Tensor Network Methods for SU(N) Spin Systems Olivier Gauthé

Total Page:16

File Type:pdf, Size:1020Kb

Tensor Network Methods for SU(N) Spin Systems Olivier Gauthé Tensor Network Methods for SU(N) Spin Systems Olivier Gauthé To cite this version: Olivier Gauthé. Tensor Network Methods for SU(N) Spin Systems. Quantum Physics [quant-ph]. Université Paul Sabatier - Toulouse III, 2019. English. NNT : 2019TOU30279. tel-02879477v2 HAL Id: tel-02879477 https://tel.archives-ouvertes.fr/tel-02879477v2 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse 3 - Paul Sabatier Présentée et soutenue par Olivier GAUTHÉ Le 24 septembre 2019 Méthodes de réseaux de tenseurs pour les systèmes de spins SU(N) Ecole doctorale : SDM - SCIENCES DE LA MATIERE - Toulouse Spécialité : Physique de la Matière Unité de recherche : LPT-IRSAMC - Laboratoire de Physique Théorique Thèse dirigée par Didier POILBLANC et Sylvain CAPPONI Jury M. Norbert SCHUCH, Rapporteur M. Andreas LÄUCHLI, Rapporteur M. Philippe CORBOZ, Examinateur Mme Laura MESSIO, Examinatrice Mme Nathalie GUIHÉRY, Examinatrice M. Didier POILBLANC, Directeur de thèse M. Sylvain CAPPONI, Directeur de thèse iii Remerciements Au terme de ces trois années de travail, il convient de remercier celles et ceux grâce à qui j’ai pu mener cette thèse à bien. En premier lieu, je me dois de remercier Didier et Sylvain. Je fus un doctorant souvent plus préoccupé par réécrire un code plus beau et plus performant que par obtenir les résultats que vous vouliez, merci de m’avoir laissé la liberté de faire les choses à ma façon. Je suis heureux que nous ayons toujours réussi à converger à la fin. Merci pour votre disponibilité, entre les cours, les enfants et les travaux de maison à gérer, vous avez toujours su trouver le temps pour discuter. J’ai appris beaucoup de choses au cours de cette thèse, en sens physique comme en méthodes numériques, et cela grâce à vous. Enfin Didier, merci pour le ski à Bénasque. Je remercie Andreas Läuchli et Norbert Schuch qui ont accepté d’être rapporteurs de ce manuscrit, et par la même occasion Philippe Corboz, Laura Messio et Nathalie Guihéry qui ont participé à mon jury. Je remercie Nathalie Guihéry d’avoir également réalisé le suivi de ma thèse pour l’école doctorale. Je suis rentré dans le monde des électrons fortement corrélés grâce à Michel Ferrero, qui m’a enseigné le B-A-BA de la physique numérique lors de mon stage au CPhT de l’École polytechnique. C’est lui qui m’avait conseillé de chercher une thèse à Toulouse et je lui en sais gré. Au sein du groupe fermions fortement corrélés, je suis redevable à Fabien pour ses explications sur la physique RVB, à Matthieu et Ji-Yao pour nos nombreuses conver- sations sur l’implémentation des symétries dans les réseaux de tenseurs et à Pierre pour ses excellentes recommandations de lecture. Je n’oublie pas Aleksandra, Nicolas, Revaz et Zoran, dont j’ai apprécié les journal clubs. Plus généralement, je remercie tous les membres du Laboratoire de Physique Théorique avec qui j’ai pu interagir au cours de ces trois années. Je dois beaucoup à Malika, notre secrétaire, capable de rendre triviale n’importe quelle démarche administrative ainsi qu’à Sandrine, notre informaticienne, grâce à qui j’ai pu calculer en local comme à distance. Je remercie également l’équipe CALMIP, quand le cluster du LPT ne suffisait plus. Je rends hommage aux doctorants et postdocs du LPT qui ont toléré mes laïus répétés sur les mérites respectifs du C, du C++, du FORTRAN et du python pour la programmation scientifique. J’écris ces quelques lignes pour vous témoigner ma