Statistical Design, Analysis and Graphics for the Guadalupe River Assessment

Technical Memoranda Two, Four & Five Report prepared for the Water District Agreement Number A3562F

by Institute & Aquatic Science Center

CONTRIBUTION NO. 687

FEBRUARY 2013 SAN FRANCISCO ESTUARY INSTITUTE & THE AQUATIC SCIENCE CENTER 4911 Central Ave, Richmond, CA 94804, p: 510-746-7334 f: 510-746-7300 This report should be cited as: San Francisco Estuary Institute & Aquatic Science Center (2013). Statistical Design, Analysis and Graphics for the Guadalupe River Assessment. Technical Memoranda Two, Four & Five. Report prepared for the Santa Clara Valley Water District Agreement Number A3562F. Contribution No. 687. Richmond, .

For more information, contact: Sarah Lowe, (510) 746-7384 or [email protected] TableofContents

TableofContents...... i

ListofFiguresandTables...... iii

Introduction...... 1

ManagementQuestions...... 1

GeographicSetting...... 2

Methods...... 3

Level-1MappingMethods...... 3

Level-2RapidAssessmentMethods...... 7

StudyDesign...... 7

CRAMFieldAssessments...... 10

DataAnalysesoftheCRAMResults...... 10

Results...... 11

Extent,Distribution,andOwnershipoftheStreams...... 11

1)Whatistheextentanddistributionofstreamecosystemresources?...... 11

2)Whatistheextentanddistributionofstreamassociatedriparianareas?...... 13

3)Whatistheextentanddistributionofnon-riverinewetlands?...... 17

4)Whoownsthestreams?...... 19

5)Howandwherearethestreamsinterrupted?...... 21

StreamEcosystemConditionBasedonGuadalupeRiverCRAMAssessments...... 23

1)Whataretheconditionsofstreamecosystemresources?...... 24

2)WhatarethelikelystressorsimpactingstreamconditionbasedonCRAM?...... 32

3)WhataretheLevelsofService(LOS)forstreamecosystemresources?...... 37

StreamConditionRisks...... 38

i 1)Whatarethelikelysourcesofrisktostreamecosystemresources?...... 38

2)Whatisthelikelihoodthatsourcesofriskmayimpactstreamecosystemconditions?...... 39

3)Whatarethelikelyconsequencesoftheseriskstostreamecosystemcondition?...... 39

4)Whatarethefundamentalriskstostreamecosystemsrepresentedbyclimatechange?...... 40

References...... 43

AppendixAGuadalupeRiverCRAMAssessmentResults2012...... 47

ii ListofFiguresandTables Figure1.MapoftheGuadalupeRiverwatershedboundaryandstreamnetworkforthefreshwater reachesofthestreams...... 4 Figure2.MapshowingtheGuadalupeRiverwatershedCRAMassessmentstudyarea...... 8 Figure3.MapoftheaquaticresourcesintheGuadalupeRiverwatershedbasedonBAARI....12 Figure4.Distributionoftheestimatedriparianareasbyfunctionalwidthclass...... 15 Figure5.Lengthsofstreamswithriparianareasbyfunctionalwidthclass...... 16 Figure6.Comparisonofthedistributionofhistorical(circa1850)(mapA)andmodern(mapB)aquatic resources...... 18 Figure7.Comparisonofhistorical(circa1850)andmodernstreamlengthsfortheGuadalupeRiver valleyfloor...... 19 Figure8.MapoflandsownedbytheDistrict...... 20 Figure9.ProportionsofstreamsintheGuadalupewatershedwithinmunicipalboundaries...... 21 Figure10.Mapofstormdrains(channelconnectors),highwaysandroadsthatinterruptthestream network...... 22 Figure11.MapshowingthedistributionofassessedandrejectedCRAMRiverineAAs...... 23 Figure12.Plotofthecumulativedistributionfunction(CDF)ofCRAMIndexScoresfortheGuadalupe Riverwatershed...... 25 Figure13.Plotsofthecumulativedistributionfunctions(CDFs)ofCRAMIndexScoresfortheurban(n= 30AAs)andnon-urbanstreams(n=23AAs)...... 27 Figure14.Plotsofthecumulativedistributionfunctions(CDFs)ofCRAMIndexScoresfortheGuadalupe Riverwatershed(n=53)andCoyoteCreekwatershed(n=77)...... 28 Figure15.Plotsofcumulativedistributionfunctions(CDFs)forCRAMIndexScoresfortheGuadalupe Riverwatershed(n=53)andStatewideRiverineAssessment...... 29 Figure16.DistributionofCRAMAAsbasedonequalintervalhealthclasses...... 31 Figure17.MedianCRAMIndexandAttributescoresforurbanarea(n=30),non-urbanarea(n=23)and entireGuadalupeRiverwatershed(n=53)...... 32 Figure18.MedianCRAMIndexandAttributescoresfortheGuadalupeRiverwatershed(n=53)andthe CoyoteCreekwatershed(n=77...... 33 Figure19.EcologicalServiceIndex(ESI)fortheGuadalupeRiverwatershed...... 37 FigureA-1.MapofCRAMAssessmentAreas(AAs)sampledintheGuadalupeRiverAssessment,201248

Table1.Descriptionofaquaticresourcespresentedinthemapsinthisreport...... 5 Table2.SummaryofGuadalupeRiverAssessmentGRTSparametersforthesampledraw...... 9 Table3.SummaryofthelengthofsurfacechannelsandstormdrainsintheGuadalupeRiverwatershed ...... 11 Table4.Milesofstream-associatedriparianareasforeachoffiveriparianwidthclasses...... 13 Table5.SummaryofCRAMIndexScoresfortheGuadalupeRiver...... 24 watershedbasedontheCRAMsurvey2012...... 24

iii Table6.StreamhealthconditionbasedontheequalintervalhealthclassesfortheGuadalupeRiverand CoyoteCreekwatersheds...... 32 Table7.MeanmetricscoresfortheBufferandLandscapeContextAttributeandfortheHydrology Attributeinurbanandnon-urbanareasoftheGuadalupeRiverwatershed...... 34 Table8.SummaryoftheCRAMStressorChecklist...... 35 Table9.Listofpossiblelandscaperesponsestoclimatechange...... 41 TableA-1.AssessmentAreadescriptions,fieldteams,andfinalCRAMscoresfortheGuadalupeRiver Assessment,2012...... 49 TableA-2.CRAMassessmentscores(rawMetricandAttributeScores)fortheGuadalupeRiver Assessment,2012...... 59

iv Introduction TheSantaClaraValleyWaterDistrict(District)isassessingtheconditionofstreamsintheGuadalupe RiverwatershedbasedontheDistrictsEcologicalMonitoringandAssessmentFramework(EMAF). EMAFisconsistentwiththeWetlandandRiparianAreaMonitoringPlan(WRAMP)developedbythe California(CA)WetlandMonitoringWorkgroupoftheCAWaterQualityMonitoringCounciltoincrease thecapacityofagenciestoassessstatusandtrendsofCaliforniawetlands,streams,andriparianareas. TheDistrictconductedanEMAFpilotstudyintheCoyoteCreekwatershedin2010(EOAandSFEI2011) andsubsequentlyaskedtheSanFranciscoEstuaryInstituteandAquaticScienceCenter(SFEI-ASC)to assistwiththeGuadalupeRiverStreamsAssessmenti n2012.SFEI-ASCisworkingwiththeDistrictto:

 Reviewandadviseonthepreliminaryresourcemanagementquestionsdevelopedforthis assessment(technicalmemorandumone);  Designthemonitoringfollowingestablishedmethods,particularlysamplingdesignandsite selection,andassistwithimplementation(technicalmemorandumtwo);  ProvideCaliforniaRapidAssessmentMethodology(CRAM)RiverinetrainingtoDistrictfieldstaff;  AssistwithconductingCRAMassessmentsintheGuadalupewatershedaccordingtothestudy design;  Discussandadviseonappropriatemonitoringdesignstoaddressenvironmentalresource indicatorsrequiringintensivestudy(Level-3managementquestionsintechnicalmemorandum three);and  Conductdataanalyses,summarizeaquaticresourcedistributionandstreamcondition assessmentresultsbasedonDistrictneeds(technicalmemorandafourandfive).

ThisdocumentdescribesthedistributionofaquaticresourceswithintheGuadalupeRiverwatershed andsummarizestheGuadalupeRiverStreamsAssessmentstudydesignandresults.Therefore,itfulfills SFEI-ASCcontractualobligationstotheDistrictforTechnicalMemorandatwo,fourandfiveasoutlined above.

ManagementQuestions AfundamentalpurposeofEMAFisalignmentofecologicaldatacollectionandanalysiswiththeneedsof waterresourcedecision-making.Thisisachievedbycarefullydevelopingmanagementquestionsor concernsthatthedatashouldaddress.ThisTechnicalMemorandaTwo,Four,andFiveofthe GuadalupeRiverAssessmentaddressesthefollowingManagementQuestions,asprovidedbythe Districtandbasedonthe1-2-3FrameworkofEMAP(EOAandSFEI2011 ).

Level1:ResourceManagementQuestionsregardingextent,distributionandownership

1)Whatistheextentanddistributionofstreamecosystemresources(oraquaticresources)inthe watershed?  Howmanymilesarethereofmodifiedandunmodifiedchannel(unnaturalandnatural streamlengths)?

1 2)Whatistheextentanddistributionofstreamassociatedriparianandriparianareasassociated withotherwetlands? 3)Whatistheextentanddistributionofnon-riverinewetlands? 4)Whoownsthestreams?  WhatistheproportionofstreamsforwhichDistricthaslandrights?  Whatproportionofthestreamsfallwithincityboundaries?  WherearetheDistrictowned/feetitlestreamreacheslocated? 5)Howandwherearethestreamcorridorsinterrupted?

Level2:ResourceManagementQuestionsregardingcondition

1)Whataretheconditionsofstreamsinthewatershed? 2)Whatarethelikelystressorsimpactingstreamcondition? 3)WhataretheLevelsofService(LOS)forstreamecosystemresources?

IntegratedLevel1-3ManagementQuestions:StreamConditionRisks

1)Whatarethelikelysourcesofrisktostreamecosystemresources? 2)Whatisthelikelihoodthatsourcesofriskmayimpactstreamecosystemconditions? 3)Whatarethelikelyconsequencesoftheseriskstostreamecosystemcondition?

GeographicSetting TheGuadalupeRiverbeginsintributariesnearthesummitsofLomaPrietaandMountUmunhum, drainingtheeasternSantaCruzMountainsofSantaClaraCountytothewest,thennorthasthe GuadalupeRiverflowsintoSouthSanFranciscoBaythroughAlvisoSlough(Figure1).Thesparsely developedupperportionofthe170squaremile(mi 2),440km 2)watershedincludesthehistoricNew Almadenmercurymines,nowaCountyPark.Almost49percent(%)ofthewatershedlieswithin unincorporatedpartsofSantaClaraCounty(District2007)andmostoftheupperwatershedisforested landownedbytheMidpeninsulaRegionalOpenSpaceDistrictandSanJoseWaterCompany.Thelower portionincludesthedenselydevelopedSiliconValleymunicipalitiesofSanJose,LosGatos,Monte Sereno,Campbell,andSantaClara.SanJoseisthetenthmostpopulouscityintheUnitedStates(U.S. CensusBureau2012)andcoversjustover40%oftheGuadalupeRiverwatershed.Intotal,partsof thesefivecitiescoverjustover50%ofthewatershed(District2007).

TheDistrictmanagesfivereservoirsinthewatershed:CaleroReservoironCaleroCreek,Guadalupe ReservoironGuadalupeCreek,AlmadenReservoironAlamitosCreek,VasonaReservoir,andLexington ReservoirbothonLosGatosCreek.LakeElsman,aboveLexingtonReservoironupperLosGatosCreek,is ownedbytheSanJoseWaterCompany.Winterrunoffisstoredinthereservoirsandreleasedinthe summermonthstorechargegroundwaterbasinsandmaintainflowsforfish.Locallyconservedwateris augmentedwithimportedwaterforrecharge.RoutingtheriverfromGuadalupeSloughintoAlviso SloughinthelatenineteenthcenturydisconnectedtheriverfromSanTomasAquinoCreekand CalabazasCreek,thusreducingthesizeoftheGuadalupeRiverwatershed.

TheGuadalupeRiverAssessmentStudyisfocusedonstreamswithintheGuadalupeRiverwatershed abovetheregionoftidalinfluence,asdelimitedbytheBayAreaAquaticResourceInventory(upstream 2 limitoftidalwatersisassumedtocorrespondtoTasmanDrive;BAARI;SFEI2011a).BAARIhasall surfacewatersincludingwetlands,creeks,streams,lakes,ponds,etc.Thestreamnetworkofthe GuadalupeRiverwatershedincludesStrahlerstreamorders1through7(Strahler1952,1957).There areapproximately15namedtributariestotheGuadalupeRiver.

Cityboundaries,majorroadways,andtheDistrictsUrbanServiceAreawithintheGuadalupeRiver watershedhavebeenaddedtoBAARIforthepurposesofthisprojectattheDistrictsrequest.The urbanareaisessentiallythesameastheDistrictsofficialUrbanServiceAreawitharecent modificationatitssoutheasternextenttoincludetheurbanareanearLosPaseosinSanJose.

Methods Level-1MappingMethods Inordertodescribetheextentanddistributionoftheaquaticresources,andidentifyDistrictownership ofstreamsintheGuadalupeRiverwatershed,SFEI-ASCusedBAARIplusadditionalgeospatialdata providedbytheDistrictoravailableonline.Thedatasetsusedinthedataanalysesincludedthe following.

BayAreaAquaticResourceInventory(BAARI) BAARIistheBayAreaversionoftheCalifornia AquaticResourceInventory(CARI).BAARIisfullydocumentedonline (http://www.sfei.org/BAARI ).ItisanintensificationoftheNationalWetlandInventory(NWI)of theU.S.FishandWildlifeService(USFWS)andNationalHydrologicDataset(NHD)oftheU.S. GeologicSurvey(USGS).Itisconsistentwithfederalandstatemappingstandards.

3 Figure1. MapoftheGuadalupeRiverwatershedboundaryandstreamnetworkforthefreshwaterreachesofthe streamsbasedontheBayAreaAquaticResourceInventory(BAARI,SFEI2011a).ThestreamnetworkincludesStrahler streamorders1-7,connectingstormdrains(whichlinkthedrainageoftheupperandlowerwatershed),andopenwater (e.g.,reservoirsandgroundwaterrechargeponds).Cityboundaries,majorroadways,andtheDistrictsUrbanService Area(urbanarea)arealsoshowninthismap.

