Photopotentiation of Ganglion Cell Photoreceptors and Pupillary Light Responses

Total Page:16

File Type:pdf, Size:1020Kb

Photopotentiation of Ganglion Cell Photoreceptors and Pupillary Light Responses Photopotentiation of Ganglion Cell Photoreceptors and Pupillary Light Responses Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Phillip Thomas Yuhas, O.D. M.S. Graduate Program in Vision Science The Ohio State University 2019 Dissertation Committee: Dr. Andrew Hartwick, Advisor Dr. Angela Brown Dr. Dean VanNasdale Dr. Jordan Renna Copyright by Phillip Thomas Yuhas 2019 i Abstract A rare subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin that enables them to capture light and signal downstream targets independently from rods and cones. These blue-light sensitive, sluggish neurons act as irradiance detectors, signaling environmental light levels to brain centers that control aspects of non-image-forming vision, including the pupillary light response. Under physiological conditions, these cells are not isolated from external modulators. The overall objective of this dissertation was to quantify how ipRGC function can be influenced by retinal neuromodulators and then explore conditions in vivo in which ipRGC modulation may occur or be altered. First, multielectrode array recordings were obtained from rat retinas in vitro to determine whether dopamine D1 receptor agonists and antagonists affect light-evoked spiking in RGCs, including ipRGCs. The D1 receptor agonist, SKF 38393, significantly increased the spiking of synaptically intact ipRGCs and ON RGCs in response to a bright, flickering blue light, compared to baseline. A delayed SKF 38393-mediated enhancement was observed for ipRGCs that were pharmacologically isolated from glutamatergic input. Exposure to a D1 receptor antagonist, SCH 23390, did not significantly alter light-evoked spiking in pharmacologically isolated ipRGCs. Second, I analyzed human pupillary light responses to different flickering light stimuli in order to determine whether prior light exposure influences the contribution of ipRGCs to the pupillary light reflex. I found that a bright stimulus that flickered between ii darkness and red and blue lights was able to progressively increase the amount of sustained pupil constriction that occurred after the offset of each light. This aspect of the pupillary light response is primarily driven by intrinsic melanopsin-related photoresponses of ipRGCs. More gradual photopotentiation was observed in the pupillary light responses to a bright, red flickering stimulus and to three dim flickering stimuli of various spectral compositions (red, blue, and red-blue alternating). Initial pulses of all these stimuli appeared to be below threshold necessary for melanopsin activation in dark adapted ipRGCs. However, these results support the premise that these relatively dim stimuli can activate melanopsin with repeated light exposures, indicating that ipRGCs have a larger dynamic range of light sensitivity than previously thought. Third, I investigated the pupillary light responses to red and blue flickering lights in human subjects suffering from post-traumatic brain injury (TBI) photophobia and compared the results to matched controls. The mean pupil responses did not differ between these two groups, but there was significantly more variability in the TBI group. This finding suggests that, although ipRGC light sensitivity does not uniformly change after a TBI, there may be heterogeneous effects of the injury on ipRGC function. In addition, I found that clinical observers cannot identify light-aversion behavior elicited by flickering red and blue lights in photophobic TBI subjects. The need remains for an objective test for detecting photophobia and monitoring its progression in individuals with TBI. iii Dedication To my wife, children, and parents iv Acknowledgements I am deeply appreciative to my PhD advisor, Dr. Andrew Hartwick, for his mentorship during the last eight years. His thoughtful guidance during my graduate school training and constructive feedback on all my various projects have made my time with him not only productive but also enjoyable. I aim to model my academic career after his example. In addition, I am thankful to Dr. Hartwick’s former and current doctoral students, including Puneet Sodhi, Patrick Shorter, and Elizabeth Galko, for their contributions to this dissertation and their continued companionship. Finally, I am grateful to Jacsen Luthy, a bright and industrious high school student. His immunohistochemistry experiments enhanced chapter two of this dissertation. v Vita 2006 ..................................... Saint Ignatius High School 2010 ..................................... B.A. Theology & Pre-medicine, University of Notre Dame 2014 ..................................... M.S. Vision Science, The Ohio State University 2014 ..................................... O.D. Optometry, The Ohio State University 2014 to present .................... Clinical Instructor, The Ohio State University Publications Yuhas, P. T., Shorter, P. D., McDaniel, C. E., Earley, M. J., & Hartwick, A. T. (2017). Blue and Red Light-Evoked Pupil Responses in Photophobic Subjects with TBI. Optom Vis Sci, 94(1), 108-117. Yuhas, P. T., Shorter, P. D., McDaniel, C. E., Earley, M. J., & Hartwick, A. T. (2019). Observer-perceived light aversion behaviour in photophobic subjects with traumatic brain injury. Clin Exp Optom. Epub ahead of print. Fields of Study Major Field: Vision Science vi Table of Contents Abstract ................................................................................................................. ii Dedication ............................................................................................................. iv Acknowledgements ............................................................................................... v Vita ........................................................................................................................ vi List of Tables ......................................................................................................... viii List of Figures ........................................................................................................ ix Chapter 1: Introduction .......................................................................................... 