reconnaissance : avec vous j’ai mangé, bu, discuté, ri, polémiqué, fait du sport, joué, en un mot vécu. Je suis arrivé à Toulouse sans connaître personne, avec vous je repars d’une ville où j’ai des amis. Je ne suis jamais plus heureux que quand on m’apporte la contradiction : avec Bertrand j’étais donc aux anges, vu qu’il s’avère difficile de nous trouver un seul sujet d’accord – sans doute un manque de pensée complexe de ma part. Merci Giuseppe de m’avoir sorti alors que je débarquais tout juste à Toulouse, je te pardonne d’avoir encadré ce groupe de L1 qui avait classé la supraconductivité au-dessus de l’astrophysique. Je remercie Maxime (le blond) de m’avoir initié à iTensor et à l’optimisation de courbes sous python. Je salue Benjamin (Senior), Grand Maître de l’ordre de Wolfram. Avec toi j’ai rencontré un vrai passionné de physique fondamentale, tu m’as aidé à donner du sens à mes cours de théorie des champs. Wei-Lin, sache que je suis très admiratif de ta capacité à apprendre d’autres langues. Tu fus un excellent colocataire à Bénasque. Je ne pouvais côtoyer Benjamin (Junior) que la moitié du temps, parce qu’il suffit que tu dises au LPT que tu es à l’IRAP et à l’IRAP que tu es au LPT et tu es iv tranquille n’est-ce pas. Expert en dinosaures et en interprétation de la mécanique quantique, tu restes à ce jour la seule personne à m’avoir spontanément demandé ce qu’est un spineur. Julie un immense merci pour ta bonne humeur, ton entrain, ta gentillesse et ta bonne volonté pour organiser des sorties en tout genre – il suffit juste de décaler l’heure de rendez-vous initiale. Avec toi mes horaires au laboratoire paraissaient tout de suite plus raisonnables et j’avais de la compagnie pour rentrer le soir (On rentre bientôt ?) On retourne courir dès que je repasse à Toulouse ! Ce fut inattendu mais ô combien heureux de recroiser Nicolas des années après la promotion Majorana. Merci pour ta gentillesse et ta bonne humeur. Avec toi on pouvait désespérer à deux de l’avenir de notre planète et avoir une conversation basée sur des faits sourcés. Le niveau en échecs du LPT a fortement progressé grâce au Camarade Hugo, secrétaire général du comité de planification du machine learning et LPT héraut de la France insoumise. Merci à Jordan de nous avoir emmenés au théâtre, je me garderais de faire ici une critique des différentes pièces vues. Promis je t’envoie des nouvelles de Ponyta dès que j’en ai. Je remercie Francesca de m’avoir invité chez elle et de m’avoir fait découvrir la réalité virtuelle – quelques vidéos du plus haut intérêt en gardent la trace. Enfin c’est avec grand plaisir que j’ai partagé mon bureau avec un autre sceptique en la personne de Maxime (le brun). Tu m’as fait découvrir Feyerabend, et on a toujours pu rigoler sans se prendre la tête. Parmi les stagiaires du laboratoire – Antoine, Célestin, Étienne, Gabriel, Jordy, Sarah, Sruthi, Théo – j’ai une pensée particulière pour Jérémy, sans qui je ne saurais rien de la théorie Moonshine. Au-delà du LPT, je salue les doctorants du bâtiment 3R1, avec multiplicités, Adrien, Bastien, Éric, Éric, Evgeny, François, Gabriel, Julie, Julien, Lidice, Maxime, Maxime, Mickaël, Olivier, Qi, Vincent. Avec vous j’ai partagé des repas animés, merci d’avoir enduré mes envolées sur le nucléaire, le glyphosate et autres sujets consensuels – voyez ça comme une compensation de mon niveau au baby-foot. En dehors de Toulouse (ou pas), je suis l’obligé de Xavier qui m’a écrit un calcula- teur de produit de tableaux de Young (qui sait, j’aurais peut-être fait de gros progrès à Tetris à faire les calculs à la