4 BAARIfurtherclassifiesstreamchannelsasnaturalorengineered(i.e.,unnaturalchannels) basedonlocalknowledgeandthedegreetowhichtheyresemblenaturalfluvialchannelsin plan-view.Smallunnaturalchannelsareclassifiedasditches.BAARIincludesmediumtolarge sizedundergroundstormdrainsthatconnectstreamstoeachotherortootherwaterbodies. BAARIalsosupportstheRiparianWidthDecisionTool(RWDT,SFEI-ASC2012b)thatestimates thewidthofriparianzonesbasedonvegetationstructure,topography,anddevelopedland cover.Table1describestheaquaticresourcespresentedinthemapsofthisreportincludingthe underlyingBAARIdefinitions.

Table1. Descriptionofaquaticresourcespresentedinthemapsinthisreport. AquaticResource Description Wetlanddependingmainlyongroundwaterasitswatersourceandlacking abundantstandingwater.Thiswetlandtypeismostcommonalongthelower SlopeWetland slopesofhillsandalluvialfans,andincludesseepsandspringsaswellasseepage frommanmadeimpoundmentsorwaterstoragestructuressuchasearthen dams. IncludesdepressionalvegetatedandLacustrinevegetatedwetlandsasdefinedby VegetatedWetland BAARI.Thesefeaturesincludetheaquaticorwetlandvegetationadjoiningan openwaterareasoffeaturesuchasalake,pond,ordepressionalwetland. Includesdepressionalopenwaterandlacustrineopenwaterwetlandsasdefined OpenWater byBAARI. Thefunctionalriparianareaasdefinedbytheslopeandvegetationheight RiparianArea adjacenttoanyabovegroundwaterbody. AsdefinedinBAARI,NaturalChannelsarelandscapefeatureshavingwell- NaturalChannel definedbedsandbanksthathavedirectconnectiontotheatmosphereandthat areformedandmaintainedbythegravityflowofwater. AsdefinedinBAARI,EngineeredChannelsarelandscapefeatureshavingwell- UnnaturalChannel definedbedsandbanksthathavedirectconnectiontotheatmosphereandthat havebeenconstructedtoconveywater.Theyincludeditches. Thesearesubsurface(buried)stormdrainsincludedinBAARIthatconveyflow ChannelConnector betweennaturalorunnaturalchannels. Theseincludeallstormdrainsatleast2.0ftindiameterthatarenotincludedin BAARIbutareinsteadprovidedbytheWilliamLettis&Associates(WLA)storm UrbanDrainage draindataset.Thesestormdrainsdonotconnectsegmentsofnaturalor unnaturalchannels.

RiparianWidthDecisionTool(RWDT) RWDTisaplanningtoolforestimatingthewidthsof riparianareasneededtosupportselectedriparianfunctionsorservices.Itisacomponentof theCAWetlandandRiparianAreaMonitoringPlan(WRAMP).Theripariandefinitionisprovided bytheNationalResearchCouncil(Brinsonetal.2002),whichtheStateWaterBoardis consideringforadoption(TAT2010).Basedonthisdefinition,theRWDTassumesthatallwater bodies,includingalllakes,ponds,riversandstreams,estuarineandmarinewaters,andall wetlandshaveadjoiningriparianareas.Italsoassumesthatdifferentriparianfunctionstendto extenddifferentdistancesawayfromthewaterbodies.Therefore,thetoolfurtherassumesthat

5 thediversityoffunctionsthatcanbeprovidedbyariparianareatendstoincreasewiththe areaswidth.

Thelikelywidthofariparianareaforsomefunctionscanbeinfluencedbythevegetation structureoftheareaandtopographicslope.Forexample,theamountofshadethatariparian areacanprovidetoitsadjoinwaterbodyisrelatedtothelengthoftheshadowoftheriparian vegetation,whichisrelatedtoitsmaximumheight.Thelikelihoodofallochthonousinputfrom riparianvegetationorfromhillslopeprocessesispositivelyrelatedtotopographicslopeofthe riparianarea,normaltoshoreofthewaterbody.TheRWDTthereforeincreasesriparianwidth forthesefunctionsasslopeincreases.

TheRWDToperatesonabasemapofsurfacewaters,usingvegetationmapsandtopographyas inputdatatohelpestimateriparianextentaroundthewaters,dependingontheriparian functionsofinterest.Forexample,ausermightselecttheshadeandallochthonousinput functions,andtheRWDTwouldgenerateamapoftheestimatedmaximumthewidthofthe riparianareasthatprovidethosefunctions,basedonvegetationheightandtopographicslope.

Forthisproject,RWDTwasusedtoestimatethemaximumriparianextentbasedonbank stability,shading,allochthonousinput,andhillslopeprocesses,onBAARIasthebasemap,and usingtheUSGS10-mnodeDEMandtheUSFSCalVegasinputdatafortopographyand vegetation,respectively.Itshouldbenotedthat,exceptintopographicallyflatareaswithvery low-growingvegetation(wheretheriparianareaasestimatedbytheRWDTforanyfunctionis verynarrow),theriparianareaincludedinaCRAMAAisonlyaportionofthetotalriparianarea depictedbytheRWDT.

GuadalupeWatershed Theboundaryoftheupperportionofthewatershedwasprovidedby BAARIandtheboundaryofthelowerportionwasbyprovidedbytheDistrict.Watershed boundariesinBAARIaregeneratedbasedonadigitalelevationmodelthatdoesnotperform wellinverylow-gradient(i.e.,flat)terrain.Forthevalleyfloorofthewatershed,theboundary mapthatwasdevelopedbytheDistrictandprovidedtoSFEI.Thisextentwasdeemedmore accuratethanthemapgeneratedbyBAARI,andthereforewasusedinthisstudy.

StormDrains ThestormdraindatasetincorporatedintoBAARIforthisprojectwasprovidedas partoftheCreekandWatershedMapoftheSantaClaraBasincreatedin2005byWilliam LettisandAssociates,Inc.,basedondatacompiledfromcitiesandcounties,plusaerialimagery datingbetween1999and2004withfieldinspection(Sowersetal.2005).

CitiesandRoads- ThesedataweredownloadedasTigerPlacesshapefilesfromtheU.S.Census BureauwebsiteinNovemberof2012(U.S.CensusBureau2012a).Thesedatawerethen filteredbySFEI-ASCtodisplayonlythecitiesandroadswithintheGuadalupewatershed.

UrbanArea ThemapoftheurbanareawasprovidedbytheDistrictasashapefiletitled URBSRV.shp.Thisistheareawithinthewatershedthatcurrentlyreceivesurbanservices,

6 facilities,andutilities,orthatisproposedtobeprovidedwithsuchserviceswithinfiveyears. ThisdatasetincludesthesoutheasternportionofthewatershedneartheLosPaseosareaofSan Jose.

ESRIRoadNetwork ThisdatasetwascreatedbyTeleAtlas(ESRI2010)andismoreaccurate thanthe2012Tigerdatawithregardtosmallroads.Itwasusedtoidentifyplaceswhereroads crossstreams.

Level-2RapidAssessmentMethods

StudyDesign Thestudydesignforthisprojectconsistedofidentifyingmanagementquestionsorconcernstobe addressed,definitionofthestudyareatowhichtheresultsshouldpertain,definitionofthesample frame(orstudyarea),identificationofdatatobecollected,sampledrawfordatacollection,andthe planfordataanalysesandreporting.

TheDistrictdefinedthestudyareaforstreamconditionassessmentsastheGuadalupeRiverwatershed drainagenetworkexcludingstormdrains,first-orderstreams,andaquaticresourcesotherthanstreams (i.e.lakes,reservoirs,,percolationponds,etc.),basedonBAARI.Theextentofthestudyarea includedStrahlerstreamorders2-7extendingfromabovetheregionoftidalinfluenceinthenorthto theupper,easternslopesoftheSantaCruzMountainsinthesouth(Figure2).Headwaterstream reaches(Strahlerstreamorder1)werenotincludedintheCRAMassessmentbecausetheyare ecologicallyverysimpleandtheCRAMRiverineModuleisnotcurrentlycalibratedtoaccuratelyassess theecologicalconditionofheadwaterstreams.CRAMscorestendtobeartificiallylowfor1 st -order channels,andtheselowscorescancreatemisleadingprofilesofoverallstreamcondition.Thestudy areawasdividedinurbanandnon-urbanareasinordertocomparetheconditionofstreamsinboth areas.

ThestudydesignfocusedonrapidassessmentusingtheCRAMRiverineModulev6.0(CWMW2012). DatacollectionwasbasedonaprobabilisticsampledrawemployingtheGeneralizedRandom- TesselationStratified(GRTS)approachdevelopedbyth eU.S.EnvironmentalProtectionAgency(EPA) fortheNationalEnvironmentalMonitoringandAssessmentProgram(EMAP;Messeretal . 1991;Stevens andOlsen2003;StevensandOlsen2004).ThisspatiallybalancedprobabilitysurveydesignusingCRAM isastatisticalwaytoestimatetheoverallconditionofstreamswithknownlevelsofconfidence.Ina probabilitysurvey,assessmentareasarerandomlyselectedfromthesampleframe,whileaccountingfor theproportionoftheresourcethateacharearepresents.Resultscanbeanalyzedtoestimatethe proportionofthetotalresourceinthesampleframethatislikelytohaveanyparticularconditionas assessedusingCRAM.Theefficiencyofthesurveydesigncanbeincreased(but,stillmaintainits unbiasednature)byensuringthesampleisdistributedamongclassesoftheresource(inthiscasethe urbanadnon-urbanareas)forwhichconditionisexpectedtodiffer.Inthisproject,assessmentareas weredistributedacrossStrahlerstreamorders2-7inurbanandnon-urbansettings.

7 Figure2. MapshowingtheGuadalupeRiverwatershedCRAMassessment studyarea,whichconsistsofnon-tidalStrahlerstreamorders2-7stratified intourbanornon-urbanareas.

ThesampledrawfortheGuadalupeRiverAssessmentisfurtherdescribedbelowandinTable2.  SampleFrame: Strahlerstreamorders2through7withintheGuadalupewatershedabovethe regionoftidalinfluencebasedonBAARI.  Stratification: urbanandnon-urbanareasofthewatershedtomakestatisticallymeaningful inferencesandcomparisonsaboutstreamconditioninthesetwosettings;basedonsample

8 design,thenumberofsitesperstreamorderisproportionaltothetotalstreamlengthwithin eachstratum(urban,non-urban).  SampleSize: 53targetCRAMriverineAssessmentAreas(AAs);alargesampledrawof1,000 candidateAAswasproducedtoprovidereplacementsforAAsthat,forwhateverreasons,could notbeassessed,andforfuturestudies.Thefinal53targetAAsincludethefirst30AAsin sequentialorder(andwereproportionallydrawnonthewholewatershed)andadditionalurban AAsadded(insequentialorder)tototal30urbanAAsand23non-urbanAAs.Thefirst30AAs drawnincludedthesixpre-existingRMCprogramsites(describedinthenextbulletbelow).  CoordinationwiththeRegionalMonitoringCoalitionofStormwaterPrograms(RMC): The studydesignwasdevelopedincoordinationwiththeRMC,amulti-countyprogramtocomply withtheNationalPollutionDischargeEliminationSystem(NPDES)MunicipalRegionalPermit. TheRMChadalreadydevelopedaMasterSampleDraw 1 foramulti-yearsurveyofstreamsin fiveBayAreacounties(includingSantaClara).TheRMCassessedsixAAswithintheGuadalupe RiverwatershedusingCRAMinthesummerof2012.TheDistrictsGuadalupeRiverAssessment wasabletointegratethesixRMCAAsintotheprojectsGRTSsampledraw.

Table2. SummaryofGuadalupeRiverAssessmentGRTSparametersforthesampledraw. StudyArea GuadalupeRiverwatershed,SantaClaraCounty,CA

FreshwaterstreamsofStrahlerstreamorders2to7intheGuadalupe SampleFrame Riverwatershed,asrepresentedbyBAARI,andabovethetidalprism

SampleStrata 2:Urban(n=30;definedbytheDistrict)andNon-urban(n=23)

SurveyDesign GeneralizedRandom-TesselationStratifiedDesign(GRTS)

ResourceType NaturalandunnaturalstreamsasdefinedinBAARI

TargetSampleSize 53AAs

Oversample atleast5xTargetSampleSize(totalsampledraw=1,000points)

Panels None(oneyearstudywithnorevisitsplanned)

ItisexpectedthataportionoftheinitiallytargetedCRAMAssessmentAreas(AAs)inthesampledraw willhavetobedroppedoromittedbecauseofinaccessibility,orinconsistencywithCRAMAAselection criteria(i.e.,theAAinthefielddoesnotfittherequiredCRAMAAconditions).AdroppedAAisreplaced bythenextAAofthesamestratumlistedintheoversample(inthiscasenon-urbanAAsarereplaced withnon-urbanoversampleAAs).ItisalsoexpectedthatAAswillbedroppedatrandom,suchthatthe AAsdrawnfromtheoversamplemaintainthespatialbalanceofthesampleacrossthesampleframe.

1 SeeRMCGRTSStreamDesignOverview10.31.11.docfromChrisSommers(EOA)forasummaryofthedesign

9 CRAMFieldAssessments TeamsofDistrictstaffweretrainedintheRiverineCRAMModule(CWMW2012aand2012b)bySFEIs CRAMtrainers(SarahPearceandAprilRobinson)inJune2012,andthenconductedCRAMfield assessmentsintheGuadalupeRiverwatershedduringJulyandAugust2012.Toevaluateanddocument thatfieldteamswereusingthesameapproachandwereobtaininginformationconsistentlywhen conductingCRAMassessments,twointer-teamcalibrationexercisesinvolvingtheDistrictandtheRMC wereconducted,oneatthebeginningandonenearthemiddleofthefieldseason.Inter-calibration resultswereevaluatedbetweenfieldteamsandagainstSFEIsCRAMtrainerstotrackconsistency(or differences)inCRAMassessmentresults.TheresultingCRAMscoresindicatedthatallfieldteamswere calibratedamongthemselvesandtheSFEICRAMtrainersscoreswithlessthantenpointsdifference betweenCRAMIndexscores.Resultsoftheinter-calibrationexercisesweresubmittedtotheDistrict previously.

DataAnalysesoftheCRAMResults StatisticalanalyseswereconductedontheCRAMfieldassessmentresultswiththe spsurvey statistical libraryandtheRprograminglanguage(version2.13.0),whichisasoftwareenvironmentforstatistical computingandgraphics( http://www.epa.gov/nheerl/arm/analysispages/software.htm ).Thefunctions includedinthe spsurvey librarywereoriginallywrittenfortheEPA'sEMAP(Messeretal . 1991)todesign andanalyzeprobabilisticsurveysofenvironmentalresources(Diaz-Ramosetal . 1995).Thefunctionsin spsurvey werewrittentoaccommodatedatageneratedbyGRTSsamplingdesigns. Spsurvey analyses fortheGuadalupeRiverAssessmentdependoninputsofCRAMresultsfromthefieldassessmentsand theoutputconsistsofcumulativedistributionfunction(CDF)plotsandpercentiletablesofCRAMscores. TheCDFplotenablestheusertovisuallyevaluateorcomparethepercentageofthestreamresourcesin thestudyareawithCRAMscoreslessthanorequaltoanygivenscorewithaknownlevelofconfidence (i.e.95%confidenceintervals).MedianCRAMscore,wherehalfofthestreamresourcesinthestudy areaarebelowthatscore,areeasilyidentifiedandcancomparesub-setsofdatasuchascomparing urbanvs.non-urbanstreamreaches.

