Many Electrons and the Photon Field the Many-Body Structure of Nonrelativistic Quantum Electrodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Many Electrons and the Photon Field The many-body structure of nonrelativistic quantum electrodynamics vorgelegt von M. Sc. Florian Konrad Friedrich Buchholz ORCID: 0000-0002-9410-4892 an der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades DOKTOR DER NATURWISSENSCHAFTEN Dr.rer.nat. genehmigte Dissertation PROMOTIONSAUSSCHUSS: Vorsitzende: Prof. Dr. Ulrike Woggon Gutachter: Prof. Dr. Andreas Knorr Gutachter: Dr. Michael Ruggenthaler Gutachter: Prof. Dr. Angel Rubio Gutachter: Prof. Dr. Dieter Bauer Tag der wissenschaftlichen Aussprache: 24. November 2020 Berlin 2021 ACKNOWLEDGEMENTS The here presented work is the result of a long process that naturally involved many different people. They all contributed importantly to it, though in more or less explicit ways. First of all, I want to express my gratitude to Chiara, all my friends and my (German and Italian) family. Thank you for being there! Next, I want to name Michael Ruggenthaler, who did not only supervise me over many years, contribut- ing crucially to the here presented research, but also has become a dear friend. I cannot imagine how my time as a PhD candidate would have been without you! In the same breath, I want to thank Iris Theophilou, who saved me so many times from despair over non-converging codes and other difficult moments. Also without you, my PhD would not have been the same. Then, I thank Angel Rubio for his supervision and for making possible my unforgettable and formative time at the Max-Planck Institute for the Structure and Dynamics of Matter. There are few people who have the gift to make others feel so excited about physics, as Angel does. Heiko Appel supervised my first steps in the scientific environment and remained also afterwards always close. His excitement for unusual questions and ideas greatly influenced my projects and work. Nobody inspired my idea of what science really is more than Markus Penz. He regularly shows with great confidence how to think out of the box and to question things beyond traditional boundaries. Then I want to name Micael Oliveira the great tamer of the Octopus. He taught me not only to implement, but to develop. I thank Henning Glawe for being patient with me and for using his supernatural powers to make the penguin regain his feet, whenever I made it fall. Warm thanks go to my dear friends Björn Bembnista and Wilhelm Bender for the many stimulating nights of discussion about physics and for sharing their great knowledge about coding and minimization. I also want to thank Vasilis Rokaj, Davis Welakuh, Christian Schäfer, Guillem Albareda, Arun Debnath, Nicolas Tancogne-Dejean, Florian Eich, Michael Sentef, Enrico Ronca, Massimo Altarelli and Martin Lüders for many interesting discussions. Warm thanks goes to Uliana Mordovina, Teresa Reinhard, Christian Schäfer, Mary-Leena Tchenkoue Djouom, Norah Hoffmann and Alexandra Göbel for sharing the precious moments with me, where we needed to forget science. I thank Fabio Covito, Simone Latini, Matteo Vandelli, and Enrico Ronca for sharing coffee and the feeling of sunny places. And I thank Ute Ramseger, Graciela Sanguino, Kathja Schroeder and Frauke Kleinwort for their big efforts to support us PhD students at the Institute. Sarah Loos contributed not only to my scientific world view in many inspiring discussions, but also di- rectly to this thesis by her indispensable feedback, understanding what I wanted to say before I did. I also want to thank David Licht and Chiara for valuable feedback on my thesis, and Uliana for help with the lay- out. Furthermore, I want to mention Michael Duszat and the “deep readers,” who made me aware on how much information only one sentences may contain and who were the very first audience for this thesis. I also want to thank all the many authors that have contributed to making the various STACKEXCHANGE pages such a valuable platform with answers to so many difficult questions. Finally, I want to mention the other members of the Basic Research Community For Physics. It is so inspir- ing to know so many people who share the believe in a cooperative, respectful and open-minded scientific research inside and outside traditional institutions. i ii ZUSAMMENFASSUNG Neueste experimentelle Fortschritte im Bereich von “Cavity”-Quantenelektrodynamik ermöglichen die Er- forschung der starken Wechselwirkung zwischen quantisiertem Licht und komplexen Materiesystemen. Aufgrund der kohärenten Kopplung zwischen Photonen und Materiefreiheitsgraden, entstehen Polarito- nen, hybride Licht-Materie Quasiteilchen, die dazu beitragen können, Materieeigenschaften und komplexe Prozesse wie chemische Reaktionen entscheidend zu beeinflussen. Dieses Regime