main). La logistique au cours de ma thèse et mes nom- breux voyages à Paris ont été grandement facilités par les canapés et matelas d’Alice, Benjamin, Guillaume et Nicolas, je leur suis redevable ainsi qu’à leurs propriétaires respectifs. Elle doit aussi beaucoup à la SNCF que je remercie pour le wifi de ses TGV à l’aller et le confort de ses trains couchettes au retour. Avec IRC comme compagnon quotidien, je remercie les hôtes de #doctorat pour le soutien moral ainsi que ceux de #bll pour le soutien technique. Dédicace également à la section judo et au binet Faërix, c’est toujours un plaisir de se recroiser pour une bière ou un seasons. S’ils ne comprennent plus très bien ce que je fais de mes journées depuis quelques temps, mes parents, mes frères et ma sœur ont toujours été un vrai soutien avec qui je pouvais me poser loin de la physique et du petit monde du laboratoire, qu’ils en soient remerciés. Pour conclure je dois témoigner ma gratitude à Aurore, la meilleure des colocataires, qui m’a supporté et bien souvent nourri pendant trois ans. Je ne peux imaginer logement plus désirable que notre appartement. Ami lecteur, c’est maintenant toi que je remercie d’avoir lu ces lignes et je souhaite que tu trouves autant d’intérêt dans celles qui vont suivre. v Contents Remerciements iii Contentsv List of abbreviations vii Introduction1 1 Physics of SU(N) systems5 1.1 Quantum spin systems...........................5 1.2 SU(2) physics................................ 11 1.3 Cold atom systems............................. 17 1.4 Topological phases............................. 19 2 Representation theory of SU(N) 23 2.1 Definitions and formalism........................
Recommended publications
  • Tensor Network Methods in Many-Body Physics Andras Molnar
    Tensor Network Methods in Many-body physics Andras Molnar Ludwig-Maximilians-Universit¨atM¨unchen Max-Planck-Institut f¨urQuanutenoptik M¨unchen2019 Tensor Network Methods in Many-body physics Andras Molnar Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Andras Molnar aus Budapest M¨unchen, den 25/02/2019 Erstgutachter: Prof. Dr. Jan von Delft Zweitgutachter: Prof. Dr. J. Ignacio Cirac Tag der m¨undlichen Pr¨ufung:3. Mai 2019 Abstract Strongly correlated systems exhibit phenomena { such as high-TC superconductivity or the fractional quantum Hall effect { that are not explicable by classical and semi-classical methods. Moreover, due to the exponential scaling of the associated Hilbert space, solving the proposed model Hamiltonians by brute-force numerical methods is bound to fail. Thus, it is important to develop novel numerical and analytical methods that can explain the physics in this regime. Tensor Network states are quantum many-body states that help to overcome some of these difficulties by defining a family of states that depend only on a small number of parameters. Their use is twofold: they are used as variational ansatzes in numerical algorithms as well as providing a framework to represent a large class of exactly solvable models that are believed to represent all possible phases of matter. The present thesis investigates mathematical properties of these states thus deepening the understanding of how and why Tensor Networks are suitable for the description of quantum many-body systems. It is believed that tensor networks can represent ground states of local Hamiltonians, but how good is this representation? This question is of fundamental importance as variational algorithms based on tensor networks can only perform well if any ground state can be approximated efficiently in such a way.