10 Results SFEI-ASCconductedtheinitialdataanalysesfortheGuadalupeRiverwatershedstudybyutilizingBAARI andDistrictsGISdatatodescribetheextent,distribution,andownershipofstreamsinthestudyarea, andbysummarizingtheassociatedCRAMsurveyresults.ThesesummarieswillbeusedbytheDistrict tohelpassessstreamcondition,stress,andriskintheGuadalupewatershed.Theresultsareorganized byManagementQuestion.

Extent,Distribution,andOwnershipoftheStreams

1)Whatistheextentanddistributionofstreamecosystemresources? Figure3isamapofthedistributionofaquaticresourcesintheGuadalupeRiverwatershedabovethe tidesofSanFranciscoBay.TheGuadalupeRiverwatershedhasatotalof1,024miles(mi;1,648 kilometers(km)))ofstreamsand29mi(48km)ofstormdrains(channelconnectors)connectingstreams toeachother,ortootherwaterbodies.Only2%ofthestreammiles(23mior38km)consistsof unnaturalchannels,definedinBAARIasengineeredchannelsorditches(Table3).

Table3. SummaryofthelengthofsurfacechannelsandstormdrainsintheGuadalupeRiver watershedinmilesandkilometers(inparentheses).Percentagesoftotalchannellengthare alsolisted. Natural Unnatural Sub-Total Channel UrbanStorm SteamSetting Channel Channel Channels Connectors DrainsTotals Non-Urban 89587% 20.2% 89788% 2 0 899 (1,441) (4) (1,445) (3) (0) (1,448) Urban 10610% 212% 12712% 28 251 406 (170) (34) (204) (45) (404) (653) Total 1,001 23 1,024 29 251 1,305 (1,611) (38) (1,649) (48) (404) (2,101)

11 Figure3. AquaticresourcesintheGuadalupeRiverwatershedabovetheregionoftidalinfluencebasedontheBayAreaAquaticResourceInventory (BAARI;SFEI2011a),estimatedriverineriparianareas(basedonRWDT;SFEI2011b)aredepictedinyellow,andtheDistrictsurbanarea.Thestream networkincludeschannelsclassifiedinBAARIasnaturalorunnatural,plusstormdrainsthatconnectstreamstoeachotherortootherwaterbodies (referredtointhismapaschannelconnectors).Urbandrainagereferstostormdrainsthatdrainurbanrunoff.Thetwoinsetsareenlargementsshow wetlands,andriparianareasthataretoosmalltoappearonthemapatthisscale.

12 2)Whatistheextentanddistributionofstreamassociatedriparianareas? Riparianareasadjoinallwaterwaysandwaterbodiesincludingwetlands(Brinson2002).Theriparian areasvaryinwidthdependingontheirfunctions,suchaswildlifesupport,runofffiltration,inputofleaf litterandlargewoodydebris,shading,floodhazardreduction,groundwaterrechargeandbank stabilization(Collinsetal . 2006).Widerareastendtoprovidehigherlevelsofmorefunctions.Table4 presentsthemilesofstreamriparianareasoftheGuadalupeRiverwatershedbywidthclass.These classesarebasedongeneralrelationshipsbetweenriparianwidthandriparianfunctionassummarized byCollinsetal . (2006).

Table4. Milesofstream-associatedriparianareasforeachoffiveriparianwidthclassesinthe GuadalupeRiverwatershed.Riparianwidthclassesreflectnaturaldemarcationsinthelateralextentof majorriparianfunctions,assummarizedinCollinsetal . (2006).Afunctionisassignedtoawidthclassif theclassislikelytosupportaveryhighlevelofthefunction. t n r h o t s o i r t g u p e r a n n o p t r

Width e e n o n t u a t i l Miles Acres L o i t S o a e i l w F a t Class h g g a e w d t z r f a f t - i

(Km) (Ha) n f i l n h i a p l t o i d

(m) i o c k u d h d T u b s o l n o c n a o i s a l p o r i l a u e h t l % n S B S A I R F D G R W 214 518 0-10 21 (345) (209) 194 1,387 10-30 19 (312) (561) 309 6,597 30-50 30 (497) (2,670) 200 9,008 50-100 20 (322) (3,645) 107 9,224 >100 10 (172) (3,733)

Figure4isamapofthestreamriparianareasbywidthclass(seeTable4above)intheGuadalupeRiver watershed.Almostalloftheareasinthewidestclassexistintheforesteduppermostreachesofthe watershed,whereriparianareasextendlaterallytoincorporatetalltreesthatcanfallintochannels,and erosionalprocessesofsteepslopesthattendtodeliversedimentandothermaterialsdirectlyto channels.

BasedonacomparisonbetweenthecurrentoutputoftheRWDTforthevalleyfloorofthewatershed andtherecentreportonthehistoricalecologyofmuchofthesamearea(SFEI2010),Itisinferredthat thehistorical(i.e.,pre-Europeansettlement)middlereachesofthedrainagenetworkonthevalleyfloor supportedwiderareasofriparianforestthanexisttoday.Itshouldbenotedthatthehistoricalecology reportemploysadifferentdefinitionofriparianthanusedhere,inthatitfocusesonriparianforestsand assumesthatallareasofforeststhatarecontiguouswithachannelareriparianintheirfullextent,even iftheareasofforestarewiderthantypicallyrequiredtosupportafullsuiteoflocalriparianfunctions. However,thehistoricalecologyReportindicatesthattherewerehistoricallymanymoremilesof 13 riparianareaswiderthan100mthantherearetoday.Thereductioninwidthoftheriparianareasalong thevalleyfloorhasmany,mostlyanthropogenic,causes.DuringtheearlieststagesofEuropean settlement,riparianforestswereharvestedforfuelandconstructionmaterials.Someoftheremaining riparianforestswerefurtherclearedforagriculture.Laterwithdrawalsofgroundwatertoirrigate extensivefarmlandsandorchardsdepressedthegroundwaterlevels,whichcouldhavecontributedto thelossofriparianforests.Thesubsequentencroachmentofurbanizationintotheremnantsofriparian forestsfurtherreducedtheirextent.Therewasalsoasignificanthistoricalshiftfromephemeraland episodicstreamflowregimestoamoreperennialregime,duetoreservoirmanagementpractices.In theabsenceoftheothercausesforthereductionsintheextentofriparianforest,thisshiftinflow regimewouldhavelikelycausedachangeinriparianforestspeciescompositionaswellasachangein forestextent.

14 Figure4. Distributionoftheestimatedriparianareasbyfunctionalwidthclass (Collins,2006)intheGuadalupeRiverwatershed,basedonRWDT(SFEI,2011b).

ThewidthclassesshowninFigure4followfromTable2above.Thesearegenericwidthclassesthat havebeenusedinotherwatershedprofilesofriparianextent(SFEI2012,2013),andcanbeusedto comparesuchprofilesfordifferentwatersheds.Adifferentsetofclassesmightbewarrantedbasedon watershed-specificrelationshipsbetweenriparianwidth,riparianfunction,topography,andvegetation structure.SuchlocalizedrelationshipscanbebuiltintotheRWDTthroughitsuser-definedparameters, butthedevelopmentofsuchrelationshipsisbeyondthescopeofthecurrentstudy.

15 Figure5showsthelengthsofstreamsgroupedbythefiveriparianwidthclassesforurbanandnon- urbanareasofthewatershed.Almost90%ofallthetotallengthofstreamriparianareasislocatedin theless-developed,non-urbanareasintheupperportionofthewatershed,wherestreamsarenaturally muchmoreabundant(seeFigure3).Intheurbanarea,nearly65%ofthetotallengthofriparianareasis lessthan30mwide.Thissuggeststhatmostofthisriparianareaintheurban,lowlandportionofthe watershedishelpingtoprovidebankstabilizationshading,andallochthonousinputs,buttheyareless likelytoprovideflood-waterdissipation,groundwaterrecharge,orfosterdiversecommunitiesof wildlife,basedonTable4.Inthenon-urbanarea,about35%ofthetotallengthofriparianareasisless than30mwide,about30%isbetween30and50mwide,andabout35%iswiderthan50m.This suggeststhatmostofthestreamriparianareasinthenon-urbanportionofthewatershedareproviding someamountofmostofthemainriparianfunctions.Sincethestreamsinboththeurbanandnon- urbanareasaremostlyentrenched(seeTable3andrelateddiscussionofstreamcondition),their riparianareasareprobablynothelpingtodissipatefloodwaters,althoughthegravellynatureofthe substrateinthesereachesmaypromotegroundwaterrechargethroughthechannelbeds.Floodwater storage,peakstagereduction,andgroundwaterrechargearemajorriparianfunctionsofbroadactive floodplainsthathavelargelybeenlostfromtheGuadalupeRiverwatershed(seeFigures6and7plus accompanyingtext).

Figure5. Lengthsofstreamswithriparianareasbyfunctionalwidth class(Collinsetal.2006)forurbanandnon-urbanareasofthe GuadalupeRiverwatershed.

ThewidthclassesshowninFigure5followfromTable2above.Adifferentsetofclassesmightbe warrantedbasedonwatershed-specificrelationshipsbetweenriparianfunctionandriparianwidth.The totallengthofstreamriparianareasintheGuadalupeRiverwatershedisabout1,025mi(1,650km).

16 3)Whatistheextentanddistributionofnon-riverinewetlands? TheGuadalupeRiverwatershedcontainsapproximately1,249ac(505ha)ofnon-riverinewetlands,of whichabout4ac(2ha)arenatural.Approximately83%ofthewetlands(1,036acor419ha)are unnaturallacustrinewetlands(emergentwetlandsalongtheshoresofreservoirsandlivestockponds). Seventeenpercent(207acor84ha)aredepressionalwetlands(characterizedbytopographiclowsthat lacksurfacedrainage),almostallofwhichareduetohumanmodificationstothelandscape.Thesenon- riverinewetlandshaveabout795ac(322ha)ofriparianareasadjacenttothem,basedontheRiparian WidthDecisionTool.Slopewetlands(i.e.,wetlandsdependingongroundwaterandlackingstanding surfacewater)compriseonlyabout0.1%ofthenon-riverinewetlandsinthewatershed.

Themoderndistribution,abundance,anddiversityofstreamsandwetlandsaremuchdifferentnow thantheywerehistorically(circa1850). Figures6&7 comparethehistoricalandmodernlandscapesin thelowerportion(valleyextent)oftheGuadalupeRiverwatershedwherehistoricalecologymapshave beendevelopedandareavailableinGIS.Thehistoricaldatawerecreatedforthe HistoricalVegetation andDrainagePatternsoftheWesternSantaClaraValley (SFEI2010).ThemoderndataarefromBAARI plusstormdrains(Sowers etal. 2005).Thehistorical95mi(153km)ofnaturalstreamshavebeen reducedto54mi(87km)ofnaturalstreamsand23mi(37km)ofunnaturalstreamstoday,notincluding stormdrains,ofwhichtherearemorethan251mi(404km).Thiscomparisonhighlightsthedegreeto whichthewatershedhasbeenartificiallyplumbedtoincreasedrainage.Thehistoricalwatershedhad muchmorewetlandsandmostoftheseweredepressionalwetlandsandslopewetlands(characterized inthe HistoricalVegetationandDrainagePatternsoftheWesternSantaClaraValley reportasAlkali Meadow,WetMeadow,WildRoseThickets,WillowGroves,andFreshwaterMarsh).Thedepressional wetlandsrepresentoff-channelwaterstorageandrecharge,andslopewetlandsrepresentlargeareasof near-surfacegroundwaterlevels.

17 r e e e h h t t d r y n o l i - n s w o e o ; c l s r f n u i o o a s s r e e d l r i c m m i r t o e a t r u n s o r q d e a m n d ) a o w B e s l f M p e . a a n B m n d ( a e h n d r c u l e l c d a r n o i u t m y l a b d n a n n b a u o ) f r A o p s p e e a l p i a m c ( m s ) e d 0 r n 5 o a 8 l m 1 l a y a c n i c r r a i o c t m ( s i l s a h e c d i e r u l h o c T t s n i i . h y y l e f l n l o i a a n v t r o i a e t r c a u l e b C i p r l t a a a s t c c i i s n d r d a o S n e t a s h l e i t h H n f t r o . e n i A n d h o o t i s i m r w a e r p h e t v m i d o R n C e a p . s l 6 u l e a e n r d n u a a g u i h F G c

18 Figure7. Comparisonofhistorical(circa1850)andmodernstream lengthsfortheGuadalupeRivervalleyfloorbasedondataprovidedby the HistoricalVegetationandDrainagePatternsoftheWesternSanta ClaraValley (SFEI . 2010)andBAARI.

ThecomparisonofstreamlengthssummarizedinFigure7includesonlytheareasinthevalleyfloor wherethehistoricalandmoderndatasetsoverlap(asdepictedinFigure6)and,whilethevalleyflooris verysimilartothemodernurbanarea,thetwoarenotexactlythesame.TheinsetinFigure6shows theextentofthevalleyfloorcomparedtotheurbanareaandwholeGuadalupeRiverwatershed.

4)Whoownsthestreams? Figure8showsthattheDistrictownslandsadjoiningsurfacewatersintheGuadalupeRiverwatershed. TheDistricthasfeetitletoonly8%(132kmor83mi)ofthetotalstreamlength.Districtlandsare mostlydistributedthroughouttheportionofthestreamnetworkthatisbelowtheheadwatersofthe majorreservoirs,withlargertractsadjacenttothereservoirs.

19 Figure8. MapoflandsownedbytheDistrict(feetitle)thatareadjacenttostreamsintheGuadalupe Riverwatershed.

20 Figure9showstheproportionsofstreamlengthsineachofthefivemunicipalitieslocatedinthestudy area.Thereare391km(243mi)ofstreamswithinthosemunicipalities,ofwhich94%(368kmor229 mi)arewithintheboundariesofSanJoseandLosGatos,and6%(23kmor14mi)arewithinthe boundariesofCampbell,MonteSereno,andSantaClaracombined.

Figure9. ProportionsofstreamsintheGuadalupe watershedwithinmunicipalboundaries.

