6789$:$+3;389$6<'=$%>76$ University of New Brunswick, Fredericton New Brunswick, Canada SCOPE This is the second (http://www2.unb.ca/vip/IVC2013/) of what we hope to be a long series of Volvox meetings to be held every other year. The idea of a meeting on everything about Volvox and its relatives (aka Volvocales or volvocine algae) reflects both an increase in the size of the Volvox community and the realization that many researchers from fields traditionally not associated with Volvox research (e.g., physics, theoretical biology) are interested in various aspects of the system. Indeed, volvocine algae have become an important model system for the evolution of multicellularity, development and cellular differentiation, and lately have yielded important results in fields as diverse as genomics, hydrodynamics, and social evolution. We hope that these meetings will continue to foster exchange of ideas and expertise, and will initiate new collaborations. Furthermore, with these meetings we wish to attract new people and to build a stronger Volvox community. CONFERENCE ORGANIZER Aurora M. Nedelcu, University of New Brunswick, Canada ORGANIZING COMMITTEE Matthew Herron, University of Montana, USA Erik Hanschen, University of Arizona, USA David Smith, University of Western Ontario, Canada Hisayoshi Nozaki, University of Tokyo, Japan James Umen, Donald Danforth Plant Science Center, USA Stephen Miller, University of Maryland Baltimore County, USA Annette Coleman, Brown University USA Aurelia Honerkamp-Smith,
    [Show full text]
  • Green Algae and the Origins of Multicellularity in the Plant Kingdom
    Downloaded from http://cshperspectives.cshlp.org/ on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Green Algae and the Origins of Multicellularity in the Plant Kingdom James G. Umen Donald Danforth Plant Science Center, St. Louis, Missouri 63132 Correspondence: [email protected] The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental com- plexity. The study of volvocine algae has provided unprecedented insights into the innova- tions required to achieve multicellularity. he transition from unicellular to multicellu- and rotifers that are limited by prey size (Bell Tlar organization is considered one of the ma- 1985; Boraas et al. 1998). Reciprocally, increased jor innovations in eukaryotic evolution (Szath- size might also entail advantages in capturing ma´ry and Maynard-Smith 1995). Multicellular more or larger prey. organization can be advantageous for several There is some debate about how easy or reasons. Foremost among these is the potential difficult it has been for unicellular organisms for cell-type specialization that enables more to evolve multicellularity (Grosberg and Strath- efficient use of scarce resources and can open mann 2007).
    [Show full text]
  • The Flagellar Photoresponse in Volvox Species (Volvocaceae, Chlorophyceae)1
    J. Phycol. 47, ***–*** (2011Diana) Ó 2011Diana Phycological Society of America DOI: 10.1111/j.1529-8817.2011.00983.x NOTE THE FLAGELLAR PHOTORESPONSE IN VOLVOX SPECIES (VOLVOCACEAE, CHLOROPHYCEAE)1 Cristian A. Solari2 CONICET, Departamento de Biodiversidad y Biologı´a Experimental (FCEyN), Laboratorio de Biologı´a Comparada de Protistas, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina Knut Drescher and Raymond E. Goldstein Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK Steering their swimming direction toward the light specialization, each of the Chlamydomonas-like somatic is crucial for the viability of Volvox colonies, the lar- cells is positioned at the surface of the extracellular ger members of the volvocine algae. While it is matrix, with its two flagella oriented outward, while known that this phototactic steering is achieved by a the germ cells grow inside the colony. Volvox species difference in behavior of the flagella on the illumi- with germ-soma separation have evolved several times nated and shaded sides, conflicting reports suggest independently from quite different colonial ancestors that this asymmetry arises either from a change in with no cellular differentiation (Coleman 1999, No- beating direction or a change in beating frequency. zaki et al. 1999, 2006, Nozaki 2003, Herron and Mi- Here, we report direct observations of the flagellar chod 2008). These species with different phyletic behavior of various Volvox species with different phy- origin have been classified within the volvocine algae letic origin in response to light intensity changes and into different sections ⁄ groups (Smith 1944, Nozaki thereby resolve this controversy: Volvox barberi W.