    [Show full text]
  • Tensor Networks, MERA & 2D MERA ✦ Classify Tensor Network Ansatz According to Its Entanglement Scaling
    Lecture 1: tensor network states (MPS, PEPS & iPEPS, Tree TN, MERA, 2D MERA) Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11i12 i13 i14 i15i16 i17 i18 Outline ‣ Lecture 1: tensor network states ✦ Main idea of a tensor network ansatz & area law of the entanglement entropy ✦ MPS, PEPS & iPEPS, Tree tensor networks, MERA & 2D MERA ✦ Classify tensor network ansatz according to its entanglement scaling ‣ Lecture II: tensor network algorithms (iPEPS) ✦ Contraction & Optimization ‣ Lecture III: Fermionic tensor networks ✦ Formalism & applications to the 2D Hubbard model ✦ Other recent progress Motivation: Strongly correlated quantum many-body systems High-Tc Quantum magnetism / Novel phases with superconductivity spin liquids ultra-cold atoms Challenging!tech-faq.com Typically: • No exact analytical solution Accurate and efficient • Mean-field / perturbation theory fails numerical simulations • Exact diagonalization: O(exp(N)) are essential! Quantum Monte Carlo • Main idea: Statistical sampling of the exponentially large configuration space • Computational cost is polynomial in N and not exponential Very powerful for many spin and bosonic systems Quantum Monte Carlo • Main idea: Statistical sampling of the exponentially large configuration space • Computational cost is polynomial in N and not exponential Very powerful for many spin and bosonic systems Example: The Heisenberg model . Sandvik & Evertz, PRB 82 (2010): . H = SiSj system sizes up to 256x256 i,j 65536 ⇥ Hilbert space: 2 Ground state sublattice magn. m =0.30743(1) has Néel order . Quantum Monte Carlo • Main idea: Statistical sampling of the exponentially large configuration space • Computational cost is polynomial in N and not exponential Very powerful for many spin and bosonic systems BUT Quantum Monte Carlo & the negative sign problem Bosons Fermions (e.g.
    [Show full text]
  • Tensor Network State Methods and Applications for Strongly Correlated Quantum Many-Body Systems
    Bildquelle: Universität Innsbruck Tensor Network State Methods and Applications for Strongly Correlated Quantum Many-Body Systems Dissertation zur Erlangung des akademischen Grades Doctor of Philosophy (Ph. D.) eingereicht von Michael Rader, M. Sc. betreut durch Univ.-Prof. Dr. Andreas M. Läuchli an der Fakultät für Mathematik, Informatik und Physik der Universität Innsbruck April 2020 Zusammenfassung Quanten-Vielteilchen-Systeme sind faszinierend: Aufgrund starker Korrelationen, die in die- sen Systemen entstehen können, sind sie für eine Vielzahl an Phänomenen verantwortlich, darunter Hochtemperatur-Supraleitung, den fraktionalen Quanten-Hall-Effekt und Quanten- Spin-Flüssigkeiten. Die numerische Behandlung stark korrelierter Systeme ist aufgrund ih- rer Vielteilchen-Natur und der Hilbertraum-Dimension, die exponentiell mit der Systemgröße wächst, extrem herausfordernd. Tensor-Netzwerk-Zustände sind eine umfangreiche Familie von variationellen Wellenfunktionen, die in der Physik der kondensierten Materie verwendet werden, um dieser Herausforderung zu begegnen. Das allgemeine Ziel dieser Dissertation ist es, Tensor-Netzwerk-Algorithmen auf dem neuesten Stand der Technik für ein- und zweidi- mensionale Systeme zu implementieren, diese sowohl konzeptionell als auch auf technischer Ebene zu verbessern und auf konkrete physikalische Systeme anzuwenden. In dieser Dissertation wird der Tensor-Netzwerk-Formalismus eingeführt und eine ausführ- liche Anleitung zu rechnergestützten Techniken gegeben. Besonderes Augenmerk wird dabei auf die Implementierung
    [Show full text]
  • Tensor Manipulation in GPL Maxima
    Tensor Manipulation in GPL Maxima Viktor Toth http://www.vttoth.com/ February 1, 2008 Abstract GPL Maxima is an open-source computer algebra system based on DOE-MACSYMA. GPL Maxima included two tensor manipulation packages from DOE-MACSYMA, but these were in various states of disrepair. One of the two packages, CTENSOR, implemented component-based tensor manipulation; the other, ITENSOR, treated tensor symbols as opaque, manipulating them based on their index properties. The present paper describes the state in which these packages were found, the steps that were needed to make the packages fully functional again, and the new functionality that was implemented to make them more versatile. A third package, ATENSOR, was also implemented; fully compatible with the identically named package in the commercial version of MACSYMA, ATENSOR implements abstract tensor algebras. 1 Introduction GPL Maxima (GPL stands for the GNU Public License, the most widely used open source license construct) is the descendant of one of the world’s first comprehensive computer algebra systems (CAS), DOE-MACSYMA, developed by the United States Department of Energy in the 1960s and the 1970s. It is currently maintained by 18 volunteer developers, and can be obtained in source or object code form from http://maxima.sourceforge.net/. Like other computer algebra systems, Maxima has tensor manipulation capability. This capability was developed in the late 1970s. Documentation is scarce regarding these packages’ origins, but a select collection of e-mail messages by various authors survives, dating back to 1979-1982, when these packages were actively maintained at M.I.T. When this author first came across GPL Maxima, the tensor packages were effectively non-functional.