5)Howandwherearethestreamsinterrupted? ThestreamnetworkanditsripariancorridorintheGuadalupeRiverwatershedisinterruptedbydams creatingwaterstoragereservoirs,dropstructuresforflowmanagement,stormdrainsconnecting streamsegments,andamultitudeofhighwayandroadcrossings.Figure10showsthelocationsof someoftheseinterruptionsforStrahlerstreamorders1-7.Intheupper,lessdevelopedportionofthe watershed,individualroadscrossbackandforthacrossstreams,creatinglonglinesofcrossingson Figure10thattracetheroadways.Inthelowerwatershed,numerouscrossingsrepresentseparate roadsthatarepartoftheurbangrid,including5majorhighways(U.S.Route101,Interstate880andCA Route17,CARoute87,Interstate280,andCARoute85),someofwhichcrosstherivermultipletimes. Manybridgesaremultiplelaneroads.TheGuadalupeRiverflowsthroughtheurbancenterofSanJose withareasofconcretelinedchannel,floodbypasses,anddowntownparks.

21 Figure10. Mapofstormdrains(channelconnectors),highwaysandroadsthatinterruptthestream networkwithintheGuadalupeRiverwatershed.

22 StreamEcosystemConditionBasedonGuadalupeRiverCRAMAssessments Atotalof53AAsusingCRAMwerespreadthroughoutthewatershedfromtheedgeofthebrackishtidal zoneatTasmanDrivetosecondorderstreamsintheSantaCruzMountains.Districtstaffassessed47 AAs(24urban,23non-urban),whereasRMCassessed6AAs(urban).Toreachthistargetsamplesize,a totalof121candidateAAswereconsidered:61weredroppedbecauseofaccessissues(mostlydueto landownerconcerns).Only7weredroppedbecauseofinconsistencieswithAAselectioncriteriaforthe CRAMRiverineModule,indicatingthatthesampleframewasreasonablyaccurate.

Figure11 showsthedistributionofthe53AAsthatwereassessedusingCRAMandlocationsoftheAAs thatwereconsidered,butdroppedforreasonsmentionedabove(droppedAAsaremarkedwithanx). MostofthedroppedAAswerelocatedinthenon-urban,upperreachesofwatershed.

Figure11. Mapshowingthedistributionofassessedandrejected CRAMRiverineAAswithintheurbanarea(northshadedportionof thewatershed)andthenon-urbanarea.

23 CRAMprovidesnumericalscoresfortheoverallpotentialofawetlandorriparianareatoprovidehigh levelsoftheecologicalservicesexpectedoftheareagivenitstype,condition,andenvironmental setting.CRAMscoresarebasedonvisibleindicatorsofphysicalandbiologicalformandstructure relativetostatewidereferenceconditions.StreamecosystemconditionsintheGuadalupeRiver watershedwereevaluatedusingtheDistrictsandRMCsCRAMfieldassessmentsat53AAsduringthe summerof2012.

ToinvestigateecosystemconditionintheGuadalupeRiverwatershedthe2012CRAMassessmentswere analyzedto:

1)evaluatetheoverallecologicalconditionofthestreamsinthewholewatershed,comparethe urbanandnon-urbansettings,andcomparetheconditionstootherCRAMassessmentstudies, 2)reviewtheCRAMAttributesandstressorcheck-liststoidentifypotentialstressorsthatmightbe impactingstreamhealth,and 3)calculatetheGuadalupeRiverwatershedbaselineLevelsofService(LOS)ofthestreamsusing theDistrictsEMAFecologicalserviceindexasdescribedintheCoyoteCreekwatershed2010 CRAMassessmentreport(EOAandSFEI2011).

1)Whataretheconditionsofstreamecosystemresources? StreamconditionswereassessedbasedonCRAMforthewholewatershed,andforitsurbanandnon- urbanareas.Table5presentstheminimumandmaximumCRAMIndexandAttributeScores,plusthe median,mean,andstandarddeviation(Std.Dev)valuesforthescoresbasedontheweightedsurvey results.Basedonthissurvey,itisexpectedthatanyrandomlyselectednewAAhasa50%chanceof gettingascoreeitheraboveorbelowthemedianscore(seeFigure12foravisualpresentationofa medianscore).TheMeanandStandardDeviationsoftheIndexScorescanbeusedtotestfor differencesbetweenthepopulationsofscoresthattheyrepresent.

Table5. SummaryofCRAMIndexScoresfortheGuadalupeRiver watershedbasedontheCRAMsurvey2012. WholeWatershed(WS)n=53,Urban(n=30),Non-urban(n=23) Std. MinMaxMedianMean Dev OverallCRAMScore WholeWS3484716811 Urban3484626313 Non-urban628472725 BioticStructure WholeWS3186676415 Urban3186676317 Non-urban3686676413 BufferandLandscapeContext WholeWS25100797718 Urban25100676615

24 Std. MinMaxMedianMean Dev Non-urban46100878714 Hydrology WholeWS4292707213 Urban4292626515 Non-urban479273787 PhysicalStructure WholeWS2588495817 Urban2588465620 Non-urban3888515914

Figure12showstheCDFplotofCRAMIndexScores 2 fortheGuadalupeRiverAssessmentstudyarea. TheCDFestimatestheproportionoftotalstreamlengthwithCRAMScoreslessthanorequaltoagiven scorecalculatedusingtheweightedsurveyresults.Forexample,asillustratedinFigure12,the watershedsurveyindicatesthat50%ofthetotalstreamlengthhasa95%chanceofhavingaCRAM IndexScoreof71orlower.TherangeofCRAMIndexScoresinthewholewatershedwas34-84,the meanIndexScorewas68,andthemedianIndexScorewas71(basedontheweightedsurveyresults).

95% Confidence Intervals

Halfthestreammiles haveaCRAMscoreof71orless

Figure12. Plotofthecumulativedistributionfunction(CDF)ofCRAMIndex ScoresfortheGuadalupeRiverwatershed(n=53),showingthe95% confidenceintervals.

2 TheCRAMIndexScoreissynonymouswiththeOverallCRAMScore.Thesearethetermsusedtodescribethescoreacrossall attributesforanAA.

25 Comparisonsofstreamconditions(asestimatedusingtheCRAMRiverineModule)weremadebetween; (1)urbanandnon-urbanareasoftheGuadalupeRiverwatershedstudyarea,(2)GuadalupeRiverand CoyoteCreekwatersheds(basedonresultsoftheCoyoteCreekwatershedCRAMassessment conductedin2010),and(3)GuadalupewatershedandastatewidedatasetdevelopedbytheCalifornia SurfaceWaterAmbientMonitoringProgram(SWAMP)PerennialStreamsAssessmentProgramin2008. Additionally,CRAMattributescoresandmetricsfromtheGuadalupeRiverwatershedwereanalyzedto helpexplaindifferencesinCRAMIndexScores,andtoprovideadditionalinsightsintospatialpatternsin streamconditionthroughoutthewatershed.TheESIsasdefinedbyEMAFarealsopresented.

CRAMIndexScoreshaveaprecisionof6points(CWMW2012c).Thismeans,intheabsenceofany sampleerror,differencesbetweenanytwoCRAMIndexScoresof6pointsorlessarewithintheerrorof themethod,andshouldnotbeconsideredtorepresentsignificantdifferencesincondition(personal communication,statewideL-2CommitteeoftheWetlandMonitoringWorkgroup,2012).Therefore,in thisstudy,individualscoresdifferingby6pointsorlessareregardedassimilar.The95%confidence limitswereusedtocompareCDFs.PortionsofCDFshavingoverlappingconfidencelimitsareregarded asstatisticallysimilar.

Figure13presentsCDFplotscomparingCRAMIndexScoresforstreamsintheurbanandnon-urban areasoftheGuadalupeRiverwatershed.CRAMIndexScoresinthesedifferentareasrangedfrom34- 84,andfrom62-84,respectively.MeanIndexScoreswere63and72fortheurbanandnon-urbanareas, respectively.MedianIndexScores(i.e.,correspondingtothe50 th percentile)were62and72, respectively.Scoresforthetwoareastendtobesimilarabovetheirmedianscores,convergingona commonmaximumscore,anddissimilarbelowtheirmedianscores,divergingtodifferentminimum scores.Theplotsindicatethatthemedianconditionislowerfortheurbanstreamsthanforthenon- urbanstreams.Scoresabovethe50 th percentilearecomparableforbothareas(i.e.,theconfidence limitsforthetwoCDFsoverlapsubstantially,andtheirmaximumscoresareessentiallythesame(80 pointsor80%ofthemaximumpossiblescoreinbothcases).However,urbanstreamsbelowthe medianscoretendhavemuchlowerIndexScores,andtheminimumscorefortheurbanareaisalso muchlowerthantheminimumscoreforthenon-urbanarea(34vs.62,respectively).Ifweconsider CRAMIndexScoresgreaterthan63torepresentmoderately-goodtogoodstreamhealth),thenstream healthismoderately-goodtogoodforallmilesofnon-urbanstreams,andforabouthalfofthemilesof urbanstreamsinthewatershed,andpoortomoderately-poorfortheremainderofurbanstreammiles.

26 Increasing similarity

De creasing similarity

Figure13. Plotsofthecumulativedistributionfunctions(CDFs)ofCRAMIndex Scoresfortheurban(n=30AAs)andnon-urbanstreams(n=23AAs)ofthe GuadalupeRiverwatershed.

Ofthe30CRAMassessmentsintheUrbanarea,19(63%)werelocatedonDistrictownedlands.CRAM IndexScoresfortheDistrictowned(n=19)andnon-Districtowned(n=11)assessmentintheurban settingrangedfrom34-81and50-83respectively.MeanIndexScoreswere59and70fortheDistrict ownedandnon-Districtownedurbanstreams,respectively.MedianIndexScores(i.e.,correspondingto the50 th percentile)were61and73,respectively.

Figure14comparesplotsofCDFsforCRAMIndexScoresfromtheGuadalupeRiverwatershedtothe CoyoteCreekwatershed(EOAandSFEI-ASC2011).BothsurveysemployedthesameGRTSsampling design.ThecomparisonindicatesthatstreamhealthisuniformlybetterintheCoyoteCreekwatershed thanintheGuadalupeRiverwatershed.Thatis,CDFplotsareparallelandgenerallyseparatedbya distancegreaterthantheir95%confidencelimits.Theminimum,median,andmaximumIndexScores tendedtodifferbyabout9points . ThisislikelyduetotheGuadalupeRiverwatershedbeingover50% urbanandCoyoteCreekwatershedonlyabout28%urban(SCVWD2007).

27 Figure14. Plotsofthecumulativedistributionfunctions(CDFs)ofCRAMIndex ScoresfortheGuadalupeRiverwatershed(n=53)andCoyoteCreekwatershed (n=77) .

Figure15comparesCRAMIndexScoresfromtheGuadalupeRiverwatershedtothoseprovidedbythe 2008statewidevalidationoftheCRAMRiverineModule(SCCWRP,2008).Thecomparisonindicates thathealthissimilarlymoderatetolowforhalfofthestatesstreamsandabouthalfoftheGuadalupe Riverwatershed,althoughpoorerconditionstreamsintheGuadalupewatershedareinslightlybetter conditionthantherestofthestate.Theminimumscoreisslightlylowerstatewidethanforthe Guadalupewatershed.However,scoresforthestateandGuadalupewatersheddivergeabovea commonmedianscore(i.e.,thescorecorrespondingtothe50 th percentile),suchthatthemaximum scoreismuchhigherforthestatethanitisfortheGuadalupewatershed.Inotherwords,whilemedian scoresareessentiallythesame,theminimumscoreislowerandmaximumscoreishigherstatewide thanforGuadalupeRiverwatershed.Itshouldbenotedthatthestatewidedatasetincludesscoresfrom someoftheleastdisturbedandmostdisturbedstreamsinthestate.

28 Figure15. Plotsofcumulativedistributionfunctions(CDFs)forCRAMIndex ScoresfortheGuadalupeRiverwatershed(n=53)andStatewideRiverine Assessment(n=90;SCCWRP2008).

TheCDFplotsofCRAMscorescanbesubdividedintocategoriesorclassesofhealthstatus.Thisis especiallymeaningfulifthenumericalthresholdsbetweenclassescorrespondtocriticallyimportant differencesinlevelsofecologicalservice.SuchthresholdshavenotyetbeendeterminedforanyCRAM module,althoughitisexpectedthatthresholdswillbecomeevidentasCRAMvalidationstudies accumulatethroughoutthestate.

Inthemeantime,twosimpleapproachestoclassifyingstreamhealtharereadilyavailable.One approachistosimplydividetherangeofpossiblescoresintoequalintervals.Forexample,the75CRAM pointsrepresentedbythemaximumpossiblerangeofindexscores(i.e.,25-100)canbesub-dividedinto fourequalintervalsof18.75pointseach.Thisapproachignoresthefrequencydistributionofthescores (i.e.,theshapeoftheCDF)andthereforetherangeofscorescomprisingeachequalintervalclassdoes notvaryamongsurveys.Thisapproachcanbeusedtocomparedifferentwatersheds(orthesame watershedovertime)basedonthenumberofscoresbelongingtoeachhealthclass.

AnotherapproachistousethequartilesoftheactualCRAMIndexScoresashealthclasses.Usingthis approach,therangeofscorescomprisingeachintervalcanvaryamongsurveys.Thisapproachcanbe usedtocomparewatersheds(orthesamewatershedovertime)basedontheirdifferentquartilescores. Forexample,afirst(25%)quartilevalueof30representspoorerconditionthanafistquartilevalueof

29 40.However,thisapproachisnotusefulunlessofthequartilesrepresentrangesinscoresthatare numericallygreaterthantheprecisionofthemethod.Iftherangeofscorescomprisingaquartileisless than6points(theprecisionofthemethod),thentheAAsthatareclassifiedintothatquartilemightjust aslikelybelongtooneortheotheradjoiningquartile.Thisisthesituationwiththeresultsofthe GuadalupeRiverwatershedsurvey.Thesecondandthirdquartilesareverynarrow,limitingthe usefulnessofthesequartilesasclassesofhealthstatus.Forthisreason,thequartileapproachwasnot usedinthisassessment.

Figure16showsthespatialdistributionofAAsrepresentingfourhealthclassesdefinedbyequal intervals(themaximumpossiblerangeofCRAMIndexScores).Usingthisapproach,andforthe purposesofthisreport,scoreslessthan44CRAMpointsrepresentpoorcondition;scoresbetween44 and62representmoderatelypoorcondition;scoresbetween63and81representmoderatelygood condition;andscoresgreaterthan81representgoodcondition . Basedonthesehealthclasses,about two-thirdsofthemilesof2 nd 7th orderstreamsintheGuadalupeRiverwatershedareinmoderately goodcondition,andonlyabout4%areingoodcondition(seepiechartinFigure17).Thecasesofpoor ormoderatelypoorcondition(28%)arenotrestrictedtotheurbanareaofthewatershed.However, almostalltheAAsinthenon-urbanarearepresentmoderatelygoodcondition.

30 Figure16. DistributionofCRAMAAsbasedonequalintervalhealthclasses. BasedonthemaximumpossiblerangeofScoresdividedintoequalintervals of18.75pointseachsiteswerecategorizedaspoor(red),moderatelypoor (orange),moderatelygood(blue)orgoodhealth(green).Thepiechart indicatesthepercentageofstreammiles(Strahlerstreamorders2-7) representedbyeachhealthclass.

