Non Melanoma Skin Cancer Pathogenesis Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Maas) As Safe and Natural Protective Agents Against UV-Induced Skin Damage
antioxidants Review Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage Anjali Singh ,Mária Cˇ ížková, KateˇrinaBišová and Milada Vítová * Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 81 Tˇreboˇn,Czech Republic; [email protected] (A.S.); [email protected] (M.C.);ˇ [email protected] (K.B.) * Correspondence: [email protected] Abstract: Prolonged exposure to harmful ultraviolet radiation (UVR) can induce many chronic or acute skin disorders in humans. To protect themselves, many people have started to apply cosmetic products containing UV-screening chemicals alone or together with physical sunblocks, mainly based on titanium–dioxide (TiO2) or zinc-oxide (ZnO2). However, it has now been shown that the use of chemical and physical sunblocks is not safe for long-term application, so searches for the novel, natural UV-screening compounds derived from plants or bacteria are gaining attention. Certain photosynthetic organisms such as algae and cyanobacteria have evolved to cope with exposure to UVR by producing mycosporine-like amino acids (MAAs). These are promising substitutes for chemical sunscreens containing commercially available sunblock filters. The use of biopolymers such as chitosan for joining MAAs together or with MAA-Np (nanoparticles) conjugates will provide Citation: Singh, A.; Cížková,ˇ M.; stability to MAAs similar to the mixing of chemical and physical sunscreens. This review critically Bišová, K.; Vítová, M. Exploring describes UV-induced skin damage, problems associated with the use of chemical and physical Mycosporine-Like Amino Acids (MAAs) as Safe and Natural sunscreens, cyanobacteria as a source of MAAs, the abundance of MAAs and their biotechnological Protective Agents against applications. -
Solar Ultraviolet Radiation Dosimetry and Epidemiology
Solar Ultraviolet Radiation Dosimetry and Epidemiology Dr. Elizabeth Cahoon Earl Stadtman Investigator Radiation Epidemiology Branch Division of Cancer Epidemiology and Genetics [email protected] DCEG Radiation Epidemiology and Dosimetry Course 2019 www.dceg.cancer.gov/RadEpiCourse Overview . Background on UV radiation (UVR) . UVR exposure assessment . Health risks . Health benefits . Summary 2 Background on UV radiation 3 Public health importance . Prevention (identify susceptible populations) . Consumer products . Medical radiation guidelines . Insights into carcinogenesis 4 Annual economic burden of skin cancer in the United States . Treatment: $8.1 billion (Guy et al., 2015) . $4.8 billion for keratinocyte carcinomas (basal and squamous cell skin cancer) . $3.3 billion for melanoma U.S. Surgeon General’s Call to Action to Prevent Skin Cancer (2014) UV radiation exposure assessment 6 http://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/electromagnetic-fields-fact-sheet 7 Solar radiation spectrum 95% of UVA: 315-400 nm 5% of UVB: 280-315 nm Individual measures of UVR . Susceptibility (light skin/hair/eye pigmentation) . Self-reported time outdoors . Outdoor/indoor occupation . Tanning bed use . Lack of sunscreen use/protective clothing . Sunburns 9 Environmental measures of UVR . Proximity to the Equator . Ambient UVR . Ground-based . Satellite-based 10 . Satellite circled Earth once a day near noontime . Validated by ground-based measurements . 10 latitude by 10 longitude global grid . Several wavelengths available Nimbus -7 Satellite (1978-1993) Satellite-based ambient UVR . Earth-sun distance . Time of year . Latitude . Column ozone . Cloud optical thickness http://toms.gsfc.nasa.gov/n7toms/nim7toms_v8.html 12 Satellite-based erythemal exposure model http://macuv.gsfc.nasa.gov/doc/erynotes.pdf UV radiation spectrum UVA: 320-400 nm 95% reaches Earth’s surface UVB: 290-320 nm 5% reaches Earth’s surface UVC: 100-290 nm 0% reaches Earth’s surface Skin erythema (reddening) response to various UVR wavelengths UVB UVA Characteristics of UVB . -
Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical Camp Manipulation
Molecules 2014, 19, 6202-6219; doi:10.3390/molecules19056202 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation Alexandra Amaro-Ortiz 1, Betty Yan 1 and John A. D’Orazio 1,2,* 1 The Graduate Center for Toxicology, the Markey Cancer Center and the Department of Pediatrics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA 2 Markey Cancer Center, University of Kentucky College of Medicine, Combs Research Building 204, 800 Rose Street, Lexington, KY 40536-0096, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-859-323-6238; Fax: +1-859-257-8940. Received: 26 April 2014; in revised form: 8 May 2014 / Accepted: 13 May 2014 / Published: 15 May 2014 Abstract: Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury. -
State of Science Breast Cancer Fact Sheet