1 Chapter 2: Dopamine D1 receptor-mediated enhancement of ipRGC photoresponses ..................................................................................................... 13 Chapter 3: Photopotentiation of the human pupillary light response after stimulation with red and blue flickering lights ......................................................... 71 Chapter 4: Observer-perceived light aversion behavior and light-evoked pupil responses in photophobic subjects with TBI .................................................. 139 Chapter 5: Conclusions ......................................................................................... 201 References ............................................................................................................ 214 Appendix: Automated processing of pupil recordings ............................................ 253 vii List of Tables 3.1 Retinal illumination caused by the red and blue light stimuli utilized on healthy human subjects .................................................................................... 95 4.1 Head injury history of TBI subjects .................................................................. 160 4.2 Retinal illumination caused by the red and blue light stimuli utilized on the TBI, control, and student subjects ............................................................... 161 4.3 Demographics of TBI and control subjects ...................................................... 172 4.4 Medications prescribed to the TBI and control subjects during the study ........ 173 4.5 Demographics of student study group ............................................................ 173 4.6 Standard video grading scale ......................................................................... 182 viii List of Figures 2.1 Schematic representation of in vitro retinal recordings .................................... 31 2.2 Comparison of ipRGC density in rat retina to density of electrodes on MEA array ........................................................................................................ 42 2.3 Group data showing effect of D1 dopamine receptor agonist on ON RGCs ..... 43 2.4 Representative spike rasters showing the effects of D1 dopamine receptor agonist on an ipRGC ............................................................................... 44 2.5 Group data showing effect of D1 dopamine receptor agonist on ipRGCs ........ 45 2.6 Pulse-by-pulse effect of a D1 dopamine receptor agonist on ipRGCs ............. 47 2.7 Effect of D1 dopamine receptor agonist on pharmacologically isolated ipRGCs ................................................................................................... 48 2.8 Effect of D1 dopamine receptor antagonism on ON RGCs .............................. 50 2.9 Effect of D1 dopamine receptor antagonism on ipRGCs.................................. 51 2.10 Effects of D1 dopamine receptor antagonism on pharmacologically-isolated ipRGCs ....................................................................... 53 2.11 Representative spike rasters showing the effects of D1 dopamine receptor agonist on an OFF RGC .........................................................................
Recommended publications
  • Move Your Wheelchair with Your Eyes
    International Journal of Applied Mathematics, Advanced Technology and Science Electronics and Computers ISSN:2147-82282147-6799 www.atscience.org/IJAMEC Original Research Paper Move Your Wheelchair with Your Eyes Gökçen ÇETİNEL*1, Sevda GÜL2, Zafer TİRYAKİ3, Enes KUZU4, Meltem MİLLİGÜNEY5 Accepted : 12/05/2017 Published: 21/08/2017 DOI: 10.18100/ijamec.2017Special Issue30462 Abstract: In the proposed study, our goal is to move paralyzed people with their eyes. Otherwise, use this document as an instruction set. Paper titles should be written in uppercase and lowercase letters, not all uppercase. For this purpose, we use their Electrooculogram (EOG) signals obtained from EOG goggles completely designed by the authors. Through designed EOG goggles, vertical-horizontal eye movements and voluntary blink detection are verified by using 5 Ag-AgCl electrodes located around the eyes. EOG signals utilized to control wheelchair motion by applying signal processing techniques. The main steps of signal processing phase are pre-processing, maximum-minimum value detection and classification, respectively. At first, pre-processing step is used to amplify and smooth EOG signals. In maximum-minimum value detection we obtain maximum and minimum voltage levels of the eye movements. Furthermore, we determine the peak time of blink to distinguish voluntary blinks from involuntary blinks. Finally, at classification step k-Nearest Neighbouring (k-NN) technique is applied to separate eye movement signals from each other. Several computer simulations are performed to show the effectiveness of the proposed EOG based wheelchair control system. According to the results, proposed system can communicate paralyzed people with their wheelchair and by this way they will be able to move by their selves.