31 ThedistributionofCRAMIndexScoresamongtheequalintervalclassesofhealthstatusdiffered betweentheGuadalupeRiverwatershedandCoyoteCreekwatershed(seeTable6).

Table6. StreamhealthconditionbasedontheequalintervalhealthclassesfortheGuadalupeRiverand CoyoteCreekwatersheds . PercentofstreammilesbyequalintervalhealthclassCRAMIndexScores Watershed PoorModeratelyPoorModeratelyGoodGood RangeMedian GuadalupeRiver32568434-8471 CoyoteCreek 0 14 60 26 44-92 77

2)WhatarethelikelystressorsimpactingstreamconditionbasedonCRAM? SomediagnosticdetailsofstreamhealthfortheGuadalupeRiverwatershedwererevealedby examiningtheAttributeScoresthatcomprisetheCRAMIndexScores.Figure17comparestheIndex andAttributeScoresbetweentheurbanandnon-urbanareasofthewatershed.Thiscomparison involvesavisualinspectionoftheamountofoverlapbetweenerrorbarsforpairsofscoresrepresenting thesameAttribute,butindifferentareas(i.e.,urbanvs.non-urban).Basedonthisinspection,the higherIndexScoresfornon-urbanareasismainlyduetodifferencesintwoAttributes;Bufferand LandscapeContext,andHydrology.

Figure17. MedianCRAMIndexandAttributescoresforurbanarea(n=30), non-urbanarea(n=23)andentireGuadalupeRiverwatershed(n=53) . Error barsrepresenttheupperandlower95%confidenceintervals.

Figure18comparesCRAMIndexandAttributeScoresfortheGuadalupeRiverandCoyoteCreek watersheds.ThedifferencesbetweenthetwowatershedsaremostpronouncedfortheBufferand 32 LandscapeContext,andtheHydrologyAttributes.ThoseAttributesfromtheGuadalupeRiverwatershed assessmentscoredsignificantlylowerthanthesameAttributesassessedintheCoyoteCreekwatershed. Asmentionedabove(Figure14),thiscouldbepartiallyexplainedbythefactthattheGuadalupeRiver watershedis51%urbanwhiletheCoyoteCreekwatershedisonly28%urban.

Figure18. MedianCRAMIndexandAttributescoresfortheGuadalupeRiver watershed(n=53)andtheCoyoteCreekwatershed(n=77).Errorbarsrepresent theupperandlower95%confidenceintervals.

Tobetterunderstandthedifferencesinscoresbetweenurbanandnon-urbanareasfortheBufferand LandscapeContext,andHydrologyAttributes,theircomponentMetricscoreswereexaminedforthe GuadalupeRiverwatershed(Table7).Asexpected,thedifferenceintheBufferandLandscapeContext scoresisduetosmalland/orrelativelylowqualitybuffers.

ThedifferenceinHydrologyAttributescoresbetweenurbanandnon-urbanareasoftheGuadalupe Riverwatershedisduetounnaturalwatersourcesintheurbanarea(Table7).AnyriverineAAthatis nearbyanddownstreamfromadamlosesatleast16pointsontheHydrologyAttributescore.The GuadalupeRiverhassixmajorreservoirsthataremanagedforwatersupply,,andother beneficialuses.TherelativelylowscoresfortheHydrologyAttributereflectthisabundanceofdams.

Itshouldalsobenotedthatforbothurbanandnon-urbanareasoftheGuadalupeRiverwatershed,the streamsareatleastmoderatelyentrenched(i.e.,theylackeffectivefloodplains),basedonthe HydrologicalConnectivitymetricoftheHydrologyAttribute.Thisismostlikelyalegacyconditionof pastlanduses(i.e.,intensiveagricultureandinitialyearsofdamoperation),plusmorerecentincreases inflowduetourbanization,andincreasedconfinementoftheflowduetoartificiallevees.Thesefactors togethertendtocausechronicchannelincision,resultinginchannelentrenchment. 33 ThemoderatelyhighscoresfortheChannelStabilitymetricsuggestthatchannelincisionhasmostly stoppedinurbanandwellasnon-urbanstreams.Simplystated,theentrenchedchannelsseemtobe stabilizing,wherestabilityisdefinedbynonetaggradationordegradation(i.e.,raisingorloweringof thechannelbed)overperiodsofyears.Thisapparenttrendtowardstabilizedconditionsmightresult frommanyfactors.Thechannelsmightbeachievingequilibriumwiththeprevailing,albeitmodified, flowregimesandsedimentsupplies.Itmightalsoresultfromrepeatedexcavationstoremoveexcess sedimentasitaccumulates.Areasupstreamofgradecontrolstructures,suchasculvertsandcement apronsbeneathroadcrossing,wheresedimenthasaccumulatedtocapacityandisnotbeingremoved, canalsobeassessedasstableaccordingtoCRAM.However,CRAMAAsarenotsupposedtoinclude areasdirectlyaffectedbygrade-controlstructures,unlesssuchareasaretargetedforassessment,and theytendtogetlowscoresforthePhysicalStructureandBiologicalStructureAttributes.Thesurvey resultsfortheseAttributesandthelocationsofAAsrelativetoroadcrossingsdonotindica tethatgrade controlstructureshaveinfluencedtheapparenttrendtowardchannelstability.

Table7. MeanmetricscoresfortheBufferandLandscape ContextAttributeandfortheHydrologyAttributeinurban andnon-urbanareasoftheGuadalupeRiverwatershed. Valuesarethemeansofthefinalmetricscores,whichare calculatedaspercentagesofthemaximumpossiblescores. MetricMeanScore Non- BufferandLandscapeContextAttributeUrban urban AquaticAreaAbundance 83 92 PercentofAAwithBuffer 66 100 AverageBufferWidth 33 92 BufferCondition 42 83 Non- HydrologyAttributeUrban urban WaterSource 58 100 ChannelStability 75 83 HydrologicConnectivity 58 50

ThefrequencyatwhichvariousstressorswereidentifiedassignificantispresentedinTable8.This projectwasdesignedtocomparetheconditionsofstreamresourcesforurbanandnon-urbanareasof theGuadalupeRiverwatershed.Asaresult,theanalysestendtopointtourbanstressorsasthelikely causeofconditionproblems.Itshouldbenotedthattherelativeimportanceofdifferentstressors deemedsignificantisdisregardedbyCRAM 3.Itshouldalsobenotedthatmanyoftheurbanstressors areubiquitous,intrinsictourbanenvironments,andverydifficulttoeliminate.Thenegativeeffectsof

3 TheCRAMStressorChecklistwillbereplacedin2014withanumericalindexthatreflectsboththemagnitudeand abundanceofstressors.

34 somestressorscanbemitigated,however,throughriparianbuffersand/orchangesinstream managementpractices(Table8).

Itseemsevidentfromthesurveyresultsthatsubstantialstreamhealthbenefitscanberealizedthrough theenhancementofriparianareasasbuffers.Thedesignofthesebufferswillvarydependingonthe stressors,butoverallincreasesinriparianwidthandstructuralcomplexityarelikelytobeverybeneficial toimproveecologicalconditions,especiallyifthebufferincreasestheareaofactivefloodplains.

Table8. SummaryoftheCRAMStressorChecklistfor46SCVWDAAs 4 (23UrbanAAsand23Non-urban AAs)fortheGuadalupeRiverwatershed. Sensitivityto %ofAAs %ofAAs Sensitivity In-steam AttributeStressor Non- Urban toBuffer Management urban Practices Urbanresidential 1374X Transportationcorridor 948X Industrial/commercial 030X Passiverecreation(bird-watching,hiking,etc.) 013XX Activerecreation(off-roadvehicles,mountain 09X biking,hunting,fishing) Sportsfieldsandurbanparklands(golf 49X courses,soccerfields,etc.) Dams(orothermajorflowregulationor Buffer& 44X disruption) Landscape Militarytraining/Airtraffic Context 04 Drylandfarming 00X Intensiverow-cropagriculture 00X Orchards/nurseries 00X Physicalresourceextraction(rock,sediment, 40X oil/gas) Ranching(enclosedlivestockgrazingorhorse 40X paddockorfeedlot) Rangeland(livestockrangelandalsomanaged 00X fornativevegetation) Non-pointSource(Non-PS)discharges(urban 061X runoff,farmdrainage) Engineeredchannel(riprap,armoredchannel 443X bank,bed) Hydrology Dike/levees 030X Flowobstructions(culverts,pavedstream 417X crossings) Activelymanagedhydrology 413X

4 OneofthefortysevenAAsenteredintoeCRAMbytheSCVWDdidnothaveaStressorChecklistentry,andthe RMCAAStressorChecklistswerenotavailableatthetimeofthisreport.

35 Sensitivityto %ofAAs %ofAAs Sensitivity In-steam AttributeStressor Non- Urban toBuffer Management urban Practices PointSource(PS)discharges(POTW,other 49X non-stormwaterdischarge) Hydrology Ditches(agriculturaldrainage,mosquito 04XX cont. control,etc.) Flowdiversionsorunnaturalinflows 04X Weir/dropstructure,tidegates 04X Dams(reservoirs,detentionbasins,recharge 00XX basins) Dredgedinlet/channel 00 Grading/compaction(N/Aforrestoration 2639X areas) Vegetationmanagement 939XX Trashorrefuse 1330XX Physical Heavymetalimpaired(PSorNon-PSpollution) 426X Structure Excessiverunofffromwatershed 022XX Nutrientimpaired(PSorNon-PSpollution) 013X Bacteriaandpathogensimpaired(PSorNon- 09X PSpollution) Pesticidesortraceorganicsimpaired(PSor 04X Non-PSpollution) Excessivesedimentororganicdebrisfrom 00XX watershed Fillingordumpingofsedimentorsoils(N/Afor 40XX restorationareas) Plowing/Discing(N/Aforrestorationareas) 00X Lackoftreatmentofinvasiveplantsadjacent 1730X toAAorbuffer Mowing,grazing,excessiveherbivory(within 026X AA) Lackofvegetationmanagementtoconserve 1322X naturalresources Excessivehumanvisitation 1317X Predationandhabitatdestructionbynon- Biotic nativevertebrates(e.g.,Virginiaopossumand 913X Structure domesticpredators,suchasferalpets) Treatmentofnon-nativeandnuisanceplant 09X species Pesticideapplicationorvectorcontrol 04X Biologicalresourceextractionorstocking 00X (fisheries,aquaculture) Removalofwoodydebris 40XX Treecutting/saplingremoval 90XX

36 3)WhataretheLevelsofService(LOS)forstreamecosystemresources? TheDistrictsEMAFincludesrecommendationsforhowtoestablishLevelsofService(LOS)forstream ecosystemstohelptheDistrictperiodicallyassessprogresstowardsmeetingstewardshipobjectivesand theappropriatenessofassociatedstrategiesandmeasurableobjectives.TheseLOScanbeestablished ineachwatershedbyanalyzingresultsofambientsurveysofstreamecosystemconditions.TheDistricts EMAFPilotStudyand2010CoyoteCreekwatershedassessment(EOAandSFEI2011)developedand describedhowtheDistrictcoulduseasummarystatisticcalledtheEcologicalServicesIndex(ESI)to trackstreamconditionatthewatershedandsub-watershedscales.

UsingtheCRAMIndexScoresfromtheGuadalupeRiverwatershedassessment,theESIwascalculated andpresentedinFigure19forthewatershedasawhole(A),andtheurban(B),andnon-urban(C)areas separately.TheESIrepresentsthearea-weightedaverageofallCRAMIndexScoresinthesurveyand canbevisualizedastheareatotheleftoftheCDFcurve(showninlightgreeninFigure19).Itis calculatedasthesummationoftheproductsofindividualIndexScoresandtheproportionofthestream lengththattheyrepresent(seethe2010CoyoteCreekwatershedassessmentreport(andappendix)for moreinformation(EOAandSFEI2011).

ESI=68

ESI=63

ESI=72

Figure19. EcologicalServiceIndex(ESI)forthe GuadalupeRiverwatershedasawhole( A,n=53),andfor theurban( B,n=30)andnon-urban( C,n=23)areas.

37 WatershedscanbecomparedbasedontheirESIs.Forexample,ESIsfortheGuadalupeRiverand CoyoteCreekwatersheds(asawhole)were68and75,respectively.Asmentionedabove,thiscouldbe explained(inpart)bythedifferencesintheurbanextentinthetwowatersheds.ESIscanbecompared overtime,althoughnosuchdatayetexist,oramongsamplestrata.Forexample,ESIsforurbanand non-urbanareasoftheGuadalupewatershedwere63and72,respectively(Figure19).

TheESIcanalsobeusedtoguidewatershedstewardship.Forexample,theCRAMsurveyresultscould beadjustedtotestsensitivityoftheESItostewardshipactions,suchasstreamrestorationorriparian areaenhancement,basedonassumptionsaboutthescoresandpercentageofthestreamsystemthat mightberestored.SuchanalysesofalternativescenarioscanhelpestablishLOStargets.

StreamConditionRisks

1)Whatarethelikelysourcesofrisktostreamecosystemresources? Asstatedabove,conditionsaregenerallynotasgoodfortheDistrictsstreamsasforotherstreamsin thewatershed.However,itwouldbemisleadingtoconcludefromtheseresultsthattheDistrictis necessarilyatfaultfortheconditionsofitsstreams.MostoftheDistrictsstreamsarelocatedinurban areasthatgenerallyhavepoorerconditionsduetolandusesandstressorsoriginatingoutsideofthe Districtslands.TheabilityoftheDistricttoimprovetheconditionsofitsurbanstreamsistherefore limited.

Theresultsofthissurveysuggest,however,thattheDistrictcouldimprovetheconditionsofitsstreams withintheGuadalupeRiverwatershedbyenhancingthewidthandstructuralcomplexityoftheir riparianareas,especiallyiftheenhancementsincludeincreasingtheareaofactivefloodplains.The Districthasalreadybegunsuchactivities.Floodplainswithriparianhabitatswereestablishedin downtownSanJosebetweenColemanAvenuetoInterstate880,andfloodplainshavebeenwidened fromInterstate280toEdwardsAvenue,andsimilareffortswillextendup-riverofWillowStreetinthe nearfuture.Partnershipswithotherlandmanagementagencies,localinterestgroups,andprivateland ownerscouldgenerateeffectivestreamandriparianenhancements.

