Impossibility of Collusion Under Imperfect Monitoring with Flexible Production

Total Page:16

File Type:pdf, Size:1020Kb

Impossibility of Collusion Under Imperfect Monitoring with Flexible Production Impossibility of Collusion under Imperfect Monitoring with Flexible Production By Yuliy Sannikov and Andrzej Skrzypacz* We show that it is impossible to achieve collusion in a duopoly when (a) goods are homogenous and firms compete in quantities; (b) new, noisy information arrives continuously, without sudden events; and (c) firms are able to respond to new information quickly. The result holds even if we allow for asymmetric equilibria or monetary transfers. The intuition is that the flexibility to respond quickly to new information unravels any collusive scheme. Our result applies to both a simple sta- tionary model and a more complicated one, with prices following a mean-reverting Markov process, as well as to models of dynamic cooperation in many other set- tings. (JEL D43, L2, L3) Collusion is a major problem in many mar- We study the scope of collusion in a quan- kets and has been an important topic of study tity-setting duopoly with homogenous goods in both applied and theoretical economics. From and flexible production—that is, if firms can exposed collusive cases, we know how numer- change output flow frequently.2 As in Green and ous real-life cartels have been organized and Porter (984), in our model firms cannot observe what kinds of agreements (either implicit or each other’s production decisions directly. They explicit) are likely to be successful in obtain- observe only noisy market prices/signals that ing collusive profits. At least since George J. depend on the total market supply. We show that Stigler (964), economists have recognized that collusion is impossible to achieve if: imperfect monitoring may destabilize cartels. Nevertheless, the seminal paper of Edward J. 1. New, noisy information arrives continu- Green and Robert H. Porter (984) has shown ously, without sudden events; that, even with imperfect monitoring, firms can create collusive incentives by allowing price 2. The firms have flexible production technol- wars to break out with positive probability. ogies and can thus react to new information quickly; and * Sannikov: Department of Economics, 549 Evans Hall, 3. Public signals depend on total market sup- University of California, Berkeley, CA 94720 (e-mail: [email protected]); Skrzypacz: Stanford Grad- ply only, and not on individual decisions. uate School of Business, 58 Memorial Way, Stanford, CA 94305 (e-mail: [email protected]). We thank Jeremy There are many markets that fit the general Bulow, Kyna Fong, Drew Fudenberg, Joseph Harrington, features of our model. For example, in markets Ichiro Obara, Yuval Salant, Robert Wilson, and seminar participants at the SED 2004, IIOC 2005, Midwest Macro with homogenous goods, e.g., chemicals, firms 2005, SITE 2005, Arizona State University, UC Berkeley, are selling both to a spot market and to clients, Columbia University, University of Chicago, University with client deals being private but affecting the of Illinois in Urbana Champaign, University of Iowa, New York University, Penn State University, University of Pennsylvania, Princeton University, Rutgers Univer- 2 The term flexible production is usually understood sity, Stanford University, University of Texas in Austin, as describing low costs of changing the amount and the and Washington University for useful comments and variety of output. In this paper, we use this term in a nar- suggestions. rower sense, having firms face low costs of changing flow There are many papers describing explicit and tacit but restricting them to produce only one type of output. collusion among firms. For comprehensive studies, see, Flexibility on the variety dimension has separate effects for example, George A. Hay and Daniel Kelley (974), on the scope of collusion: increased product differentiation Margaret C. Levenstein and Valerie Y. Suslow (2006), or may improve collusion, but increased complexity of moni- Joseph E. Harrington (2006). toring may destabilize cartels. 1794 VOL. 97 NO. 5 SAnnIKov AND SKRZYPACZ: ImPossIBILITY OF CollUSIon 1795 .POPQPMZTVQQMZ $PVSOPUTVQQMZ F D J 1S 5JNF Figure spot market. The spot price can be used to moni- collecting individual company data and aggre- tor the success of collusion. One example that gating that data over monthly periods, breaking received a lot of attention was the cartel produc- conditions and 3. ing lysine, an amino acid.3 This cartel tried to The practice of collecting data on market collude by setting and monitoring a target price shares has been especially common among car- at first. However, those early attempts failed. tels.5 Even the Joint Executive Committee rail- Quoting from Cabral (2005, 20): road cartel, the motivation for the Green and Porter (984) model of equilibrium price wars,6 The topic of lysine prices came up at a collected data on individual members’ market