    [Show full text]
  • Representations of the Symmetric Group and Its Hecke Algebra Nicolas Jacon
    Representations of the symmetric group and its Hecke algebra Nicolas Jacon To cite this version: Nicolas Jacon. Representations of the symmetric group and its Hecke algebra. 2012. hal-00731102v1 HAL Id: hal-00731102 https://hal.archives-ouvertes.fr/hal-00731102v1 Preprint submitted on 12 Sep 2012 (v1), last revised 10 Nov 2012 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Representations of the symmetric group and its Hecke algebra N. Jacon Abstract This paper is an expository paper on the representation theory of the symmetric group and its Hecke algebra in arbitrary characteristic. We study both the semisimple and the non semisimple case and give an introduction to some recent results on this theory (AMS Class.: 20C08, 20C20, 05E15) . 1 Introduction Let n N and let S be the symmetric group acting on the left on the set 1, 2, . , n . Let k be a field ∈ n { } and consider the group algebra kSn. This is the k-algebra with: k-basis: t σ S , • { σ | ∈ n} 2 multiplication determined by the following rule: for all (σ, σ′) S , we have t .t ′ = t ′ . • ∈ n σ σ σσ The aim of this survey is to study the Representation Theory of Sn over k.
    [Show full text]
  • Continuous Tensor Network States for Quantum Fields
    PHYSICAL REVIEW X 9, 021040 (2019) Featured in Physics Continuous Tensor Network States for Quantum Fields † Antoine Tilloy* and J. Ignacio Cirac Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany (Received 3 August 2018; revised manuscript received 12 February 2019; published 28 May 2019) We introduce a new class of states for bosonic quantum fields which extend tensor network states to the continuum and generalize continuous matrix product states to spatial dimensions d ≥ 2.By construction, they are Euclidean invariant and are genuine continuum limits of discrete tensor network states. Admitting both a functional integral and an operator representation, they share the important properties of their discrete counterparts: expressiveness, invariance under gauge transformations, simple rescaling flow, and compact expressions for the N-point functions of local observables. While we discuss mostly the continuous tensor network states extending projected entangled-pair states, we propose a generalization bearing similarities with the continuum multiscale entanglement renormal- ization ansatz. DOI: 10.1103/PhysRevX.9.021040 Subject Areas: Particles and Fields, Quantum Physics, Strongly Correlated Materials I. INTRODUCTION and have helped describe and classify their physical proper- ties. By design, their entanglement obeys the area law Tensor network states (TNSs) provide an efficient para- [17–19], which is a fundamental property of low-energy metrization of physically relevant many-body wave func- states of systems with local interactions. They enable a tions on the lattice [1,2]. Obtained from a contraction of succinct classification of symmetry-protected [20–23] and low-rank tensors on so-called virtual indices, they eco- topological phases of matter [24,25].