Therelationshipbetweenriparianareadesignandstressreductionhasbeenintensivelystudied(Collins etal. 2006andcitationstherein).Substantialimprovementsinsomeparametersofwaterchemistrycan berealizedthroughmoderateincreasesinriparianwidthandcomplexity,especiallyinlow-gradient environments.Ecologicalservicesofstreamcorridors,suchasthesupportofriparianwildlife,canbe enhancedthroughcarefullandscapingofpublicandprivatelandsthatabutstreamchannels.Low ImpactDevelopment(LID)thatreduces,retards,andfiltersurbanandagriculturalrunoffcanhave significantpositiveeffectsonin-streamconditions,especiallyiftheLIDiscarefullytunedtothe environmentalsettingandstressors.Onepossiblelong-termmanagementactiontoconsideristhe eliminationofchannelbankrevetmentwhereverfeasible,suchthatentrenchedchannelscannaturally developfloodplainsovertime.Therearemanypossibleapproachestoenhancingthecapacityfor existingriparianareastobufferstreams,andtoincreasetheextentofriparianbuffers.TheDistrict 38 mightconsideracomprehensivestrategytoassignriparianenhancementofdifferentkindsfordifferent reachesofthestreamsystem,basedontheparticularstressorsofconcern.

Itshouldalsobenotedthat,sincemostDistrictsstreamsarelocatedinthedownstream,urbanareaof thewatershed,theyaresubjecttotheeffectsoftheDistrictsreservoirs.Thisstudydoesnotassessthe effectsofthereservoirsonstreamconditions.However,itcanbeassumedthatanychangeinflow regimeresultingfromachangeinreservoiroperationwilltriggerchangesinstreamstructure,andthat anydecreasesinthephysicalstreamstructureorstabilitywouldlikelybedeleterioustostreamhealth.

2)Whatisthelikelihoodthatsourcesofriskmayimpactstreamecosystemconditions? Thestreamshaveapparentlyadjusted,ornearlyadjusted,topastincreasesinrunoffcausedbythe adventofEuropeangrazingpracticesandsubsequentlyurbanization,andtoregulatedflows downstreamofthereservoirs.Mostofthestreamsaremoderatelytodeeplyentrenched,however. Thislimitstheabilityofflowstoaccessfloodplainsthatcouldhelptomoderatefloodrisks,storefine sediment,andfilterothercontaminants.Entrenchmentalsoincreasesthesensitivityofthechannelsto furtherincreasesinflow.Ageneralincreaseineitherpeakstormflowsormeanannualflowsthatare confinedtothechannelwilltendtocausefurtherincision,whichinturnwouldincreasethesizeofflows thatwouldbeconfinedbythechannel.Thispositivefeedbackcouldtriggeraperiodofchronicincision. Ifthechannelsencounterresistantsubstrate,thenincisioncouldbereplacedbylateralchannel migration,withcoincidenterosionofthechannelbanks.Thelikelihoodofbankerosionorcollapse increases,however,whetherornotthechannelsmigrate,giventhattheincreasedheightofthebanks increasestheirinstability.

Thereisastronglikelihoodthaturbanrunoffwillcontinuetohavenegativeeffectsonwaterquality, unlesswaystoretainandfilterrunoffbeforeitentersthestreamnetworkareimplemented. Furthermore,encroachmentofurbandevelopmentintohistoricalriparianareaswillcontinuetoreduce thekindsandlevelsofservicethattheseareascanprovide,unlessdevelopmentisredesignedtobe consistentwithriparianprocesses,includingflooding.Thefollowingsectionregardingclimatechangeis relevanttothisdiscussion.

3)Whatarethelikelyconsequencesoftheseriskstostreamecosystemcondition? Realizationofthelikelyriskstostreamhealthdiscussedimmediatelyabovewouldcausecontinuing declinesinthefunctionalwidthofriparianareas,andcontinuingdeclinesinthekindsandlevelsofin- streamservices.Ageneraldeclineinthemilesofwideriparianareas,andanincreaseinthemilesof narrowareaswouldbeexpected.AreductiononthemedianCRAMIndexscorewouldalsobeexpected, giventhatfurtherincisionandthelossofriparianstructurethroughbankerosion(orrevetmentto preventsucherosion)wouldreducethebiologicalandphysicalcomplexityofthechannelandits immediateriparianarea.Floodrisksmightbereduced,however,astheincisionofchannelsincreases thesizeofflowsthatthechannelscanconvey.Theseconsequenceswouldvaryalongthelengthofthe drainagesystem,inrelationtolocalvariationsinexistingchannelconditionsandriparianconditions,and inrelationtotheproximityofthechannelstosourcesofrisk.Thefollowingsectionregardingclimate changeisrelevanttothisdiscussion.

39 4)Whatarethefundamentalriskstostreamecosystemsrepresentedbyclimatechange? TheDistrictrecognizesthatthisreportprovidesabaselineagainstwhichfuturechangesinthe distribution,abundanceanddiversityofsurfaceaquaticresources,andconditionsofstreamscanbe assessedfortheGuadalupeRiverwatershed.Whenviewedasawhole,themostlikelysourceofoverall changeinaquaticresourcesforthenextdecadesisclimatechange.Itislikelytostronglyinfluenceall othersourcesofriskinstreamecosystemhealth.

MuchworkisgettingstartedintheBayAreaandelsewherearoundtheworldtoforecastchangesin climateandtobeginpreparingforclimatechange.WorkintheBayAreahasrecentlybeencatalogued (AssociationofBayAreaGovernments(ABAG2012).Acriticalaspectofforecastingandpreparingfor clim atechangeinaregionorwatershedisthedownscalingofclimatechangemodels(SnyderandSloan 2005,Cayan etal. 2012).Downscalingisasetoftechniquesthatrelatelocal-scaleandregional-scale climatevariablestothelargerscaleforcingfunctions.Inessence,itistheefforttopredictlocaland regionalclimatechangesfromGlobalClimateModels(GCMs).Thespatialandtemporalprecisionof downscalingislimitedbyinexactunderstandingofthecause-and-effectrelationshipscontrollingclimate atanyscale.Thecertaintyinforecastingisimprovedwhentheyreflectconsistentresultsfrommultiple independentclimatesimulationmodels.Ingeneral,thecertaintyofforecastsdecreasesastheirspatial scaledecreasesandtheirtimeframeincreases.Long-termforecastsforlocalsettingscanbevery impreciseorevenequivocal(Ackerly etal. 2012).

Withregardtothedistribution,abundance,diversity,andconditionsofaquaticresourcesintheBay Area,themostimportantclimaticparametersareprecipitationandevaporation.Themostimportant physicalprocessesaffectedbychangesintheseparametersareevaporation,runofforstreamflow,and sealevelrise.Changesintheseprocessescanhavemajoreffectsonthehydrologicalcycleand therefore,theycaninfluenceallecosystemgoodsandservices,includingwatersupplies.TheDistrict shouldconsiderthelikelyconsequencesofclimatechangeonitsmissiontomeetthedemandsofits serviceareaforwatersupplies,floodmanagement,andhealthywatersheds.Forecastsoffuture climaticconditionsbasedonthebestavailablesciencesuggestprecipitationamountsandpatternswill change(e.g.,stormintensity,frequency),temperatureswillriseresultinginincreasedevaporation,and previouslynormalseasonalvariationswillchange.Theseaffectflowsandhydrologythatdrivestream ecosystemhealth.Demandforwaterresourcesandfloodprotectionwillmostlikelyincreaseorremain constantwithcontinuedconservationefforts,andmanagedurbangrowth.

Effortstoforecastlocalchangesintemperatureandprecipitationareongoing(ABAG2012),basedon thevariousscenariosforgreenhousegasemissions,andresultanttemperatureschangesprovidedby theInternationalPanelonClimateChange(IPCCAR4SYR2007).Itisimportanttonotethatduringthe lastdecadegreenhousegasemissionshaveexceededthehighestlevelsconsideredbytheIPCC,such thattheforecastsofworstcasescenariosareincreasinglylikely(Ackerly etal. 2012).

Athistime,manyindependentmodelssuggestthatmeanannualtemperatureintheBayAreawill increasebetween2 oCand6 oC(3.6 oFand10.8 oF)bythefinaldecadesofthiscentury(Cayan etal. 2012),basedonclimatechangescenarioB1(IPCCAR4SYR2007),whichassumesmajorreductionsin

40 greenhousegassesduringthiscentury(IPCCAR4WG1,2007).Asindicatedabove,thisscenarioseems optimistic,giventhatgasemissionshavenotbeencurtailedtodate.Forecastsofprecipitationarefar lesscertain.Somemodelsforecastdrierconditionsandothermodelsforecastwettercondition.Sea levelisexpectedtorise22to51in(55to130cm)bytheendofthiscentury(Ackerly etal. 2012).

FortheSantaCruzMountainsinthesouthBayArea,arecentmodelingefforthaspredictedreduced earlyandlatewetseasonrunoff,andpossiblyalongerdryseason,withgreaterinter-annualvariability, andpotentiallyincreasedrainfallintensity(FlintandFlint2012).Forecastofincreasedprecipitation showitconcentratedinmidwintermonths,suchthatpeakflowsareincreased.

Table9listspossiblemajoreffectsofclimatechangeonthedistributionandabundanceofaquatic resourcesintheGuadalupeRiverwatershed.Theseeffectsmightalsogenerallyapplytoother watershedswithintheDistrictsservicearea.TheDistrictshouldconsidertheeffectsofthesechanges onitsabilitytocontinueprovidingreliablewatersupplies,floodprotection,andstewardshipgoalsand objectives,andhowtheeffectsmightbeamelioratedbymanagementactions.Itmustberecognized that muchmorescienceisneededtounderstandthelikelihoodoftheseeffectsandtheirtiming.

Table9. Listofpossiblelandscaperesponsestoclimatechange. ClimateChange PotentialMajorLandscapeEffects Decreaseddryseasonsurfacewaterstorage Depressedaquifers Increasedtemperaturetranslatesintoincreased Decreasedacreageofperennialwetlands evaporationwhichhassimilarlandscapescale Increasedacreageofseasonalwetlands effectsasdecreasedprecipitation. Reducedperennialstreambaseflow Reducedtotallengthofperennialstreams Increasedtotallengthofepisodicstreams Increasedchannelincisionandbankerosion inupperwatershed Increasedchannelhead-cutting Increasedhillslopegullying Increasedprecipitationordecreaseddurationof Increasedlandsliding thewetseasonwithnoincreaseinprecipitation Increasedsedimentyields translatesintoincreasedpeakflows. Decreasedreservoircapacity Reducedflexibilitytomanagereservoir levelsandstreamflows Increasedthreatoffloodingandstorm damage Increasedsaltwaterintrusion Increasedchannelbaseelevationcausing Increasedglobaltemperaturetranslatesinto channelaggradation increasedsealevels. Increasedtidalflooding Increasedriverflooding

41 Insummary,itislikelythatincreasedtemperaturewillgenerallyincreasethetotalannualevaporative lossesthroughoutthewatershed.Unlesstheselossesareoffsetbyincreasedprecipitationandstorage, thetotalannualamountofwaterinthewatershedwillprobablydecrease.Thewatershedwillprobably becomedrier,withlessacreageofwetlands,loweraquifers,andgreatertotallengthsofephemeralor episodicstreams.Changesinflowregimescausedbyeitherincreasedprecipitationorashorterwet season(i.e.,increasedrainfallintensity)wouldlikelyincreasepeakflows.Theincreasederosivepower ofthesegreaterflowswouldprobablyinitiateanewperiodofchannelincisionandhead-cutting, especiallywheretheflowsarecontainedbytheentrenchedchannels.Theresultingincreasein sedimentyieldabovethereservoirswillincreasetherateatwhichthereservoirsfill-inwithsediment andlosewaterstoragecapacity.DredgingreservoirsintheGuadalupewatershedtoregainormaintain theircapacitywouldlikelyincreasetheriskofbiologicalexposuretomercury.Therewouldalsobe significantcostandrisksassociatedwithdisposingcontaminateddredgedmaterials.Channelincision andothererosioninthecatchmentsofstreamsthatdonotdraintoanyreservoirswouldincrease sedimentyieldstostreamsinthevalley,causingthemtoaggrade.Thisaggradationwouldprobablybe enhancedbysealevelrisethatelevatesthebaseelevationofstreams.Theaggradationwouldvery likelyincreasetheriskoffloodinginsomeareasofthelowerwatershed.Moreintenseorfrequent stormsmayalsodirectlyresultinincreasedflooding,regardlessofchannelaggradation.Theeffectsof thesephysicalchangesinlandscapeformandstructureontheecologicalservicesofthewatershed wouldbemanyandvaried.SomeofthemostprominenteffectsarebeingforecastedfortheBayArea andbeyond(Stralbergetal.2011,BayAreaOpenSpaceCouncil2011,Ackerlyetal.2012).

42 References Ackerly,DavidD.2012.FutureClimateScenariosforCalifornia:FreezingIsoclines,NovelClimates,and ClimaticResilienceofCaliforniasProtectedAreas.CaliforniaEnergyCommission.Publication number:CEC-500-2012-022. ABAG.2012.PreparingtheBayAreaforaChangingClimate.Version1.1July-September2012.Current InitiativesandStakeholders. http://www.abag.ca.gov/jointpolicy/pdfs/Key%20Bay%20Area%20Projects%201.1%20July%202012 .pdf Brinson,M.M.,L.J.MacDonnell,D.J.Austen,R.L.Beschta,T.A.Dillaha,D.A.Donahue,S.V.Gregory,J.W. Harvey,M.C.MollesJr,E.I.Rogers,J.A.Stanford,andL.J.Ehlers.2002. Riparianareas:functionsand strategiesformanagement .NationalAcademyPress,Washington,DC. CaliforniaWetlandsMonitoringWorkgroup(CWMW).2012a.CaliforniaRapidAssessmentMethod (CRAM)forWetlandsandRiparianAreas:UsersManual,Version6.0pp.104 CaliforniaWetlandsMonitoringWorkgroup(CWMW).2012b.CaliforniaRapidAssessmentMethodfor Wetlands:RiverineWetlandFieldBook,Version6.0,March2012.pp.46Availableat: http://www.cramwetlands.org/documents/2012-04-17_CRAM%20Field%20Book%20Riverine.pdf CaliforniaWetlandsMonitoringWorkgroup(CWMW).2012c.CRAMDataQualityAssurancePlan: CaliforniaRapidAssessmentMethodforWetlandsDraftversion3,May2012.pp.72 Cayan,D.R.,K.Nicholas,M.Tyree,andM.Dettinger.2011.ClimateandPhenologyinNapaValley:A CompilationandAnalysisofHistoricalData.NapaValleyVintners,NapaCA. Collins,J.N.,M.Sutula,E.D.Stein,M.Odaya,E.Zhang,andK.Larned.2006.ComparisonofMethodsto MapCaliforniaRiparianAreas.FinalReportPreparedfortheCaliforniaRiparianHabitatJoint Venture.85pp.SanFranciscoEstuaryInstitute,Contribution#522.Richmond,CAAvaialbleat: http://www.sfei.org/node/1572 Diaz-Ramos,S.,D.L.Stevens,Jr.,andA.R.Olsen.1995.EMAPStatisticsMethodsManual.EPA/620/R- 96/002,U.S.EnvironmentalProtectionAgency,NationalHealthandEnvironmentalEffectsResearch Laboratory,Corvallis,OR. EOAandSFEI.2011.EcologicalMonitoring&AssessmentFrameworkStreamEcosystemCondition Profile:CoyoteCreekWatershedincludingtheUpperPenitenciaCreeksubwatershed.Final TechnicalReport#2preparedfortheSantaClaraValleyWaterDistrict,SanJose,CA. ESRI.2010.TeleAtlasNorthAmerica,U.S.andCanadaMajorRoads[GISdatafiles]. Flint,L.E.,andA.L.Flint.2012.SimulationofclimatechangeinSanFranciscoBayBasins,California: CasestudiesintheRussianRiverValleyandSantaCruzMountains.USGSScientificInvestigations Report:2012-5132.http://pubs.er.usgs.gov/publication/sir20125132.