dinner meeting in Chicago between ADM shares. Other cartels have also limited the flexi- and European executives. The latter com- bility of its members to respond to new informa- plained about low prices and accused tion by setting strict rules regarding acceptable ADM of being responsible for it. ADM’s Whitacre responded that “one can point a forms of contracts with customers and by col- lot of fingers,” and that the best thing to do lecting data about suspected deviations through was to find a solution to the problem. secret investigations (e.g., see the sugar trust cartel described in David Genesove and Wallace P. Mullin 200). The cartel has encountered the difficulty The failure of the lysine cartel to collude by related to condition 3: they could not identify the setting a target price at the beginning of its oper- deviator.4 What solution did they agree upon? ation illustrates how the provision of incentives Along the lines of Green and Porter (984), they can break down under flexible production, even could have agreed upon a new target price, com- when firms have very clear information about the mitting to go to a price war if the price fell below success of collusion. Figure illustrates this sur- the new target. However, that would repeat the prising fact using a theoretical model presented old story: as our results suggest, that would not in Section VI. In this example, spot prices are have worked. Instead, the solution was to let correlated over time and have an unconditional output figures “be collected every month by the mean of 2 Q, where Q is the total quantity. trade association … . If one company sold more Figure shows two sample paths of prices when than it was allotted, it would be forced to pur- the firms produce Cournot Nash quantities and chase lysine from companies lagging behind” when they split the monopoly quantity.7 Just by (Eichenwald 2000, 205). Thus, the cartel began 5 For a comprehensive list of such arrangements, see Harrington (2006). 3 The lysine cartel has received a lot of attention thanks 6 See Thomas Ulen (983) and Porter (983) for a to the abundance of detailed information available on its detailed study of this cartel. inner workings, including FBI videotapes of cartel mem- 7 In this nonstationary setting, the absence of collusion bers’ meetings. The cartel was described in detail by Kurt is characterized by a Markov perfect equilibrium (MPE), Eichenwald (2000) in a 600-page book, and discussed fur- and the first-best collusion is similarly a state-dependent ther by Luis M. B. Cabral (2005) and Harrington (2006). strategy. However, the Nash equilibrium and monopoly 4 The problems were real—ADM was indeed over- quantity of a one-shot analogue of this game (with constant producing. demand – Q) serve well for illustration. 1796 THE AMERICAN ECONOMIC REVIEW DECEMBER 2007 looking at the price level at any moment of time, 1SJDFJOQFSJPE it is obvious whether the firms are colluding or not. Yet, despite this apparent transparency, collusion is impossible when firms see prices 1SJDFJOQFSJPE continuously and act sufficiently frequently, and when prices depend only on the total supply. Why? A first guess may be that fast arrival of 3FHJPO information and the flexibility to respond to it 3FHJPO facilitate collusion, as firms can punish poten- tial deviators more quickly. However, although Figure 2 this intuition is true in games with perfect mon- itoring, it does not always hold in games with imperfect monitoring, as demonstrated for the price) for one period of length D, and the verti- first time in the classic paper of Dilip Abreu, cal axis illustrates the summary statistic in the Paul Milgrom, and David Pearce (99) (here- next period of length D. In an optimal symmet- after AMP).8 Let us see why collusion is impos- ric equilibrium, at the end of each period firms sible under the wide range of conditions we test the summary statistic against a cutoff level study. to decide whether to trigger a price war. Figure 2 First, let us consider the classic case of a illustrates the critical regions and 2 that trig- stationary repeated game with a strongly sym- ger a price war in a game with period length D. metric collusive scheme, in which firms behave If the time period between moves increases to identically after all histories. Following Abreu, 2D, two forces influence the scope of collusion. Pearce, and Ennio Stacchetti (986) (hereaf- First, firms learn more information per period, ter APS’86), an optimal symmetric equilib- which helps collusion. Second, the gain from rium has two regimes: a collusive regime and a deviation in a given period increases, which price war–punishment regime. In the collusive hurts collusion.9 From Figure 2, we learn that regime, firms produce less than the static Nash the first effect is stronger when D is small, i.e., equilibrium quantities. If the price drops below collusion is more difficult with smaller time a critical level, this arouses enough suspicion of periods between moves.