Patient Version Breast Cancer Fact Sheet About Breast Cancer Breast cancer can start in any area of the breast. In the US, breast cancer is the most common cancer (after skin cancer) and the second-leading cause of cancer death (after lung cancer) in women. Risk Factors Risk factors for breast cancer that you cannot change Lifestyle-related risk factors for breast cancer include: • Drinking alcohol Being born female • Being overweight or obese, especially after menopause This is the main risk factor for breast cancer. But men can get breast cancer, too. • Not being physically active Getting older • Getting hormone therapy after menopause with As a person gets older, their risk of breast cancer estrogen and progesterone therapy goes up. Most breast cancers are found in women • Starting menstruation early or having late menopause age 55 or older. • Never having children or having first live birth after Personal or family history age 30 A woman who has had breast cancer in the past or has a • Using certain types of birth control close blood relative who has had breast cancer (mother, • Having a history of non-cancerous breast conditions father, sister, brother, daughter) has a higher risk of getting it. Having more than one close blood relative increases the risk even more. It’s important to know that Prevention most women with breast cancer don’t have a close blood There is no sure way to prevent breast cancer, and relative with the disease. some risk factors can’t be changed, such as being born female, age, race, and personal or family history of the Inheriting gene changes disease. -
Skin Cancer 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Liberty University Digital Commons Running head: SKIN CANCER 1 Skin Cancer Causes, Prevention, and Treatment Lauren Queen A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2017 SKIN CANCER 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University ______________________________ Jeffrey Lennon, Ph.D. Thesis Chair ______________________________ Sherry Jarrett, Ph.D. Committee Member ______________________________ Virginia Dow, M.A. Committee Member ______________________________ Brenda Ayres, Ph.D. Honors Director ______________________________ Date SKIN CANCER 3 Abstract The purpose of this thesis is to analyze the causes, prevention, and treatment of skin cancer. Skin cancers are defined as either malignant or benign cells that typically arise from excessive exposure to UV radiation. Arguably, skin cancer is a type of cancer that can most easily be prevented; prevention of skin cancer is relatively simple, but often ignored. An important aspect in discussing the epidemiology of skin cancer is understanding the treatments that are available, as well as the prevention methods that can be implemented in every day practice. It is estimated that one in five Americans will develop skin cancer during his or her lifetime, and that one person will die from melanoma every hour of the day. To an epidemiologist and health promotion advocate, these figures are daunting for a disease, especially for a disease that has ample means of prevention. -
ABSTRACT Sensitivity and Specificity of Malignant Melanoma, Squamous Cell Carcinoma, and Basal Cell Carcinoma in a General Derma
ABSTRACT Sensitivity and Specificity of Malignant Melanoma, Squamous Cell Carcinoma, and Basal Cell Carcinoma in a General Dermatological Practice Rachel Taylor Director: Troy D. Abell, PhD MPH Introduction. Incidence of melanoma and non‐melanoma skin cancer is increasing worldwide. Melanoma is the sixth most common cancer in the United States, making skin cancer a significant public health issue. Background and goal. The goal of this study was to provide estimates for sensitivity (P(T+|D+)), specificity (P(T‐|D‐)), and likelihood ratios (P(T+|D+)/P(T+|D‐)) for a positive test and (P(T‐|D+)/P(T‐|D‐)) for negative test of clinical diagnosis compared with pathology reports for malignant melanoma (MM), squamous cell carcinoma (SCC) , basal cell carcinoma (BCC), and benign lesions. This retrospective cohort study collected data on 595 patients with 2,973 lesions in a Central Texas dermatology clinic, randomly selecting patients seen by the dermatology clinic between 1995 and 2011. The ascertation of disease was documented on the pathology report and served as the “gold standard.” Hypotheses. Major hypotheses were that the percentage of agreement beyond that expected by chance between the clinicians’ diagnosis and the pathological gold standard were 0.10, 0.10, 0.30, and 0.40 for MM, SCC, BCC and benign lesions respectively. Results. For MM, the resulting estimates were: (a) 0.1739 (95% C.I. 0.0495, 0.3878), for sensitivity; (b) 0.9952 (95% C.I. 0.9920, 0.9974) for specificity; and (c) the likelihood ratios for a positive and negative test result were 36.23 and 0.83, respectively. -
Actinic Keratoses Final Report