43 IPCCAR4SYR(2007).CoreWritingTeam;Pachauri,R.K;andReisinger,A.,ed.,ClimateChange2007: SynthesisReport,ContributionofWorkingGroupsI,IIandIIItotheFourthAssessmentReportof theIntergovernmentalPanelonClimateChange,IPCC,ISBN92-9169-122-4. IPCCAR4WG1(2007),Solomon,S.;Qin,D.;Manning,M.;Chen,Z.;Marquis,M.;Averyt,K.B.;Tignor,M.; andMiller,H.L.,ed.,ClimateChange2007:ThePhysicalScienceBasis,ContributionofWorking GroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange, CambridgeUniversityPress,ISBN978-0-521-88009-1(pb:978-0-521-70596-7). Messer,J.J.,R.A.Linthurst,andW.S.Overton.1991.AnEPAprogramformonitoringecologicalstatus andtrends.EnvironmentalMonitoringandAssessment17:67-78. Miller,N.L.2003.Californiaclimatechange,hydrologicresponse,andfloodforecasting.International ExpertMeetingonUrbanFloodManagement20-21November2003,WorldTradeCenter Rotterdam,theNetherlands. SanFranciscoEstuaryInstitute(SFEI).2010.Historicalvegetationanddrainagepatternsofwestern SantaClaravalley:Atechnicalmemorandumdescribinglandscapeecologyinlowerpeninsula,west valley,andGuadalupewatershedmanagementareas.PreparedbySFEI:E.Beller,M.Salomon,and R.Grossinger.Oakland,CA. http://www.sfei.org/sites/default/files/HistoricalEcology_of_Western_SantaClaraValley_SFEI_1119 10.pdf SanFranciscoEstuaryInstitute(SFEI).2011a.BayAreaAquaticResourcesInventory(BAARI)Standards andMethodologyforStreamNetwork,WetlandandRiparianMapping.SanFranciscoEstuary Institute.Richmond,CA.PreparedforWetlandRegionalMonitoringProgram(WRMP).Revised January06,2011.http://www.sfei.org/BAARI SanFranciscoEstuaryInstitute(SFEI)-AquaticScienceCenter(ASC).2011b.RiparianAreasMapping Tool(RAMT).Richmond,CA.http://sfei.org/baari/ramt SantaClaraValleyWaterDistrict(District).1999.Guadalupewatershedplanningstudyengineers report.Projectno.3015,SantaClaraValleyWaterDistrict,SanJose,CA. http://cf.valleywater.org/services/Files/Report.html#2-1b SantaClaraValleyWaterDistrict(District).2007.GeographicInformationSystemsUnit,SantaClara ValleyWaterDistrict,SanJose,CA. Snyder,M.A.andL.C.Sloan.2005.TransientFutureClimateovertheWesternU.S.usingaRegional ClimateModel,EarthInteractions,Vol.9,Paper11. SouthernCaliforniaCoastalWaterResearchProject(SCCWRP).2008.CaliforniasWetland DemonstrationProgramPilot:AFinalDraftReportforReviewbytheCaliforniaResourcesAgency. TechnicalReport572,CostaMesa,CA. Sowers,J.M.,R.WGivler,andS.C.Thompson.2005.Creek&WatershedMapoftheSantaClarabasin:A digitaldatabase,version1.1:WilliamLettisandAssociates,Inc.,WalnutCreek,CA,1:24,000scale.

44 Stevens,D.L.andA.R.Olsen.2003.Varianceestimationforspatiallybalancedsamplesof environmentalresources.EnvironMetrics,14:593-610. Stevens,D.L.andA.R.Olsen.2004.Spatiallybalancedsamplingofnaturalresources.Journalofthe AmericanStatisticalAssociation,99:262-278. Strahler,A.N.1952.Hypsometric(area-altitude)analysisoferosionaltopology.GeologicalSocietyof AmericaBulletin63(11):11171142. Strahler,A.N.1957.Quantitativeanalysisofwatershedgeomorphology.TransactionsoftheAmerican GeophysicalUnion8(6):913920. StralbergD.,BrennanM.,CallawayJ.C.,WoodJ.K.,SchileL.M.,etal.(2011)EvaluatingTidalMarsh SustainabilityintheFaceofSea-LevelRise:AHybridModelingApproachAppliedtoSanFrancisco Bay.PLoSONE6(11):e27388.doi:10.1371/journal.pone.0027388 SurfaceWaterAmbientMonitoringProgram(SWAMP).2008.CASurfaceWaterAmbientMonitoring Program(SWAMP)PerennialStreamsAssessment.Datadownloadedatwww.cramwetlands.org, accessedSeptember2008,andreportedintheCaliforniaWetlandDemonstrationProgramPilot:A FinalDraftProjectReportforReviewbytheCaliforniaResourcesAgency,SCCWRPTechnicalReport 572December2008,pp.90-105. TAT.2010.TechnicalMemorandumNo.3:Landscapeframeworkforwetlandsandotheraquaticareas. RevisedSeptember1,2010.ProducedbytheSanFranciscoEstuaryInstitutefortheTechnical AdvisoryTeamfortheCaliforniaWetlandandRiparianAreaProtectionPolicy,CaliforniaState WaterResourcesControlBoard,SacramentoCA. UnitedStatesCensusBureau.2012.Annualestimatesoftheresidentpopulationforincorporated placesover50,000,rankedbyJuly1,2011population:April1,2010toJuly1,2011. 2011 PopulationEstimates ,PopulationDivision,June2012. UnitedStatesCensusBureau.2012a.TIGER/LineShapefiles[GISdatafiles]. http://www.census.gov/geo/www/tiger/tgrshp2012/tgrshp2012.html

45 46 AppendixA

GuadalupeRiverCRAMAssessment2012Results

AppendixAGuadalupeRiverCRAMAssessmentResults2012 MapofCRAMAALocations,StratumAssignments,andCRAMAssessmentResults ThesedataarealsoavailableonlinethroughEcoAtlas.

A-47 AppendixA

GuadalupeRiverCRAMAssessment2012Results

FigureA-1. MapofCRAMAssessmentAreas(AAs)sampledintheGuadalupeRiverAssessment,2012.

A-48 AppendixA

GuadalupeRiverCRAMAssessment2012Results

TableA-1. AssessmentAreadescriptions,fieldteams,andfinalCRAMscoresfortheGuadalupeRiverAssessment,2012.

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n r L a e ( r l c r o o SiteCode SiteLocation t w d r C y u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o e i i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0001rmc CanoasCr,250m 0.19 273.81 Paul Riverine 7/18/2012 37.2879 -121.8786 1 1 42 54 42 38 33 DSofNightengale Randall, Confined Dr Carol Boland GR_0004rmc LosGatosCr, 0.50 383.84 Paul Riverine 7/25/2012 37.2302 -121.9736 1 0 74 79 75 75 67 500mDSof Randall, Non- Saratoga-Los NickZigler confined GatosRd GR_0005 GuadalupeCreek 0.37 292.62 Matt Riverine 7/3/2012 37.1817 -121.8734 0 0 71 79 75 50 81 USofGuad Parsons, Non- Reservoir DougTitus confined GR_0008rmc GuadalupeRiverat 0.78 390.27 Paul Riverine 7/24/2012 37.3669 -121.9241 1 0 83 75 83 88 86 airport,between Randall, Non- Brokaw/Skyport Carol confined Boland, NickZigler GR_0009UnnamedCreekin 0.34317.34Matt Riverine 7/3/201237.1793-121.8268007163757569 Almaden Parsons, Confined QuicksilverCounty DougTitus Park GR_0014rmc GuadalupeRiver 0.38 417.84 Paul Riverine 7/18/2012 37.2593 -121.8693 1 1 81 83 75 88 78 300mUSof Randall, Non- BranhamLn Carol confined Boland

A-49 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0016rmc GuadalupeCreek, 0.32 369.48 Lucy Riverine 7/16/2012 37.2372 -121.8888 1 1 71 83 75 50 75 USMeridiannear Buchan, Non- Percpond Carol confined Boland, NickZigler GR_0017rmc CanoasCr,300m 0.14 273.89 Paul Riverine 7/19/2012 37.2338 -121.8370 1 1 49 67 42 38 47 DSofTillamookDr Randall, Confined Carol Boland GR_0021 GreystoneCreek 0.30 290.94 Brett Riverine 7/2/2012 37.1986 -121.8582 0 0 74 92 75 63 67 westofGlenview Calhoun, Non- Dr Lisa confined Porcella, DougTitus GR_0024 EastRossCreekat 0.37 329.87 Sarah Riverine 6/27/2012 37.2279 -121.9525 1 0 50 25 50 50 75 HillbrookSchool Pearce, Non- April confined Robinson GR_0025 Westbranchof 0.20 235.96 Brett Riverine 7/2/2012 37.1914 -121.8518 0 0 79 100 75 75 67 RandolCreekin Calhoun, Confined Almaden DougTitus, QuicksilverPark Lisa Porcella GR_0026 CaleroCreekin 0.37 350.62 Megan Riverine 7/3/2012 37.1647 -121.7658 0 0 73 92 67 63 69 CaleroCountyPark Malone, Non- USofreservoir Lisa confined Porcella GR_0030 UnnamedCreekin 0.19 252.74 Lisa Riverine 7/3/2012 NA NA 0 0 68 92 75 38 67 CaleroCountyPark Porcella, Non- adjtoJavalina Megan confined Loop Malone A-50 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0032 GuadalupeRiver 0.58 325.39 Sarah Riverine 6/27/2012 37.3949 -121.9403 1 1 76 67 75 75 86 USofMontague Pearce, Non- Expy April confined Robinson GR_0033RandolCreekbtw 0.21262.17Navroop Riverine 6/26/201237.2073-121.8479114950503856 SerenityWayand Jassal,Matt Non- CalcaterraWay Parsons, confined Louisa Squires GR_0044 BriggsCreek 0.31 240.84 JaeAbel, Riverine 8/8/2012 37.1844 -122.0018 0 0 84 92 75 88 81 Lisa Non- Porcella, confined Brett Calhoun GR_0048 GuadalupeRiver 0.26 267.55 Megan Riverine 7/24/2012 37.2942 -121.8807 1 0 73 63 67 88 75 DSofCurtnerAve Malone, Confined Lisa Porcella, Matt Parsons GR_0049 CanoasCreekDS 0.13 230.94 Megan Riverine 6/25/2012 37.2333 -121.8360 1 1 48 67 50 38 36 ofTillamookDr Malone, Confined Matt Quinn, Louisa Squires, DougTitus GR_0052 PheasantCreek 0.40 312.59 Megan Riverine 7/23/2012 37.2125 -121.9125 1 0 76 83 92 63 67 Malone, Non- Matt confined Parsons, A-51 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B Brett Calhoun

GR_0053 Tributaryto 0.11 223.92 Megan Riverine 7/24/2012 37.1837 -121.8454 0 0 77 100 92 75 39 RandolCreekin Malone, Confined Almaden Matt QuicksilverPark Parsons, Lisa Porcella GR_0058 CherryCanyon 0.15 239.46 JaeAbel, Riverine 8/21/2012 37.1666 -121.8024 0 0 72 92 75 63 58 Navroop Confined Jassal, Megan Malone GR_0062 UnnamedCreek 0.16 215.44 Megan Riverine 8/8/2012 37.2135 -121.7666 0 0 62 54 75 63 56 aboveCoyote- Malone, Confined AlamitosCanal Janell Hillman, Navroop Jassal GR_0064 LosGatosCreekDS 0.38 324.10 Navroop Riverine 6/26/2012 37.2974 -121.9306 1 1 75 63 75 75 86 ofBascomAve Jassal,Matt Confined Parsons, Louisa Squires, April Robinson GR_0065 AlamitosCreekDS 0.57 351.42 Megan Riverine 7/26/2012 37.2228 -121.8530 1 1 71 75 83 50 75 ofGreystoneRd Malone, Non- Lisa confined

A-52 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B Porcella, DougTitus

GR_0068 RossCreekUSof 0.15 236.83 Janell Riverine 7/23/2012 37.2380 -121.9495 1 0 69 63 67 75 69 LindaAve Hillman, Confined Navroop Jassal GR_0072 RossCreekoffof 0.10 223.35 Brett Riverine 7/9/2012 37.2141 -121.9630 1 0 64 54 58 75 67 QuarryRd Calhoun, Confined Megan Malone, DougTitus GR_0076 LyndonCanyon 0.75 339.53 Janell Riverine 8/14/2012 37.2022 -122.0215 0 0 79 100 75 63 78 Creek Hillman, Non- Megan confined Malone, Navroop Jassal GR_0078 Tributaryto 0.19 238.84 JaeAbel, Riverine 8/7/2012 37.1807 -121.8050 0 0 71 92 92 38 61 ChileanGulch Megan Non- Malone, confined Lisa Porcella GR_0079 Unnamed 0.05 204.66 DougTitus, Riverine 8/20/2012 37.1911 -121.9823 0 0 76 100 83 50 69 TributaryofLos Janell Confined GatosCreek Hillman, (Lexington Navroop Reservoir) Jassal

A-53 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0080 GuadalupeRiver 0.38 275.18 Navroop Riverine 7/16/2012 37.3575 -121.9148 1 0 77 79 83 75 69 adjacenttoAirport Jassal, Non- Blvd Megan confined Malone, Matt Parsons GR_0082Unnamed 0.11221.38Navroop Riverine 8/15/201237.1698-121.89330068100835039 Tributaryto Jassal,Jae Confined RinconCreek Abel, Megan Malone GR_0085 GolfCreekin 0.10 218.81 Lisa Riverine 8/13/2012 37.1988 -121.8668 0 0 73 92 75 75 50 Almaden- Porcella, Confined QuicksilverPark Megan Malone GR_0089 Tributaryto 0.15 235.77 Janell Riverine 8/8/2012 37.1909 -121.8395 0 0 76 100 83 50 69 RandolCreekin Hillman, Confined Almaden Navroop QuicksilverPark Jassal, Megan Malone GR_0090 TributarytoCalero 0.15 277.71 Lisa Riverine 8/7/2012 37.1708 -121.7621 0 0 62 83 92 38 36 Creek Porcella, Non- JaeAbel, confined Megan Malone GR_0092 LosGatosCreekat 0.28 258.78 Lisa Riverine 8/13/2012 37.2045 -121.9903 0 1 68 46 67 75 83 Lexington Porcella, Non- Reservoir Megan confined Malone