Recommended publications
  • Best Experienced Payoff Dynamics and Cooperation in the Centipede Game
    Theoretical Economics 14 (2019), 1347–1385 1555-7561/20191347 Best experienced payoff dynamics and cooperation in the centipede game William H. Sandholm Department of Economics, University of Wisconsin Segismundo S. Izquierdo BioEcoUva, Department of Industrial Organization, Universidad de Valladolid Luis R. Izquierdo Department of Civil Engineering, Universidad de Burgos We study population game dynamics under which each revising agent tests each of his strategies a fixed number of times, with each play of each strategy being against a newly drawn opponent, and chooses the strategy whose total payoff was highest. In the centipede game, these best experienced payoff dynamics lead to co- operative play. When strategies are tested once, play at the almost globally stable state is concentrated on the last few nodes of the game, with the proportions of agents playing each strategy being largely independent of the length of the game. Testing strategies many times leads to cyclical play. Keywords. Evolutionary game theory, backward induction, centipede game, computational algebra. JEL classification. C72, C73. 1. Introduction The discrepancy between the conclusions of backward induction reasoning and ob- served behavior in certain canonical extensive form games is a basic puzzle of game the- ory. The centipede game (Rosenthal (1981)), the finitely repeated prisoner’s dilemma, and related examples can be viewed as models of relationships in which each partic- ipant has repeated opportunities to take costly actions that benefit his partner and in which there is a commonly known date at which the interaction will end. Experimen- tal and anecdotal evidence suggests that cooperative behavior may persist until close to William H.
    [Show full text]
  • Chapter 2 Equilibrium
    Chapter 2 Equilibrium The theory of equilibrium attempts to predict what happens in a game when players be- have strategically. This is a central concept to this text as, in mechanism design, we are optimizing over games to find the games with good equilibria. Here, we review the most fundamental notions of equilibrium. They will all be static notions in that players are as- sumed to understand the game and will play once in the game. While such foreknowledge is certainly questionable, some justification can be derived from imagining the game in a dynamic setting where players can learn from past play. Readers should look elsewhere for formal justifications. This chapter reviews equilibrium in both complete and incomplete information games. As games of incomplete information are the most central to mechanism design, special at- tention will be paid to them. In particular, we will characterize equilibrium when the private information of each agent is single-dimensional and corresponds, for instance, to a value for receiving a good or service. We will show that auctions with the same equilibrium outcome have the same expected revenue. Using this so-called revenue equivalence we will describe how to solve for the equilibrium strategies of standard auctions in symmetric environments. Emphasis is placed on demonstrating the central theories of equilibrium and not on providing the most comprehensive or general results. For that readers are recommended to consult a game theory textbook. 2.1 Complete Information Games In games of compete information all players are assumed to know precisely the payoff struc- ture of all other players for all possible outcomes of the game.
    [Show full text]
  • Comparative Statics and Perfect Foresight in Infinite Horizon Economies
    Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium IVIember Libraries http://www.archive.org/details/comparativestatiOOkeho working paper department of economics Comparative Statics And Perfect Foresight in Infinite Horizon Economies Timothy J. Kehoe David K. Levine* Number 312 December 1982 massachusetts institute of technology 50 memorial drive Cambridge, mass. 02139 Comparative Statics And Perfect Foresight in Infinite Horizon Economies Timothy J. Kehoe David K. Levine* Number 312 December 1982 Department of Economics, M.I.T. and Department of Economics, U.C.L.A., respectively. Abstract This paper considers whether infinite horizon economies have determinate perfect foresight equilibria. ¥e consider stationary pure exchange economies with both finite and infinite numbers of agents. When there is a finite number of infinitely lived agents, we argue that equilibria are generically determinate. This is because the number of equations determining the equilibria is not infinite, but is equal to the number of agents minus one and must determine the marginal utility of income for all but one agent. In an overlapping generations model with infinitely many finitely lived agents, this reasoning breaks down. ¥e ask whether the initial conditions together with the requirement of convergence to a steady state locally determine an equilibrium price path. In this framework there are many economies with isolated equilibria, many with continue of equilibria, and many with no equilibria at all. With two or more goods in every period not only can the price level be indeterminate but relative prices as well. Furthermore, such indeterminacy can occur whether or not there is fiat money in the economy.