    [Show full text]
  • Green Microalga Trebouxia Sp. Produces Strigolactone
    bioRxiv preprint doi: https://doi.org/10.1101/195883; this version posted September 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Green microalga Trebouxia sp. produces strigolactone- 2 related compounds 3 4 Smýkalová I.1, Ludvíková M.1, Ondráčková E.1, Klejdus B.2, Bonhomme S.3, Kronusová O.4, 5 Soukup A.5, Rozmoš M.6, Guzow-Krzemińska B.7, Matúšová R.8 6 7 1 Agritec Plant Research Ltd., Zemědělská 16, Šumperk, 787 01, Czech Republic; 8 2 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 9 Brno, 613 00 Brno, Czech Republic; 10 3 Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route 11 de St-Cyr 10, 780 26 Versailles Cedex, France. 12 4 Ecofuel Laboratories Ltd., Ocelářská 9, 190 02 Prague, Czech Republic; 13 5 Department of Experimental Plant Biology, Faculty of Science Charles University in 14 Prague, Viničná 5, 128 44 Prague 2, Czech Republic; 15 6 Institute of Experimental Biology, Faculty of Plant Science, Masaryk University, Kotlářská 16 267/2 , Brno, 611 37, Czech Republic; 17 7 Department of Plant Taxonomy and Narture Conservation, Faculty of Biology, University 18 of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; 19 8 Plant Science and Biodiversity Center SAS, Institute of Plant Genetics and Biotechnology, 20 Akademicka 2, PO Box 39A, 95007 Nitra, Slovak Republic; 21 22 Corresponding authors: [email protected]; [email protected] 23 Running title 24 Production of SLs in microalga 25 Highlight 26 In lichenized alga Trebouxia arboricola there are produced SLs-related compounds inducing 27 germination of parasitic weed Phelipanche aegyptiaca; T.
    [Show full text]
  • Novosti Sistematiki Nizshikh Rastenii 54(2): 299–311
    Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 54(2): 299–311. 2020 ALGAE — ВОДОРОСЛИ Problems of species and the features of geographical distribution in colonial volvocine algae (Chlorophyta) A. G. Desnitskiy St. Petersburg State University, St. Petersburg, Russia [email protected]; [email protected] Abstract. More than ten new species of colonial volvocine algae were described in world lite­ rature during recent years. In present review, the published data on taxonomy, geographical distri­ bution and the species problem in this group of algae, mainly from the genera Gonium, Pandorina, Eudorina, and Volvox, are critically discussed. There are both cosmopolitan volvocalean species and species with local or disjunct distribution. On the other hand, the description of new cryptic taxa in some genera of the colonial family Volvocaceae, such as Pandorina and Volvox, complicates the preparation of a comprehensive review on their geography. Keywords: Gonium, Pandorina, Volvox, cryptic taxa, reproductive isolation, volvocalean geography. Проблемы вида и особенностей географического распространения у колониальных вольвоксовых водорослей (Chlorophyta) А. Г. Десницкий Санкт­Петербургский государственный университет, Санкт­Петербург, Россия [email protected]; [email protected] Резюме. В последние годы в мировой литературе описано более десяти новых видов колониальных вольвоксовых водорослей. В настоящем обзоре критически обсуждаются опубликованные данные по таксономии, географическому распространению и проблеме вида в этой группе водорослей, главным образом из родов Gonium, Pandorina, Eudorina и Volvox. Суще­ ствуют как космополитные виды вольвоксовых, так и виды с локальным или дизъюнктивным распространением. С другой стороны, описание новых криптических таксонов в некоторых родах семейства Volvocaceae, таких как Pandorina и Volvox, усложняет подготовку всесторон­ него обзора по их географии.