A-54 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0094 Unnamed 0.07 207.22 Louisa Riverine 8/21/2012 37.2194 -121.7923 0 0 66 79 83 50 53 tributaryto Squires, Confined Coyote-Alamitos Shree Canal Dharasker, Lisa Porcella GR_0096RossCreekat 0.18280.32Megan Riverine 7/18/201237.2652-121.8788114650583839 BriarglenCt Malone, Confined Lisa Porcella, Matt Parsons GR_0097 AlamitosCreek 0.38 307.26 Megan Riverine 6/26/2012 37.2179 -121.8425 1 1 64 75 58 50 72 acrossfromLeland Malone, Non- HS Lisa confined Porcella, April Robinson, DougTitus GR_0101 McAbeeCreek 0.09 219.37 JaeAbel, Riverine 8/21/2012 37.2119 -121.8872 0 0 69 83 75 38 78 Navroop Non- Jassal, confined Megan Malone GR_0104 TributaryofLime 0.17 235.61 DougTitus, Riverine 8/20/2012 37.2087 -121.9504 0 0 74 92 83 50 69 KilnGulch Janell Non- Hillman, confined Navroop Jassal

A-55 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0106 TributarytoCherry 0.08 217.65 Brett Riverine 8/20/2012 37.1684 -121.7904 0 0 71 92 75 50 67 CanyonCreek Calhoun, Confined JaeAbel, Megan Malone GR_0109 JacquesGulch 0.11 218.50 Louisa Riverine 8/21/2012 37.1668 -121.8586 0 0 77 92 75 75 64 Squires, Confined Lisa Porcella GR_0110 SESantaTeresa 0.12 232.01 Navroop Riverine 7/2/2012 37.1964 -121.7973 1 1 62 75 83 38 53 CreekUSofSan Jassal, Non- VicenteAve Megan confined Malone, Matt Parsons GR_0112 GuadalupeRiver 0.51 362.43 Megan Riverine 6/25/2012 0.0000 0.0000 1 1 61 63 67 50 64 adjtoLelongSt Malone, Confined andUSofWillow April St Robinson, Louisa Squires, DougTitus GR_0128 CanoasCreekDS 0.14 230.81 DonnaBall, Riverine 7/25/2012 37.2352 -121.8055 1 1 34 25 42 25 42 ofCottleRd Janell Confined Hillman, Navroop Jassal,Matt Parsons, April Robinson

A-56 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B GR_0129 GolfCreekDSof 0.09 219.75 DonnaBall, Riverine 6/25/2012 37.2300 -121.8747 1 1 55 63 67 38 53 RedmondAve Janell Confined Hillman, Navroop Jassal,Matt Parsons GR_0132RossCreekDSof 0.21207.75Janell Riverine 7/17/201237.2384-121.9485116263675069 LindaAve Hillman, Confined Navroop Jassal,Matt Parsons GR_0144 GuadalupeRiverat 0.95 384.32 Megan Riverine 7/18/2012 37.3765 -121.9333 1 1 80 67 83 88 81 U.S.101 Malone, Non- Matt confined Parsons, Lisa Porcella GR_0149GreystoneCreek 0.18259.41Navroop Riverine 7/2/201237.2051-121.8591114463423833 USofHamptonDr Jassal, Non- Megan confined Malone, Matt Parsons GR_0152 LosGatosCreek 0.48 330.07 Janell Riverine 7/23/2012 37.2337 -121.9736 1 0 62 54 58 63 72 USofBlossomHill Hillman, Non- Rd Navroop confined Jassal GR_0158 Tributaryto 0.23 275.65 Megan Riverine 7/17/2012 37.2154 -121.7800 1 0 61 92 67 25 61 CanoasCreekUS Malone, Non- ofSantaTeresa Lisa confined GolfCourse Porcella, A-57 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------FinalScores------e p a ) c e s a r d h u e ( t d r n ) s c e u s a a e s u t m r n L r a e ( r l c r o o SiteCode SiteLocation t w d r y C u t c e A S r e g n e a O S d l t t d t n t e a n o g l t a S u a l i n l x e a d o t r c t c d a i a o i e i c b u g s l e i r r m t r r s g t t t f i t y i t e i e d f n l y r n t e U s s o v v y i i u i o o e h a o n s P P I W V L L I D O B C H P B Louisa Squires

GR_0160 CanoasCreekUS 0.23 269.89 Janell Riverine 7/17/2012 37.2859 -121.8745 1 1 45 67 42 38 31 ofNightingaleDr Hillman, Confined Navroop Ja ssal,Matt Parsons GR_0165 AlamitosCreekadj 0.25 250.30 Megan Riverine 7/17/2012 37.1897 -121.8188 1 0 76 83 67 75 78 toAlmadenRd Malone, Non- Lisa confined Porcella, Louisa Squires

A-58 AppendixA

GuadalupeRiverCRAMAssessment2012Results

TableA-2. CRAMassessmentscores(rawMetricandAttributeScores)fortheGuadalupeRiverAssessment,2012. ------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t f y d a e C n A i r d o a r c t e P s S v o y i e f f o u o t i l t c r f h i d e i n w y u t l u i s c e c n t v S o o i B S a r r I p o r i r n A B p g a e o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h c b b o i s o i c a p i date r e e e i z r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c c e t t h m m r e u u d d e u u f U d d f f n y m r m a e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P GR_0001r 7/18/20 1 1 42 13 9 12 3 3 15 6 3 6 9 3 6 12 3 3 6 9 3 mc 12

GR_0004r 7/25/20 1 0 74 19 12 12 3 9 27 6 12 9 18 9 9 24 6 9 12 12 3 mc 12

GR_0005 7/3/201 0 0 71 19 12 9 3 9 27 12 12 3 12 6 6 29 9 9 12 9 12 2

GR_0008r 7/24/20 1 0 83 18 12 9 3 6 30 6 12 12 21 9 12 31 9 12 12 12 6 mc 12

GR_0009 7/3/201 0 0 71 15 3 12 12 12 27 12 9 6 18 12 6 25 6 9 12 6 12 2

GR_0014r 7/18/20 1 1 81 20 12 12 9 6 27 6 12 9 21 9 12 28 9 9 12 12 6 mc 12

GR_0016r 7/16/20 1 1 71 20 12 12 9 6 27 6 12 9 12 6 6 27 9 9 9 9 9 mc 12

GR_0017r 7/19/20 1 1 49 16 12 12 3 3 15 6 3 6 9 3 6 17 3 6 9 12 3 mc 12

GR_00217/2/201 00 74 221212992712123159624699612 2

GR_0024 6/27/20 1 0 50 6 3 3 3 3 18 6 6 6 12 6 6 27 9 9 12 9 6

A-59 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t d y f e a C n A i r d a o r c t e P s S v o y i e f f o u o t i t l c r f h i d e i n w y u l t u s i e c c n t v S o o i S B a r r I p o i r r n A B p a e g o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h b b c o i s o i c a p

date r i e e e z i r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c e c t t h m m r e u u d d e u u f U d d f f n y m a r m e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P 12

GR_0025 7/2/201 0 0 79 24 12 12 12 12 27 12 9 6 18 12 6 24 6 9 6 9 12 2

GR_0026 7/3/201 0 0 73 22 12 12 12 9 24 12 9 3 15 9 6 25 6 9 12 6 12 2

GR_0030 7/3/201 0 0 68 22 12 12 12 9 27 12 9 6 9 6 3 24 6 9 9 6 12 2

GR_0032 6/27/20 1 1 76 16 12 12 3 3 27 6 9 12 18 6 12 31 12 9 12 9 9 12

GR_0033 6/26/20 1 1 49 12 9 3 3 3 18 6 9 3 9 3 6 20 6 6 9 9 6 12

GR_0044 8/8/201 0 0 84 22 12 12 9 9 27 12 9 6 21 9 12 29 9 9 12 9 12 2

GR_00487/24/20 10 73 15123332469921129279912123 12

GR_0049 6/25/20 1 1 48 16 12 12 3 3 18 6 3 9 9 6 3 13 3 3 9 9 3 12

GR_0052 7/23/20 1 0 76 20 12 12 9 6 33 12 12 9 15 9 6 24 9 6 9 9 9 12

GR_0053 7/24/20 0 0 77 24 12 12 12 12 33 12 9 12 18 12 6 14 3 3 9 3 12

A-60 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t d y f e a C n A i r d a o r c t e P s S v o y i e f f o u o t i t l c r f h i d e i n w y u l t u s i e c c n t v S o o i S B a r r I p o i r r n A B p a e g o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h b b c o i s o i c a p

date r i e e e z i r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c e c t t h m m r e u u d d e u u f U d d f f n y m a r m e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P 12

GR_0058 8/21/20 0 0 72 22 12 12 12 9 27 12 9 6 15 12 3 21 6 6 12 3 12 12

GR_0062 8/8/201 0 0 62 13 3 12 12 9 27 12 9 6 15 9 6 20 6 6 9 3 12 2

GR_0064 6/26/20 1 1 75 15 9 12 3 6 27 6 12 9 18 12 6 31 12 9 12 12 6 12

GR_0065 7/26/20 1 1 71 18 12 12 3 6 30 6 12 12 12 6 6 27 6 9 12 12 12 12

GR_0068 7/23/20 1 0 69 15 12 3 3 3 24 6 12 6 18 12 6 25 6 9 12 12 6 12

GR_0072 7/9/201 1 0 64 13 3 12 9 9 21 6 9 6 18 12 6 24 6 9 9 6 12 2

GR_00768/14/20 00 79 24121212122791261596289912612 12

GR_0078 8/7/201 0 0 71 22 12 12 12 9 33 12 12 9 9 3 6 22 6 6 12 6 12 2

GR_0079 8/20/20 0 0 76 24 12 12 12 12 30 12 12 6 12 9 3 25 6 9 12 6 12 12

GR_0080 7/16/20 1 0 77 19 12 9 3 9 30 6 12 12 18 6 12 25 6 9 12 12 6

A-61 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t d y f e a C n A i r d a o r c t e P s S v o y i e f f o u o t i t l c r f h i d e i n w y u l t u s i e c c n t v S o o i S B a r r I p o i r r n A B p a e g o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h b b c o i s o i c a p

date r i e e e z i r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c e c t t h m m r e u u d d e u u f U d d f f n y m a r m e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P 12

GR_0082 8/15/20 0 0 68 24 12 12 12 12 30 12 12 6 12 9 3 14 3 3 9 3 12 12

GR_0085 8/13/20 0 0 73 22 12 12 12 9 27 12 9 6 18 12 6 18 3 6 9 6 12 12

GR_0089 8/8/201 0 0 76 24 12 12 12 12 30 12 12 6 12 9 3 25 6 9 12 6 12 2

GR_0090 8/7/201 0 0 62 20 12 12 12 6 33 12 9 12 9 3 6 13 3 3 6 3 12 2

GR_0092 8/13/20 0 1 68 11 3 12 9 6 24 6 12 6 18 9 9 30 9 9 12 12 12 12

GR_0094 8/21/20 0 0 66 19 9 12 12 9 30 12 9 9 12 6 6 19 6 3 12 6 12 12

GR_00967/18/20 11 46 129333216969631433996 12

GR_0097 6/26/20 1 1 64 18 12 9 3 6 21 6 12 3 12 6 6 26 6 9 12 12 9 12

GR_0104 8/20/20 0 0 74 22 12 12 9 9 30 12 12 6 12 6 6 25 6 9 12 6 12 12

GR_0106 8/20/20 0 0 71 22 12 12 12 9 27 12 9 6 12 9 3 24 6 9 12 3 12

A-62 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t d y f e a C n A i r d a o r c t e P s S v o y i e f f o u o t i t l c r f h i d e i n w y u l t u s i e c c n t v S o o i S B a r r I p o i r r n A B p a e g o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h b b c o i s o i c a p

date r i e e e z i r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c e c t t h m m r e u u d d e u u f U d d f f n y m a r m e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P 12

GR_0109 8/21/20 0 0 77 22 12 12 9 9 27 12 9 6 18 12 6 23 6 6 12 9 12 12

GR_0110 7/2/201 1 1 62 18 12 12 3 6 30 9 9 12 9 3 6 19 6 6 9 6 6 2

GR_0112 6/25/20 1 1 61 15 9 9 3 6 24 6 6 12 12 6 6 23 6 9 12 9 3 12

GR_0128 7/25/20 1 1 34 6 3 3 3 3 15 6 3 6 6 3 3 15 3 6 6 6 6 12

GR_0129 6/25/20 1 1 55 15 12 3 3 3 24 6 12 6 9 6 3 19 6 6 6 6 9 12

GR_0132 7/17/20 1 1 62 15 12 3 3 3 24 6 12 6 12 6 6 25 6 9 12 12 6 12

GR_01447/18/20 11 80 1691266306121221912299912129 12

GR_0149 7/2/201 1 1 44 15 12 3 3 3 15 6 6 3 9 6 3 12 3 3 6 3 9 2

GR_0152 7/23/20 1 0 62 13 9 3 3 6 21 6 12 3 15 6 9 26 9 9 12 9 3 12

GR_0158 7/17/20 1 0 61 22 12 12 12 9 24 12 9 3 6 3 3 22 6 6 12 6 12

A-63 AppendixA

GuadalupeRiverCRAMAssessment2012Results

------RawScores------t h x e s t d e r i e t y e r n n t n i u t h e r n w i r t o o - c o n a t r l c d i i a o i c c e t c o e l o t n s e u e e A i f n i S b u a a t r c c p P C t d y f e a C n A i r d a o r c t e P s S v o y i e f f o u o t i t l c r f h i d e i n w y u l t u s i e c c n t v S o o i S B a r r I p o i r r n A B p a e g o o g S t n s O x l n n n SiteCode Visit l t t e r r r r a e l a P a e t t S o C l s o a n c e a a a c t e S o r l l e e l p i u u c l a g p i n n r e r s c r r c d o e t t t b n g n a t o s h b b c o i s o i c a p

date r i e e e z i r n e e e i c c r t r n a r r r n r o s n r a i d f t f f t c e c t t h m m r e u u d d e u u f U d d f f n y m a r m e p r r n n y i a s r o r c t v u u y y y o i q b v u i e u u i h o h o e o e o t o t a a s n I D O B L A A P B A W B H W H C H C P S R T C B H I Z V S N L N d P 12

GR_0160 7/17/20 1 1 45 16 12 3 3 6 15 6 3 6 9 3 6 11 3 3 6 6 3 12

GR_0165 7/17/20 1 0 76 20 12 12 9 6 24 6 12 6 18 9 9 28 9 9 12 12 6 12

GR_0101 8/21/20 0 0 69 20 12 12 12 6 27 12 12 3 9 6 3 28 9 9 12 6 12 12

A-64