    [Show full text]
  • Uniqueness and Stability in Symmetric Games: Theory and Applications
    Uniqueness and stability in symmetric games: Theory and Applications Andreas M. Hefti∗ November 2013 Abstract This article develops a comparably simple approach towards uniqueness of pure- strategy equilibria in symmetric games with potentially many players by separating be- tween multiple symmetric equilibria and asymmetric equilibria. Our separation approach is useful in applications for investigating, for example, how different parameter constel- lations may affect the scope for multiple symmetric or asymmetric equilibria, or how the equilibrium set of higher-dimensional symmetric games depends on the nature of the strategies. Moreover, our approach is technically appealing as it reduces the complexity of the uniqueness-problem to a two-player game, boundary conditions are less critical compared to other standard procedures, and best-replies need not be everywhere differ- entiable. The article documents the usefulness of the separation approach with several examples, including applications to asymmetric games and to a two-dimensional price- advertising game, and discusses the relationship between stability and multiplicity of symmetric equilibria. Keywords: Symmetric Games, Uniqueness, Symmetric equilibrium, Stability, Indus- trial Organization JEL Classification: C62, C65, C72, D43, L13 ∗Author affiliation: University of Zurich, Department of Economics, Bluemlisalpstr. 10, CH-8006 Zurich. E-mail: [email protected], Phone: +41787354964. Part of the research was accomplished during a research stay at the Department of Economics, Harvard University, Littauer Center, 02138 Cambridge, USA. 1 1 Introduction Whether or not there is a unique (Nash) equilibrium is an interesting and important question in many game-theoretic settings. Many applications concentrate on games with identical players, as the equilibrium outcome of an ex-ante symmetric setting frequently is of self-interest, or comparably easy to handle analytically, especially in presence of more than two players.
    [Show full text]
  • Equilibrium Computation in Normal Form Games
    Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown Part 1(a) Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown, Slide 1 Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations Overview 1 Plan of this Tutorial 2 Getting Our Bearings: A Quick Game Theory Refresher 3 Solution Concepts 4 Computational Formulations Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown, Slide 2 Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations Plan of this Tutorial This tutorial provides a broad introduction to the recent literature on the computation of equilibria of simultaneous-move games, weaving together both theoretical and applied viewpoints. It aims to explain recent results on: the complexity of equilibrium computation; representation and reasoning methods for compactly represented games. It also aims to be accessible to those having little experience with game theory. Our focus: the computational problem of identifying a Nash equilibrium in different game models. We will also more briefly consider -equilibria, correlated equilibria, pure-strategy Nash equilibria, and equilibria of two-player zero-sum games. Equilibrium Computation in Normal Form Games Costis Daskalakis & Kevin Leyton-Brown, Slide 3 Tutorial Overview Game Theory Refresher Solution Concepts Computational Formulations Part 1: Normal-Form Games
    [Show full text]
  • Symmetric Equilibrium Existence and Optimality in Differentiated Product Markets*
    Rcprin~edfrom JOU~NALof Eco~ou~cTHmr Vol 47, No. I. February 1989 All Rlghu Revrwd by Audermc Pw.New York and London Pnrtd u! &lx~um Notes, Comments, and Letters to the Editor Symmetric Equilibrium Existence and Optimality in Differentiated Product Markets* Department of Economics, Columbia University, New York, New York 10027 Received December 20, 1985; revised January 7, 1988 Equilibrium existence and optimality are analysed in a market for products differentiated by their variety. A game of three stages is analysed. Firms enter in the first stage, choose varieties in the second stage, and choose prices in the third stage. The existence of subgame-perfect equilibria is established. At equilibrium products are symmetrically located in the space of characteristics and are offered at equal prices. The surplus maximizing solution is characterized, and it is shown that sur- plus maximizing product diversity is lower than the equilibrium one. Juurnul u/ &conomic Literalure Classification Numbers: 022, 611, 615, 933. C 1989 Audcm~c Preu, lac. Ever since Hotelling's acclaimed "Principle of Minimum Differentiation" [13] attention has been focused on the issue of equilibrium patterns of dif- ferentiated products in duopoly and oligopoly. Hotelling modelled duopoly competition as a two stage game. In the last stage firms played a non- cooperative game in prices taking as given the choices of varieties made in the first stage. In the first stage firms chose varieties non-cooperatively expecting to receive the Nash equilibrium profits of the price game played for the chosen varieties. Hotelling looked for equilibria which (in modern terminology) were subgame-perfect.