    [Show full text]
  • Gonium Pectorale Genome Demonstrates Co-Option of Cell Cycle Regulation During the Evolution of Multicellularity
    The Evolution of Cell Cycle Regulation, Cellular Differentiation, and Sexual Traits during the Evolution of Multicellularity Item Type text; Electronic Dissertation Authors Hanschen, Erik Richard Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 00:03:04 Link to Item http://hdl.handle.net/10150/626165 THE EVOLUTION OF CELL CYCLE REGULATION, CELLULAR DIFFERENTIATION, AND SEXUAL TRAITS DURING THE EVOLUTION OF MULTICELLULARITY by Erik Richard Hanschen __________________________________ Copyright © Erik Richard Hanschen 2017 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2017 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Erik R. Hanschen, titled “The evolution of cell cycle regulation, cellular differentiation, and sexual traits during the evolution of multicellularity” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________________
    [Show full text]
  • Protists Volvox, Euglena, Amoeba, Spirogyra, Stentor
    protists volvox, euglena, amoeba, spirogyra, stentor PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 16 Oct 2013 15:04:13 UTC Contents Articles Volvox 1 Spirogyra 3 Euglena 5 Stentor (protozoa) 10 References Article Sources and Contributors 13 Image Sources, Licenses and Contributors 14 Article Licenses License 15 Volvox 1 Volvox Volvox Volvox sp. Scientific classification Kingdom: Plantae Phylum: Chlorophyta Class: Chlorophyceae Order: Volvocales Family: Volvocaceae Genus: Volvox L. Species Volvox aureus Volvox carteri (V. nagariensis) Volvox globator Volvox barberi Volvox rouseletti Volvox dissipatrix Volvox tertius Volvox is a genus of chlorophytes, a type of green algae. It forms spherical colonies of up to 50,000 cells. They live in a variety of freshwater habitats, and were first reported by Antonie van Leeuwenhoek in 1700. Volvox developed its colonial lifestyle 200 [1] million years ago. Description Volvox is the most developed in a series of genera that form spherical colonies. Each mature Volvox colony is composed of numerous flagellate cells similar to Chlamydomonas, up to 50,000 in total, and embedded in the surface of a hollow sphere or coenobium containing an extracellular matrix made of a gelatinous glycoprotein. The cells swim in a coordinated fashion, with distinct anterior and posterior poles. The cells have eyespots, more developed near the anterior, which enable the colony to swim towards light. The individual algae in some species are interconnected by thin strands of cytoplasm, called Volvox colony: 1) Chlamydomonas-like cell, 2) Daughter colony, 3) Cytoplasmic bridges, 4) protoplasmates. They are known to demonstrate some individuality and Intercellular gel, 5) Reproductive cell, 6) Somatic working for the good of their colony, acting like one multicellular cell.
    [Show full text]
  • 18S Ribosomal RNA Gene Phylogeny of a Colonial Volvocalean Lineage (Tetrabaenaceae-Goniaceae-Volvocaceae, Volvocales, Chlorophyceae) and Its Close Relatives
    J. Jpn. Bot. 91 Suppl.: 345–354 (2016) 18S Ribosomal RNA Gene Phylogeny of a Colonial Volvocalean Lineage (Tetrabaenaceae-Goniaceae-Volvocaceae, Volvocales, Chlorophyceae) and Its Close Relatives a,b, a,b a,b Takashi NAKADA *, Takuro ITO and Masaru TOMITA aInstitute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052 JAPAN; bSystems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882 JAPAN; *Corresponding author: [email protected] (Accepted on January 19, 2016) The lineage of colonial green algae consisting of Tetrabaenaceae, Goniaceae, and Volvocaceae (TGV-clade) belongs to the clade Reinhardtinia within Volvocales (Chlorophyceae). Reinhardtinia is closely related to some species in the unicellular genera Chlamydomonas and Vitreochlamys. Although 18S rRNA gene sequences are preferred phylogenetic markers for many volvocalean species, phylogenetic relationships among the TGV-clade and its relatives have been examined mainly based on chloroplast genes and ITS2 sequences. To determine the candidate unicellular sister, 18S rRNA gene sequences of 41 species of the TGV-clade and its relatives were newly determined, and single and 6-gene phylogenetic analyses performed. No unicellular sister was determined by 18S rRNA gene analyses, but 6 unicellular clades and 11 ribospecies were recognized as candidates. Five of the candidate lineages and 27 taxa of the TGV-clade were examined by 6-gene phylogeny, revealing one clade including Chlamydomonas reinhardtii, Chlamydomonas debaryana, and Vitreochlamys ordinata to be more closely related than that containing Vitreochlamys aulata and Vitreochlamys pinguis. Key words: 18S rRNA, colonial, green algae, molecular phylogeny, unicellular, Volvocales. Tetrabaenaceae, Goniaceae, and cells) 8- to 50,000-celled genera (Pandorina, Volvocaceae constitute a colonial green Volvulina, Platydorina, Colemanosphaera, algal clade (TGV-clade) within Volvocales Yamagishiella, Eudorina, Pleodorina, and (Chlorophyceae), and include simple to Volvox).
    [Show full text]