    [Show full text]
  • Electroretinography 1 Electroretinography
    Electroretinography 1 Electroretinography Electroretinography measures the electrical responses of various cell types in the retina, including the photoreceptors (rods and cones), inner retinal cells (bipolar and amacrine cells), and the ganglion cells. Electrodes are usually placed on the cornea and the skin near the eye, although it is possible to record the ERG from skin electrodes. During a recording, the patient's eyes are exposed to standardized stimuli and the resulting signal is displayed showing the time course of the signal's Maximal response ERG waveform from a dark adapted eye. amplitude (voltage). Signals are very small, and typically are measured in microvolts or nanovolts. The ERG is composed of electrical potentials contributed by different cell types within the retina, and the stimulus conditions (flash or pattern stimulus, whether a background light is present, and the colors of the stimulus and background) can elicit stronger response from certain components. If a flash ERG is performed on a dark-adapted eye, the response is primarily from the rod system and flash ERGs performed on a light adapted eye will reflect the activity of the cone system. To sufficiently bright flashes, the ERG will contain an A patient undergoing an electroretinogram a-wave (initial negative deflection) followed by a b-wave (positive deflection). The leading edge of the a-wave is produced by the photoreceptors, while the remainder of the wave is produced by a mixture of cells including photoreceptors, bipolar, amacrine, and Muller cells or Muller glia.[1] The pattern ERG, evoked by an alternating checkerboard stimulus, primarily reflects activity of retinal ganglion cells.
    [Show full text]
  • Camello-XR Enables Visualization and Optogenetic Control of Gq/11 Signals and Receptor Trafficking in GPCR-Specific Domains
    ARTICLE https://doi.org/10.1038/s42003-019-0292-y OPEN CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains Dennis Eickelbeck1, Raziye Karapinar1, Alexander Jack 2, Sandra T. Suess1, Ruxandra Barzan3, Zohre Azimi3, 1234567890():,; Tatjana Surdin1, Michelle Grömmke1, Melanie D. Mark1, Klaus Gerwert4, Dirk Jancke3, Petra Wahle2, Katharina Spoida1 & Stefan Herlitze1 The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered 2+ CaMello (Ca -melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic- 2+ dependent Ca signals in 5-HT2A-R domains. These constructs consist of the light-activated 2+ Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/ 11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization. 1 Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany. 2 Developmental Neurobiology, ND6/72, Ruhr-University Bochum, Universitätsstr.
    [Show full text]
  • Assessment and Management of Infantile Nystagmus Syndrome
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Atilla, J Clin Exp Ophthalmol 2016, 7:2 g u y o J Ophthalmology 10.4172/2155-9570.1000550 ISSN: 2155-9570 DOI: Review Article Open Access Assessment and Management of Infantile Nystagmus Syndrome Huban Atilla* Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey *Corresponding author: Huban Atilla, Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey, Tel: +90 312 4462345; E-mail: [email protected] Received date: March 08, 2016; Accepted date: April 26, 2016; Published date: April 29, 2016 Copyright: © 2016 Atilla H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This article is a review of infantile nystagmus syndrome, presenting with an overview of the physiological nystagmus and the etiology, symptoms, clinical evaluation and treatment options. Keywords: Nystagmus syndrome; Physiologic nystagmus phases; active following of the stimulus results in poor correspondence between eye position and stimulus position. At higher velocity targets Introduction (greater than 100 deg/sec) optokinetic nystagmus can no longer be evoked. Unlike simple foveal smooth pursuit, OKN appears to have Nystagmus is a rhythmic, involuntary oscillation of one or both both foveal and peripheral retinal components [3]. Slow phase of the eyes. There are various classifications of nystagmus according to the nystagmus is for following the target and the fast phase is for re- age of onset, etiology, waveform and other characteristics.
    [Show full text]
  • TRPV1 and Endocannabinoids: Emerging Molecular Signals That Modulate Mammalian Vision
    Cells 2014, 3, 914-938; doi:10.3390/cells3030914 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision 1,2,†, 1,2,† 1,† 1,2,3,4, Daniel A. Ryskamp *, Sarah Redmon , Andrew O. Jo and David Križaj * 1 Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; E-Mails: [email protected] (S.R.); [email protected] (A.O.J.) 2 Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 3 Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 4 Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA † Those authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.A.R.); [email protected] (D.K.); Tel.: +1-801-213-2777 (D.K.); Fax: +1-801-587-8314 (D.K.). Received: 1 July 2014; in revised form: 27 August 2014 / Accepted: 5 September 2014 / Published: 12 September 2014 Abstract: Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system.