    [Show full text]
  • Network Markets and Consumer Coordination
    NETWORK MARKETS AND CONSUMER COORDINATION ATTILA AMBRUS ROSSELLA ARGENZIANO CESIFO WORKING PAPER NO. 1317 CATEGORY 9: INDUSTRIAL ORGANISATION OCTOBER 2004 PRESENTED AT KIEL-MUNICH WORKSHOP ON THE ECONOMICS OF INFORMATION AND NETWORK INDUSTRIES, AUGUST 2004 An electronic version of the paper may be downloaded • from the SSRN website: www.SSRN.com • from the CESifo website: www.CESifo.de CESifo Working Paper No. 1317 NETWORK MARKETS AND CONSUMER COORDINATION Abstract This paper assumes that groups of consumers in network markets can coordinate their choices when it is in their best interest to do so, and when coordination does not require communication. It is shown that multiple asymmetric networks can coexist in equilibrium if consumers have heterogeneous reservation values. A monopolist provider might choose to operate multiple networks to price differentiate consumers on both sides of the market. Competing network providers might operate networks such that one of them targets high reservation value consumers on one side of the market, while the other targets high reservation value consumers on the other side. Firms can obtain positive profits in price competition. In these asymmetric equilibria product differentiation is endogenized by the network choices of consumers. Heterogeneity of consumers is necessary for the existence of this type of equilibrium. JEL Code: D43, D62, L10. Attila Ambrus Rossella Argenziano Department of Economics Department of Economics Harvard University Yale University Cambridge, MA 02138 New Haven, CT 06520-8268
    [Show full text]
  • Contemporaneous Perfect Epsilon-Equilibria
    Games and Economic Behavior 53 (2005) 126–140 www.elsevier.com/locate/geb Contemporaneous perfect epsilon-equilibria George J. Mailath a, Andrew Postlewaite a,∗, Larry Samuelson b a University of Pennsylvania b University of Wisconsin Received 8 January 2003 Available online 18 July 2005 Abstract We examine contemporaneous perfect ε-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within ε of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect ε-equilibrium. A strategy profile is a contemporaneous perfect ε-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria. 2005 Elsevier Inc. All rights reserved. JEL classification: C70; C72; C73 Keywords: Epsilon equilibrium; Ex ante payoff; Multistage game; Subgame perfect equilibrium 1. Introduction Analyzing a game begins with the construction of a model specifying the strategies of the players and the resulting payoffs. For many games, one cannot be positive that the specified payoffs are precisely correct. For the model to be useful, one must hope that its equilibria are close to those of the real game whenever the payoff misspecification is small. To ensure that an equilibrium of the model is close to a Nash equilibrium of every possible game with nearly the same payoffs, the appropriate solution concept in the model * Corresponding author. E-mail addresses: [email protected] (G.J. Mailath), [email protected] (A. Postlewaite), [email protected] (L.
    [Show full text]
  • On Uniqueness and Stability of Symmetric Equilibria in Differentiable Symmetric Games
    University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN1664-705X(online) Working Paper No. 18 On Uniqueness and Stability of symmetric equilibria in differentiable symmetric games Andreas Hefti May 2011 On Uniqueness and Stability of symmetric equilibria in differentiable symmetric games∗ Andreas Hefti† February 2011 Abstract Higher-dimensional symmetric games become of more and more importance for applied micro- and macroeconomic research. Standard approaches to uniqueness of equilibria have the drawback that they are restrictive or not easy to evaluate analytically. In this paper I provide some general but comparably simple tools to verify whether a symmetric game has a unique symmetric equilibrium or not. I distinguish between the possibility of multiple symmetric equilibria and asymmetric equilibria which may be economically interesting and is useful to gain further insights into the causes of asymmetric equilibria in symmetric games with higher-dimensional strategy spaces. Moreover, symmetric games may be used to derive some properties of the equilibrium set of certain asymmetric versions of the symmetric game. I further use my approach to discuss the relationship between stability and (in)existence of multiple symmetric equilibria. While there is an equivalence between stability, inexistence of multiple symmetric equilibria and the unimportance of strategic effects for the compara- tive statics, this relationship breaks down in higher dimensions. Stability under symmetric adjustments is a minimum requirement of a symmetric equilibrium for reasonable compara- tive statics of symmetric changes. Finally, I present an alternative condition for a symmetric equilibrium to be a local contraction which is more general than the conventional approach of diagonal dominance and yet simpler to evaluate than the eigenvalue condition of continuous adjustment processes.
