<<

NET PRIMARY PRODUCTIVITY

AND ACCI]MUI,ATION

IN SOUTHEASTERN MANITOBA

A Thesis

Submítted Lo

The Faculty of Graduate Studies and Research Universíty of Manitoba in Partíal Fulfillment

of the RequiremenËs for Èhe Degree

Master of Scíence

by

Richard Reader

May, 1970

@ nicUard Read.er I97L I ofËen say that when you can measuTe what you are speakíng abouË and express iË ín numbers you know something about it. But when you cannot meâsure ít, when you canriot express ít in numbers, your knowledge ís of a meager and unsatisfacËory kind. IË may be Èhe beginníng of knowledge, buË you have scarcely ín your thoughts advanced to the sÈage of science. Lord Kelvin

dedicaËed to May 6, 1967 ACKNOI{LEDGB{ENTS

The informaËion presented ín Ëhe fo11owíng pages has been accu- mulated with Èhe help of a number of ínterested índivíduals.

The author would 1íke to take this opporËuniÈy to Ëhank these contrÍbutors mosË heartily: Mr. T. Carlton, Dr. H. Crum, Mr. C. Hand,

Mrs. G. Keleher, Dr. R. Longton, Dr. J. Reíd, and Dr. J. Thomson for the idenËífícatíon and verífícatíon of plant. species, partícularly bryophytes; Mr. M. Bryan and Mr. L. Van Caeseele for aerial photo- graphy; Mr. P. BeckeËt for assistance with the field work;

Dr. J. Terasme for radíocarbon daLings; Mr. A. Reimer of the Pinawa Nuclear Research Establishment for meteorological data; the National Research Council of Canada for financial aid in the form of a burs- ary awarded to Ëhe author, and grant Ã-5946 arnrarded to Dr. J. Ster,rart.; and to Dr. E. I{aygood for allowing the work Ëo be carried out in this department.

Particular recognition must go to my supervisor, Dr. J. Stewart., who provided me wiËh Èhe opportunity to underËake a problem of pers- onal inËerest.

rl- l- ABSTRACT

Two functíonal attributes of an ecosysËem, Ttet prímary pro- ducËion and subsequent dry matter accumulation, ürere examined i.n four peatland types (1agg, , , and bog forest) located ín souËheastern Mani-toba . ttaccuDulatíon The simple equaËion = income - losstt ü7as ex- panded in a block diagram to define all poÈential sources of both income and 1oss. Annual t'income" of lj.tter ín Ëhe four vegetatíon zones ranged frorn 489 to 1750 gn./rn.2, which represerì.Ëeð,69-90"/. of.

Ëhe calculated net prímary production. "Loss" of dry matËer Ëhrough decomposítion in the followíng year amounted Ëo approximaËe1y one quarter of the 1iËter value. usíng radiocarbon-dated peat cores, an average annual accumulaËion rate of 26-51 gm./m.2/yr. was calculated, suggesËing that less than ten percent of the annual net primary pro- ducËion will remaín as peat.

The four vegetation types examíned \^rere considered Ëo repre- sent seral stages ín Ëhe process of secondary succession occurring in the study area. The direcËion of this successíon was hypothe- sized to be Lagg -> Bog -> Muskeg -> Bog Forest.

l-v TASLE OF CONTENTS

CHAPTER PAGE

ABSTRACT iv

LIST OF TABLES

LIST OF FIGURES xaa

LIST OF PROGRAMMES ... xííí

I. INTRODUCTION

A. Statement of the problem 2 B. LíteraËure review of the concept.s of productíon and accumulation

C. Methods employed Ëo calculate planË production and peat accumulat,ion . I

II. DEFINIT]ON OF A STTE FOR INVESTIGATION

A. Locatíon A4

B. Environmerit.. 76

1. Geology 76 2. Topography ... !7

3. Clímate 18

4. Bíotic influence . 22

C. Vegetation ín areas adjacent to Ëhe peaË1and .... 24

III. REPRESENTATION OF NET PRIMARY PRODUCTtrON AND ACCi]MULATION IN A PEATLÆ{D 25

A. Vegetational patËerns 30

1. PeaËland vegetatíon ... 30

(a) Past vegetaËion in the study area .. 30 v1

TABLE OF CONTENTS (continued)

CHAPTER PAGE III. (conËínued)

(b) PresenË surface vegetation ... 38 (1) horizonËal distríbutíon of vegeËatíon ín Ëhe study area 38 (2) vertical dístríbution of ve- getaËion in the study area .. 47

B. Determination of Ëhe most productive specíes ín each zorte . 50

C. Biomass, net primary production, and subsequent accumulation of non-vascular vegetation 53

1. Sarnpling scheme 54

2. NeË prímary productíon of ímportant non-vascular species 60 3. Net prÍ-mary production of other speeíes presenË 74

4. Bíomass of non-vascular speci-es 76 5. The contribuËíon of non-vascular species Ëo accumulation income 78

D. Biomass, net primary production, and subsequenÈ accumulation of vascular vegetatíon ... B0 1. Termína1 neÈ primary productíon in vascular specíes . 81