Actinic Keratoses Final Report Mark Helfand, MD, MPH Annalisa K. Gorman, MD Susan Mahon, MPH Benjamin K.S. Chan, MS Neil Swanson, MD Submitted to the Agency for Healthcare Research and Quality under contract 290-97-0018, task order no. 6 Oregon Health & Science University Evidence-based Practice Center 3181 SW Sam Jackson Park Road Portland, Oregon 97201 May 19, 2001 Actinic Keratoses Structured Abstract Objective: To examine evidence about the natural history and management of actinic keratoses (AKs). Search Strategy: We searched the MEDLINE database from January 1966 to January 2001, the Cochrane Controlled Trials Registry, and a bibliographic database of articles about skin cancer. We identified additional articles from reference lists and experts. Selection Criteria: We selected 45 articles that contained original data relevant to treatment of actinic keratoses, progression of AKs to squamous cell cancer (SCC ), means of identifying a high-risk group, or surveillance of patients with AKs to detect and treat SCCs early in their course. Data Collection and Analysis: We abstracted information from these studies to construct evidence tables. We also developed a simple mathematical model to examine whether estimates of the rate of progression of AK to SCC were consistent among studies. Finally, we analyzed data from the Medicare Statistical System to estimate the frequency of procedures attributable to AK among elderly beneficiaries. Main Results: The yearly rate of progression of an AK in an average-risk person in Australia is between 8 and 24 per 10,000. High-risk individuals with multiple AKs have progression rates as high as 12-30 percent over 3 years. -
Skin Cancers of the Feet: the Role of Today's Podiatrist in Detection And
THE ROLE OF TODAY’S LEARN THE ABCDs OF PODIATRIST IN THE MELANOMA: DETECTION AND Here are some common attributes of MANAGEMENT OF SKIN cancerous lesions: DISEASE Asymmetry - If divided in half, the Podiatrists are uniquely trained as lower sides don’t match. extremity specialists to recognize and Borders - They look scalloped, treat abnormal conditions as they present uneven, or ragged. themselves on the skin of the lower legs Color - They may have more than and feet. Skin cancers in the lower extremity one color. These colors may have may have a very different appearance from an uneven distribution. those arising on the rest of the body. For Diameter - They can appear wider this reason, a podiatrist’s knowledge and than a pencil eraser (greater than clinical training is of extreme importance 6mm). for patients for the early detection of both benign and malignant skin tumors. For other types of skin cancer, look for Your podiatrist will investigate the spontaneous ulcers and non-healing sores, possibility of skin cancer both through bumps that crack or bleed, nodules with his/her clinical examination and with the rolled or “donut-shaped” edges, or discrete use of a skin biopsy. A skin biopsy is a scaly areas. simple procedure in which a small sample If you notice a mole, bump, or patch of the skin lesion is obtained and sent on the skin of a friend or family member to a specialized laboratory where a skin that meets any of these criteria, encourage Skin Cancers pathologist will examine the tissue in greater them to see an APMA member podiatrist detail. -
What Are Basal and Squamous Cell Skin Cancers?
cancer.org | 1.800.227.2345 About Basal and Squamous Cell Skin Cancer Overview If you have been diagnosed with basal or squamous cell skin cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Are Basal and Squamous Cell Skin Cancers? Research and Statistics See the latest estimates for new cases of basal and squamous cell skin cancer and deaths in the US and what research is currently being done. ● Key Statistics for Basal and Squamous Cell Skin Cancers ● What’s New in Basal and Squamous Cell Skin Cancer Research? What Are Basal and Squamous Cell Skin Cancers? Basal and squamous cell skin cancers are the most common types of skin cancer. They start in the top layer of skin (the epidermis), and are often related to sun exposure. 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Cancer starts when cells in the body begin to grow out of control. Cells in nearly any part of the body can become cancer cells. To learn more about cancer and how it starts and spreads, see What Is Cancer?1 Where do skin cancers start? Most skin cancers start in the top layer of skin, called the epidermis. There are 3 main types of cells in this layer: ● Squamous cells: These are flat cells in the upper (outer) part of the epidermis, which are constantly shed as new ones form. When these cells grow out of control, they can develop into squamous cell skin cancer (also called squamous cell carcinoma). -
Research Journal of Pharmaceutical, Biological and Chemical Sciences
ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Sunscreens Containing Various Herbs For Protecting Skin From UV Sunray. Zainab Tuama Al-Dallee, and Kawther T. Khalaf*. Pharmacognosay Department, College of Pharmacy, University of Basra, Basra, Iraq, 2Clinical laboratory science Department, College of Pharmacy, University of Basra, Basra, Iraq. ABSTRACT Overexposure to sun ultraviolet (UV) radiation is the main external cause of skin damage, and thus it is a factor in aging skin and increasing the risk of skin cancer, which speeds up skin aging and raises the risk of skin cancer. The students have tended to use sunscreens containing plant extracts as a substitute for sunscreen that contains organic compounds causing allergic. Plant‐based sunscreens are used to protect skin cells and DNA damage from UV rays due to they contain antioxidant compounds that restricts free radical activity. In addition to their antioxidant properties, plant‐products contain polyphenols like flavonoids and carotenoids. Therefore, the aim of the research is to present a review of the plant species generally applied in sunblock to save the skin from UV rays of the sunlight. Keywords: Ultraviolet radiation, Skin damage, Natural sun blocker, DNA damages https://doi.org/10.33887/rjpbcs/2021.12.2.4 *Corresponding author March – April 2021 RJPBCS 12(2) Page No. 19 ISSN: 0975-8585 INTRODUCTION Herbs have been known since ancient times for their ability to treat, improve and decorate skin diseases, so they have been used in cosmetics [1]. Given the fact that ultraviolet (UV) radiation rays play a role in causing sunburn, wrinkles, premature aging, and reducing immunity to infection and cancer, there is constant need for UV protection and prevention of its side effects [2]. -
Oculoplastic Aspects of Ocular Oncology
Eye (2013) 27, 199–207 & 2013 Macmillan Publishers Limited All rights reserved 0950-222X/13 www.nature.com/eye Oculoplastic aspects C Rene CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM of ocular oncology Abstract represents a significant proportion of the oculoplastic surgeon’s workload. In this review, It is estimated that 5–10% of all cutaneous the features of periocular skin cancer are malignancies involve the periocular region presented together with a discussion of the and management of periocular skin cancers treatment modalities. account for a significant proportion of the oculoplastic surgeon’s workload. Epithelial tumours are most frequently encountered, Diagnosing malignant eyelid disease including basal cell carcinoma, squamous cell carcinoma, and sebaceous gland Although malignant eyelid disease is usually carcinoma, in decreasing order of frequency. easy to diagnose on the basis of the history and Non-epithelial tumours, such as cutaneous clinical signs identified on careful examination melanoma and Merkel cell carcinoma, rarely (Table 1), differentiating between benign and involve the ocular adnexae. Although malignant periocular skin lesions can be non-surgical treatments for periocular challenging because malignant lesions malignancies are gaining in popularity, occasionally masquerade as benign pathology. surgery remains the main treatment modality For instance, a cystic basal cell carcinoma (BCC) 4,5 and has as its main aims tumour clearance, can resemble a hidrocystoma or sebaceous restoration of the eyelid function, protection gland carcinoma (SGC) classically mimics a 6,7 of the ocular surface, and achieving a good chalazion. Conversely, a benign lesion such as cosmetic outcome. The purpose of this article a pigmented hidrocystoma may be mistaken for 8 is to review the management of malignant a malignant melanoma. -
DNA Repair Mechanisms and the Skin | Skininc.Com
9/12/2014 DNA Repair Mechanisms and the Skin | SkinInc.com DNA Repair Mechanisms and the Skin By: Michael Q. Pugliese and Peter T. Pugliese, MD Posted: July 31, 2014, from the August 2014 issue of Skin Inc. magazine. Silently and efficiently, the cells of the skin work furiously to repair the damage that is incessantly assaulting your deoxyribose nucleic acid (DNA). Without these repair mechanisms, life would be impossible. The major manifestation of DNA damage on the skin is skin cancer. Clients who have red hair and are Fitzpatrick Type I are the most susceptible to this type of damage, but anyone who is exposed to high levels of sun exposure is a candidate for DNA damage. If serious, most DNA damage to the skin will manifest as some type of lesion. If skin care professionals notice actinic keratosis, multiple ugly, pigmented spots or any lesion that cannot be recognized, they should immediately refer the client to a dermatologist. In this article, only the basic mechanisms of DNA repair will be covered for the skin care professional by answering four essential questions. 1. How does the skin become damaged? 2. What type of damage is incurred by DNA and other organelles in the skin? 3. How does the skin repair this damage? 4. What can be used topically to assist in DNA repair? There are so many assaults on the DNA during the life of the average cell that, eventually, if an organism lived long enough, the cells would not be able to keep up the repair effort, and they would either die or become malignant.