    [Show full text]
  • Assessing Ocular Activity During Performance of Motor Skills Using Electrooculography Gallicchio, Germano; Cooke, Andrew; Ring, Christopher
    University of Birmingham Assessing ocular activity during performance of motor skills using electrooculography Gallicchio, Germano; Cooke, Andrew; Ring, Christopher DOI: 10.1111/psyp.13070 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Gallicchio, G, Cooke, A & Ring, C 2018, 'Assessing ocular activity during performance of motor skills using electrooculography', Psychophysiology. https://doi.org/10.1111/psyp.13070 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • Eye Care Documentation Template Documentation Tem- Plate: Conceptual Structure
    Eye Care Documentation Template Documentation Tem- plate: Conceptual Structure Contract: VA118-16-D-1008, Task Order (TO): VA-118-16-F-1008-0007, CLIN0009DA Department of Veterans Affairs (VA) Knowledge Based Systems (KBS) Office of Informatics and Information Governance (OIIG) Clinical Decision Support (CDS) Publication date 06/23/2018 Version: 1.0 Eye Care Documentation Template: Documentation Template: Con- ceptual Structure by Knowledge Based Systems (KBS), Office of Informatics and Information Governance (OIIG), and Clinical Deci- sion Support (CDS) Publication date 06/23/2018 Copyright © 2018 B3 Group, Inc. Copyright © 2018 Cognitive Medical Systems, Inc. B3 Group, Inc. NOTICE OF GOVERNMENT COPYRIGHT LICENSE AND UNLIMITED RIGHTS LICENSE Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Portions of this content are derivative works from content produced by Cognitive Medical Systems, Inc. licensed under the Apache License, Version 2.0. Additional portions of this content are derivative works from content contributed by Motive Medical Intelligence Inc., under Creative Commons Attribution-ShareAlike 4.0. Contributions from 2013-2018 were performed either by US Government employees, or under US Veterans Health Administration contracts. US Veterans Health Administration contributions by government employees are work of the U.S.
    [Show full text]
  • Electrooculography”
    ISSN (Print) : 2319-5940 ISSN (Online) : 2278-1021 International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 11, November 2013 An Overview of “Electrooculography” Uzma Siddiqui1, A.N Shaikh2 EC Department, Savitribai Phule Women’s Engineering College, Aurangabad MH, India 1 EC Department, Savitribai Phule Women’s Engineering College, Aurangabad MH, India 2 Abstract: This paper brings out a new technology of placing electrodes on user’s forehead around the eyes to record eye movements which is called as Electrooculography (EOG. This technology is based on the principle of recording the polarization potential or corneal-retinal potential (CRP), which is the resting potential between the cornea and the retina. This potential is commonly known as electrooculogram. is a very small electrical potential that can be detected using electrodes which is linearly proportional to eye displacement. EOG serves as a means of control for allowing the handicapped, especially those with only eye-motor coordination, to live more independent lives. This is a low cost assistive system for disabled people. The total command control based on EOG permits users to guide it with a enough degree of comfort ability. Keywords:AnalogDigitalConverter(ADC),Electroencefalogram(EEG),Electromyalgy(EMG),Electrooculography (EOG), Rapid Eye Movement(REM),Slow eye movement(SEM). I. INTRODUCTION Electrooculography is a technique for measuring the resting potential of the retina. The resulting signal is called the electrooculogram. An electrooculograph is a device that measures the voltage between two electrodes placed on the face of a subject so it can detect eye movement. Today the use of computers is extended to every field.