(a) Samplíng scheme for group 'l¿" specíes 81 (b) Sampling scheme for group "b" specíes 83 val-

TABLE 0F CONTENTS (contínued)

CHÁPTER PAGE III. (contínued) (c) Correctíon factors for litter losË from terminal portíons 85

(d) Terminal production values BB

2. The conÈribution made by leaves produced in prevíous growíng seasons to currenË neË prímary production . 777 3. The conËribution of secondary growËh to aería1 net primary productíon . a2I 4. The total aerial net prímary produe- tion of vascular species 1'25

5. The aería1 component biomass of vascular species 133

6. The contri-bution of aerial vascular com- ponenËs Ëo accumulation íncome 138 7. ProductÍon, biomass, and accumulatíon of sub-surface components of vascular species L47 E. Total net prímary production in each of the four vegetation zones 1"52 F. Total biomass ín each of the four vegeËaËion zones L56

G. Estimating Ëhe amounË of peat accumulated an- nually in each of the four zones ... 160

1. Calculating accumulation "íncome" 161 2. Calculatíng accumulation "loss" t64 3. Calculatíng initial accumulatíon I7I val-a

TABLE 0F CONTENTS (contínued)

CHAPTER PAGE

IV. SI]M},IARY AND CONCLUSIONS 181

BIBLIOGRAPITY . 191

APPENDICES ... 204

A. Species ídentífied in the study area . 205

(a) Vascular species 205

(b) Non-vascular species 207

B. Data processing by digital compuËer ... 209

C. Glossary 2L9 LIST OF TASLES

TABLE PAGE I. The annual accumulatíon rate of radiocarbon-dated pear (A)- (c) 34

II. Previous estímates of the accumulaËion raËe of pear (A)- (B) 3s

III. Relatíve frequency values of species found ín each of the four vegetation zones 52

ïV. Inportant non-vascular species .. 55

V. Maximum annual net prímary productíon calculated for the important non-vascular species found ín each of Èhe four vegetaËiori zones 72 Vï. Total annual non-vascular net prímary producËion in each of the four vegeÈation zones . 75 VïI. The average biomass total for non-vascular specíes found in each of the four vegeËation zones 77 VIII. The annual contribution nade by non-vascular specíes Èo accumulation 79

IX. Important vascular species 82

X. Maxímum annual values of terminal eomponent net primary producËíon . II4 XI. DensiÈy values for important vascular species found ín Ëhe four vegetation zones (A)-(B) 115

XïI. Values of maximum annual net primary production ex- pressed on an area basis for terminal couponents .... 116

XIII. Current net prímary producËion in Black Spruce leaves produced in previous growing season \20 XIV. Total annual woody increment ín the ímportant vascular specíes studied 423

l_x LIST 0F TABLES (continued)

TABLE PAGE XV. The annual radíal incremenË in iuportant vascular species having woody stems L24

XVI. Sumrnary of aerial component neË primary productíon for each of the importanË vascular specíes studied (A)- (D) 127

XVII. Total aerial neË primary production for all vascular specíes occurring in the four vegetation zones (A) - (B) 130 XVIII. Total aerial vascular production ... 732 XIX. Aerial bíomass values of important vascular specíes found in each of the four vegetaËion zones studied .. 135 XX. Total aería1 bÍomass of vascular species ... I37

XXI. Senescence weight loss in leaves of ímpo::Ëant vascular species 147

nII. PosË-senescence weight of leaf and flower-fruit components added annually to the peaÈlandts surface (A)-(D) L43 XXIII. Total annual contributíon of aerial vascular porËíons to Ëhe peaËlandts surface ... 746 XXIV. Total subsurface production in vascular species found in each of the four vegeËation zones 150 XXV. Total net primary production, Íncluding correction for unmeasured losses ¡¡i¡o 155 XXVI. Total plant biomass in each of the four zones ...... 759

XXVII. IniËíal weight of peat-forning material added annually to the peatlandts surface ... 163 ÐWIII. Fraction of origínal weight lost in leaves sub- jected Ëo decomposition for one year (A)-(B) 168 xl-

LIST 0F TABLES (continued)

TABLE PAGE XXIX. I,Íeight of vascular 1iËter remaining ín the four vegetatíon zones afËer orle year of decomposí- tion (A)-(D) 772 nffi. !üeight of subsurface "litter" remainíng after one year of decomposít.ion L7 4

)o()(I . !üeíght of non-vascular "littertt remaining after one year of decomposition (A)-(D) 775 XXXII. Total weight of litter remaining afËer one year ' of decomposiÈion .:... 1-76