    [Show full text]
  • Electromagnetic Fields from Contact- and Symplectic Geometry
    ELECTROMAGNETIC FIELDS FROM CONTACT- AND SYMPLECTIC GEOMETRY MATIAS F. DAHL Abstract. We give two constructions that give a solution to the sourceless Maxwell's equations from a contact form on a 3-manifold. In both construc- tions the solutions are standing waves. Here, contact geometry can be seen as a differential geometry where the fundamental quantity (that is, the con- tact form) shows a constantly rotational behaviour due to a non-integrability condition. Using these constructions we obtain two main results. With the 3 first construction we obtain a solution to Maxwell's equations on R with an arbitrary prescribed and time independent energy profile. With the second construction we obtain solutions in a medium with a skewon part for which the energy density is time independent. The latter result is unexpected since usually the skewon part of a medium is associated with dissipative effects, that is, energy losses. Lastly, we describe two ways to construct a solution from symplectic structures on a 4-manifold. One difference between acoustics and electromagnetics is that in acoustics the wave is described by a scalar quantity whereas an electromagnetics, the wave is described by vectorial quantities. In electromagnetics, this vectorial nature gives rise to polar- isation, that is, in anisotropic medium differently polarised waves can have different propagation and scattering properties. To understand propagation in electromag- netism one therefore needs to take into account the role of polarisation. Classically, polarisation is defined as a property of plane waves, but generalising this concept to an arbitrary electromagnetic wave seems to be difficult. To understand propaga- tion in inhomogeneous medium, there are various mathematical approaches: using Gaussian beams (see [Dah06, Kac04, Kac05, Pop02, Ral82]), using Hadamard's method of a propagating discontinuity (see [HO03]) and using microlocal analysis (see [Den92]).
    [Show full text]
  • Numerical Continuum Tensor Networks in Two Dimensions
    PHYSICAL REVIEW RESEARCH 3, 023057 (2021) Numerical continuum tensor networks in two dimensions Reza Haghshenas ,* Zhi-Hao Cui , and Garnet Kin-Lic Chan† Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA (Received 31 August 2020; accepted 31 March 2021; published 19 April 2021) We describe the use of tensor networks to numerically determine wave functions of interacting two- dimensional fermionic models in the continuum limit. We use two different tensor network states: one based on the numerical continuum limit of fermionic projected entangled pair states obtained via a tensor network for- mulation of multigrid and another based on the combination of the fermionic projected entangled pair state with layers of isometric coarse-graining transformations. We first benchmark our approach on the two-dimensional free Fermi gas then proceed to study the two-dimensional interacting Fermi gas with an attractive interaction in the unitary limit, using tensor networks on grids with up to 1000 sites. DOI: 10.1103/PhysRevResearch.3.023057 I. INTRODUCTION and there have been many developments to extend the range of the techniques, for example to long-range Hamiltoni- Understanding the collective behavior of quantum many- ans [15–17], thermal states [18], and real-time dynamics [19]. body systems is a central theme in physics. While it is often Also, much work has been devoted to improving the numeri- discussed using lattice models, there are systems where a cal efficiency and stability of PEPS computations [20–24]. continuum description is essential. One such case is found Formulating tensor network states and the associated algo- in superfluids [1], where recent progress in precise experi- rithms in the continuum remains a challenge.
    [Show full text]
  • GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS of AFFINE LIE ALGEBRAS 1. Introduction in This Paper, We Continue the Study ([2, 3
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 360, Number 6, June 2008, Pages 2923–2940 S 0002-9947(07)04394-2 Article electronically published on December 11, 2007 GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS OF AFFINE LIE ALGEBRAS VYJAYANTHI CHARI AND JACOB GREENSTEIN Abstract. We study the structure of the category of integrable level zero representations with finite dimensional weight spaces of affine Lie algebras. We show that this category possesses a weaker version of the finite length property, namely that an indecomposable object has finitely many simple con- stituents which are non-trivial as modules over the corresponding loop algebra. Moreover, any object in this category is a direct sum of indecomposables only finitely many of which are non-trivial. We obtain a parametrization of blocks in this category. 1. Introduction In this paper, we continue the study ([2, 3, 7]) of the category Ifin of inte- grable level zero representations with finite-dimensional weight spaces of affine Lie algebras. The category of integrable representations with finite-dimensional weight spaces and of non-zero level is semi-simple ([16]), and the simple objects are the highest weight modules. In contrast, it is easy to see that the category Ifin is not semi-simple. For instance, the derived Lie algebra of the affine algebra itself provides an example of a non-simple indecomposable object in that category. The simple objects in Ifin were classified in [2, 7] but not much else is known about the structure of the category. The category Ifin can be regarded as the graded version of the category F of finite-dimensional representations of the corresponding loop algebra.