    [Show full text]
  • Rods Contribute to the Light-Induced Phase Shift of The
    Rods contribute to the light-induced phase shift of the retinal clock in mammals Hugo Calligaro, Christine Coutanson, Raymond Najjar, Nadia Mazzaro, Howard Cooper, Nasser Haddjeri, Marie-Paule Felder-Schmittbuhl, Ouria Dkhissi-Benyahya To cite this version: Hugo Calligaro, Christine Coutanson, Raymond Najjar, Nadia Mazzaro, Howard Cooper, et al.. Rods contribute to the light-induced phase shift of the retinal clock in mammals. PLoS Biology, Public Library of Science, 2019, 17 (3), pp.e2006211. 10.1371/journal.pbio.2006211. inserm-02137592 HAL Id: inserm-02137592 https://www.hal.inserm.fr/inserm-02137592 Submitted on 23 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Rods contribute to the light-induced phase shift of the retinal clock in mammals Hugo Calligaro1, Christine Coutanson1, Raymond P. Najjar2,3, Nadia Mazzaro4, Howard M. Cooper1, Nasser Haddjeri1, Marie-Paule Felder-Schmittbuhl4, Ouria Dkhissi- Benyahya1* 1 Univ Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France,
    [Show full text]
  • Eye Movement Analysis for Activity Recognition Using Electrooculography
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, - PREPRINT - 1 Eye Movement Analysis for Activity Recognition Using Electrooculography Andreas Bulling, Student Member, IEEE, Jamie A. Ward, Hans Gellersen, and Gerhard Troster,¨ Senior Member, IEEE Abstract—In this work we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data was recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals - saccades, fixations, and blinks - and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance feature selection (mRMR). We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking hand-written notes, watching a video, and browsing the web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1% and recall of 70.5% over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities. Index Terms—Ubiquitous computing, Feature evaluation and selection, Pattern analysis, Signal processing. F 1 INTRODUCTION ties have the potential to reveal much about the activities themselves - independently of what we are looking at.
    [Show full text]
  • Seeing the Light
    RESEARCH HIGHLIGHTS File name: NRN0305_RJ2_HL.doc Word count: 540 Accompanying picture: YES/no SENSORY TRANSDUCTION File name of picture: Seeing the light Three studies have shown that ity, three groups expressed the pig- opsins themselves can carry out the melanopsin — a pigment that is ment in different types of cell — photoisomerase activity that is found in the type of retinal ganglion Xenopus oocytes, human embryonic needed to regenerate the chro- cell that allows light to entrain the cir- kidney (HEK293) cells and a mouse mophore. Both Melyan et al. and cadian clock — can function as a neuronal cell line called neuro-2a. In Panda et al. provide evidence that photopigment in other types of cell. each case, the expression of melanopsin resembles invertebrate As well as confirming that melanopsin caused the cells to opsins in that it has an intrinsic pho- melanopsin is photosensitive, the become photosensitive. toisomerase activity that can convert studies reveal that it is closer in some The three groups also investigated all-trans-retinaldehyde into 11-cis- ways to invertebrate photopigments the signalling pathways that mediated retinaldehyde. than to other photopigments in ver- phototransduction in the transfected Although further studies are tebrates. cells. Molyan et al.found that, in needed to pin down the exact mecha- Circadian entrainment in mam- neuro-2a cells, melanopsin signals nism by which melanopsin mediates mals relies on a set of intrinsically through a G-protein signalling path- phototransduction in ipRGCs, these photoreceptive retinal ganglion cells way to regulate the opening of an three studies provide proof that (ipRGCs). Although these contain intrinsic ion channel.
    [Show full text]
  • Melanopsin: an Opsin in Melanophores, Brain, and Eye
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 340–345, January 1998 Neurobiology Melanopsin: An opsin in melanophores, brain, and eye IGNACIO PROVENCIO*, GUISEN JIANG*, WILLEM J. DE GRIP†,WILLIAM PA¨R HAYES‡, AND MARK D. ROLLAG*§ *Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; †Institute of Cellular Signaling, University of Nijmegen, 6500 HB Nijmegen, The Netherlands; and ‡Department of Biology, The Catholic University of America, Washington, DC 20064 Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 5, 1997 (received for review September 16, 1997) ABSTRACT We have identified an opsin, melanopsin, in supernatants subjected to SDSyPAGE analysis and subse- photosensitive dermal melanophores of Xenopus laevis. Its quent electroblotting onto a poly(vinylidene difluoride) mem- deduced amino acid sequence shares greatest homology with brane. The blot was probed with a 1:2,000 dilution of antisera cephalopod opsins. The predicted secondary structure of (CERN 886) raised against bovine rhodopsin and detected by melanopsin indicates the presence of a long cytoplasmic tail enhanced chemiluminescence. with multiple putative phosphorylation sites, suggesting that cDNA Library Screen. A X. laevis dermal melanophore this opsin’s function may be finely regulated. Melanopsin oligo(dT) cDNA library was screened with a mixture of mRNA is expressed in hypothalamic sites thought to contain 32P-labeled probes. Probes were synthesized by random prim- deep brain photoreceptors and in the iris, a structure known ing of TA-cloned (Invitrogen) fragments of X. laevis rhodopsin to be directly photosensitive in amphibians. Melanopsin mes- (7) (759 bp) and violet opsin (8) (279 bp) cDNAs.
    [Show full text]