    [Show full text]
  • The Folk Theorem in Repeated Games with Discounting Or with Incomplete Information
    The Folk Theorem in Repeated Games with Discounting or with Incomplete Information Drew Fudenberg; Eric Maskin Econometrica, Vol. 54, No. 3. (May, 1986), pp. 533-554. Stable URL: http://links.jstor.org/sici?sici=0012-9682%28198605%2954%3A3%3C533%3ATFTIRG%3E2.0.CO%3B2-U Econometrica is currently published by The Econometric Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/econosoc.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Jul 24 13:17:33 2007 Econornetrica, Vol.
    [Show full text]
  • Sion's Minimax Theorem and Nash
    Munich Personal RePEc Archive Sion’s minimax theorem and Nash equilibrium of symmetric multi-person zero-sum game Satoh, Atsuhiro and Tanaka, Yasuhito 24 October 2017 Online at https://mpra.ub.uni-muenchen.de/82148/ MPRA Paper No. 82148, posted 24 Oct 2017 14:07 UTC Sion’s minimax theorem and Nash equilibrium of symmetric multi-person zero-sum game∗∗ Atsuhiro Satoha,∗, Yasuhito Tanakab,∗∗ aFaculty of Economics, Hokkai-Gakuen University, Toyohira-ku, Sapporo, Hokkaido, 062-8605, Japan. bFaculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, 602-8580, Japan. Abstract We will show that Sion’s minimax theorem is equivalent to the existence of Nash equilibrium in a symmetric multi-person zero-sum game. If a zero-sum game is asymmetric, maximin strategies and minimax strategies of players do not corre- spond to Nash equilibrium strategies. However, if it is symmetric, the maximin strategy and the minimax strategy constitute a Nash equilibrium. Keywords: multi-person zero-sum game, Nash equilibrium, Sion’s minimax theorem. ∗E-mail: [email protected] ∗∗E-mail: [email protected]. Preprint submitted to Elsevier October 24, 2017 1. Introduction We consider the relation between Sion’s minimax theorem and the existence of Nash equilibrium in a symmetric multi-person zero-sum game. We will show that they are equivalent. An example of such a game is a relative profit maximization game in a Cournot oligopoly. Suppose that there are n ≥ 3 firms in an oligopolistic industry. Letπ ¯i be the absolute profit of the i-th firm. Then, its relative profit is 1 n π = π¯ − π¯ .
    [Show full text]
  • I. Non-Cooperative Games. A. Game Theory Can Be Used to Model a Wide
    Rationality and Game Theory (L2, L3, L4) An Introduction to Non-Cooperative Game Theory ii. For example: It is probably fair to say that the application of game theory to economic problems is the most In Cournot duopoly, each firm's profits depend upon its own output decision and active area of theory in modern economics and philosophy. A quick look at any economics that of the other firm in the market. journal published and many philosophy journals in the past decade will reveal a large number In a setting where pure public goods are consumed, one's own consumption of the of articles that rely upon elementary game theory to analyze economic behavior of theoretical public good depends in part on one's own production level of the good, and, in part, and policy interest. on that of all others. After a snow fall, the amount of snow on neighborhood sidewalks depends partly on To some extent, the tradition of game theory in economics is an old one. The Cournot your own efforts at shoveling and partly that of all others in the neighborhood. duopoly model (1838) is an example of a non-cooperative game with a Nash equilibrium. In an election, each candidate's vote maximizing policy position depends in part on Analysis of Stackelberg duopoly and monopolistic competition have always been based on the positions of the other candidate(s). models and intuitions very much like those of game theorists. iii. Game theory models are less interesting in cases where there are no interdependencies. Modern work on: the self-enforcing properties of contracts, credible commitments, the private For example, a case where there is no interdependence it that of a producer or consumer production of public goods, externalities, time inconsistency problems, models of negotiation, in perfectly competitive market.
    [Show full text]