    [Show full text]
  • Automated Operation Minimization of Tensor Contraction Expressions in Electronic Structure Calculations
    Automated Operation Minimization of Tensor Contraction Expressions in Electronic Structure Calculations Albert Hartono,1 Alexander Sibiryakov,1 Marcel Nooijen,3 Gerald Baumgartner,4 David E. Bernholdt,6 So Hirata,7 Chi-Chung Lam,1 Russell M. Pitzer,2 J. Ramanujam,5 and P. Sadayappan1 1 Dept. of Computer Science and Engineering 2 Dept. of Chemistry The Ohio State University, Columbus, OH, 43210 USA 3 Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L BG1, Canada 4 Dept. of Computer Science 5 Dept. of Electrical and Computer Engineering Louisiana State University, Baton Rouge, LA 70803 USA 6 Computer Sci. & Math. Div., Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA 7 Quantum Theory Project, University of Florida, Gainesville, FL 32611 USA Abstract. Complex tensor contraction expressions arise in accurate electronic struc- ture models in quantum chemistry, such as the Coupled Cluster method. Transfor- mations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evalua- tion of these expressions, but the optimization problem is NP-hard. Operation mini- mization is an important optimization step for the Tensor Contraction Engine, a tool being developed for the automatic transformation of high-level tensor contraction expressions into efficient programs. In this paper, we develop an effective heuristic approach to the operation minimization problem, and demonstrate its effectiveness on tensor contraction expressions for coupled cluster equations. 1 Introduction Currently, manual development of accurate quantum chemistry models is very tedious and takes an expert several months to years to develop and debug. The Tensor Contrac- tion Engine (TCE) [2, 1] is a tool that is being developed to reduce the development time to hours/days, by having the chemist specify the computation in a high-level form, from which an efficient parallel program is automatically synthesized.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • Notes on Representations of Finite Groups
    NOTES ON REPRESENTATIONS OF FINITE GROUPS AARON LANDESMAN CONTENTS 1. Introduction 3 1.1. Acknowledgements 3 1.2. A first definition 3 1.3. Examples 4 1.4. Characters 7 1.5. Character Tables and strange coincidences 8 2. Basic Properties of Representations 11 2.1. Irreducible representations 12 2.2. Direct sums 14 3. Desiderata and problems 16 3.1. Desiderata 16 3.2. Applications 17 3.3. Dihedral Groups 17 3.4. The Quaternion group 18 3.5. Representations of A4 18 3.6. Representations of S4 19 3.7. Representations of A5 19 3.8. Groups of order p3 20 3.9. Further Challenge exercises 22 4. Complete Reducibility of Complex Representations 24 5. Schur’s Lemma 30 6. Isotypic Decomposition 32 6.1. Proving uniqueness of isotypic decomposition 32 7. Homs and duals and tensors, Oh My! 35 7.1. Homs of representations 35 7.2. Duals of representations 35 7.3. Tensors of representations 36 7.4. Relations among dual, tensor, and hom 38 8. Orthogonality of Characters 41 8.1. Reducing Theorem 8.1 to Proposition 8.6 41 8.2. Projection operators 43 1 2 AARON LANDESMAN 8.3. Proving Proposition 8.6 44 9. Orthogonality of character tables 46 10. The Sum of Squares Formula 48 10.1. The inner product on characters 48 10.2. The Regular Representation 50 11. The number of irreducible representations 52 11.1. Proving characters are independent 53 11.2. Proving characters form a basis for class functions 54 12. Dimensions of Irreps divide the order of the Group 57 Appendix A.
    [Show full text]