der starken Kopplung er- öffnet Möglichkeiten zur Kontrolle von Materialien und Chemie in einer beispiellosen weise. Allerdings sind die genauen Mechanismen hinter vielen solcher Phänomene nicht vollständig verstanden. Ein wichtiger Grund dafür ist, dass das physikalische Problem oft mit äußerst vereinfachten Methoden beschrieben wird, wobei die Materie zu wenigen effektiven "Levels"reduziert wird. Akkuratere first-principles Methoden, die Photonen gleichwertig zu Elektronen behandeln entstehen nur langsam, da die Erforschung solcher Metho- den sowohl durch die erhöhte Komplexität der kombinierten Elektron-Photon Wellenfunktionen, als auch dem Fakt, dass zwei verschiedene Teilchenspezies miteinbezogen werden müssen, aufgehalten wird. In dieser Doktorarbeit schlagen wir vor diese Problem zu umgehen, indem das gekoppelte Elektron- Photon Problem exakt in einem anderen zweckgebauten Hilbertraum neuformuliert wird. Dadurch, dass wir ein System, bestehend aus N Elektronen und M Moden, mit einer N-Polaritonen Wellenfunktion re- präsentieren, können wir explizit zeigen wie ein electronic-structure in eine polaritonic-structure Methode umgewandelt werden kann, die für schwache bis hin zu starken Kopplungstärken akkurat ist. Wir rationali- sieren diesen Paradigmenwechsel innerhalb einer umfassenden Revision der Licht-Materie Wechselwirkung und indem wir die Verbindung zwischen verschiedenen electronic-structure Methoden und quantenopti- schen Modellen hervorheben. Diese ausführliche Diskussion hebt hervor, dass die Polariton-Konstruktion nicht nur ein mathematischer Trick ist, sondern auf einem einfachen und physikalischem Argument ba- siert: wenn die Anregungen eines Systems einen hybriden Charakter haben, dann ist es nur natürlich, die zugehörige Theorie bezüglich dieser neuen Entitäten zu formulieren. Schließlich diskutieren wir ausführlich, wie Standard-Algorithmen von electronic-structure Methoden angepasst werden müssen, um der neuen Fermi-Bose Statistik gerecht zu werden. Um die zugehörigen nichtlinearen Ungleichungs-Nebenbedingungen zu garantieren, sind sorgfältige Entwicklung, Implemen- tierung und Validierung der numerischen Algorithmen nötig. Diese zusätzliche numerische Komplexität ist der Preis, den wir zahlen, um das gekoppelte Elektron-Photon Problem zugänglich zu first-principles Me- thoden zu machen. iii iv Abstract Recent experimental progress in the field of cavity quantum electrodynamics allows to study the regime of strong interaction between quantized light and complex matter systems. Due to the coherent coupling between photons and matter-degrees of freedom, polaritons – hybrid light-matter quasiparticles – emerge, which can significantly influence matter properties and complex process such as chemical reactions. This strong-coupling regime opens up possibilities to control materials and chemistry in an unprecedented way. However, the precise mechanisms behind many of these phenomena are not yet entirely understood. One important reason is that often the physical problem is described with highly simplified models, where the matter system is reduced to a few effective levels. More accurate first-principles approaches that consider photons on the same footing as electrons only slowly emerge. Their development is hampered by the in- crease of complexity of the combined electron-photon wave functions and the fact that we have to deal with two different species of particles. In this thesis we propose a way to overcome these problems by reformulating the coupled electron- photon problem in an exact way in a different, purpose-build Hilbert space, where no longer electrons and photons are the basic physical entities but the polaritons. Representing an N-electron-M-mode sys- tem by an N-polariton wave function with hybrid Fermi-Bose statistics, we show explicitly how to turn electronic-structure methods into polaritonic-structure methods that are accurate from the weak to the strong-coupling regime. We elucidate this paradigmatic shift by a comprehensive review of light-matter coupling, as well as by highlighting the connection between different electronic-structure methods and quantum-optical models. This extensive discussion accentuates that the polariton description is not only a mathematical trick, but it is grounded in a simple and intuitive physical argument: when the excitations of a system are hybrid entities a formulation of the theory in terms of these new entities is natural. Finally, we discuss in great detail how to adopt standard algorithms of electronic-structure methods to adhere to the new hybrid Fermi-Bose statistics. Guaranteeing the corresponding nonlinear inequality con- straints in practice requires a careful development, implementation and validation of numerical algorithms. This extra numerical complexity is the price we pay for