XXXIII. Summary of suecessional changes in net primary producÈion and accumulaËion . 179 LÏST OF FIGURES

FIGURE PAGE

1. Locatíon of the peaËland studíed (A)-(D) 15

2. Monthly precípítation recorded at Pínawa, Manitoba 79

3. Mean monËhly Ëemperature recorded aË Pinawa, ManiËoba .. 27

4. The distríbution of dry maËËer resultíng from net prÍmary producËíon ... 27

5. Aerial view of the sÈudy area . 31

6. PeaËland macro-straËigraphy at eight selected poinËs ín the study area . 32

7. The range of specíes along a single line ËransecË . 40

B. The concentric riature of vegetation paËterns 47

9. Vegetatíon in Zone I : Bog Forest (A)-(3) 43 10. Vegetation ín Zone II : Muskeg (A)-(B)

11. Vegetation in Zone III : 3og (A)-(B) 45

72. Vegetation in Zone IV : Lagg (A)-(3) 46

13. VerËi-cal distributíon of hummock specíes on the surface of Ëhe peatland located southwest of Elma 49 14. Bag-Ëypes employed in determining litter correction factors (A)-(B) 86

15. Nylon mesh bags used to determine the inítíal decomposítion rate of leaves in each of Èhe four vegeËation zones (A)-(B) ].67

L6. Nurnerícal values of both net primary production and Ëhe annual accumulation of peaË in each of t-he four vegetaËion zones (A)-(D) 180

xaa LÏST OF PROGRAMMES

PROGRAMME PAGE

1. Net primary production recorded at monËhly inËervals for individuals of each of the ímporËant non-vascular species sÈudíed during the 1970 growing season 62

2. Terminal component net producÈion, í.e., new leaf plus new sËem plus new flower-fruiÈ, observed in individuals of each of the imporËant vascular species sÈudied duríng the 1970 growing season 91 3. Calculating the annual net prímary productíon, biomass, and surface accumulaËion raËe of peaÈland vegetaËíon according to the scheme preseriËed in Fígure 4. 2L0

:

INTRODUCTION 2

A. StaËemenË of the problem

Man is dependent on the photosyntheËic process for per- sonal energy, as well as for the accumulated organíc reserves

which po\^rer his industría1 society. In víew of todayrs expandíng population and envirorurental pollution it has been stressed that

scientific management of world vegetaLion is essentíal. However,

Ëo utilize this naËural resource efficienË1y the production po- tenËial of various vegetation types must fírst be established.

NoË only are producËion studies economically irnportanÈ,

but they also aíd Ëhe ecologist in his quest to beËter under- stand the ecosystem. Gates (1968, p. 5) considered production

studies to be one of the fíve most important consíderaËions made

in studying naËural systems. I/ühittaker (1961, p. 179) went one

step furËher when he stat.ed that production seemed Ëo be the best single dimension by whích specíes could be ranked according to

funct.íonal signíficance in the ecosystem.

A peatlandl is one ecosysÈem in whích little is known

abouË the productivíËy of vegetatíon present. Knowledge of thís production is then most desirable, especially in Canada, whích

has an estimated I.I x 108 hectares of peatland (Burke & OrHare, L962, p.647). Added ímpetus for the study of production ín the

t ,"" glossary (Appendix C) â J peaËland ecosysËem comes from the fact that peaÈ represents a naËural producË. It is Í-mportant not only as an economíc re- sourcer ê.9., fue1, agrículture, soil additive, poultry litter, peat r^rax, etc. (Bellarny, 1966, p. 15), but also in maíntaining a balanced environment, where it serves as a reservoÍr for large quantítíes of both carbon dioxide and waËer (Deevey, 1958, p.

L20). Therefore, the following Ëhro questions were posed for fur- ther consíderation:

(1) !ilhat is the productivity of peatland vegeËation at a

siËe in southeasÈern Manitoba? (2) I,lhat ís the annual accumulatíon rate of peaÈ in re-

laËion Ëo Èhe amounÈ of this production? 4

B. LiËerature revíew of the concepts of productíon and accumulatíon

Thienemann (1931), cited in MacFadyen (1948, p. 77), and

Engelmann (1968, p. 74) botln mentioned that the Ëerm t'produc- tion", as used by the ecologísË, had a coffiotatíon not usually expressed ín a standard dícÈionary. It is the ecologisËrs in-

Ëerest in community energy and dry mat.ter flow that has 1ed to Ëhe Ëerms "production" and 'rproductivityrr beíng given specía1 Ëechnícal meaníng (MacFadyen, 1948, p. 75).

Most definitions of production are based on the concepË

iinplied in Ëhe following generaLLzed phoËosynthetíc equation:

673 kilocaloríes 6 CO2 + 12 HzO chlorophyll C6HtZ 06 + 6 02+ 6HzO or other pígnenÈ The formation or producËion of organic compounds by plants dírectly from solaï energy and inorganic raw materíals ís refer-

red to as primary producËion. Previous authors have defined Ëhe rate of production, i.e., productivity, ín terms of eíther the

organÍ-c matter produced (Blacknan, 1968, p. 2431' tvington, 1965, p. 296), the chemical energy which Ëhis organic maËter contains

(Odum, 1959, p. 68; Scott and Billings, 1964, p. 265; I,üoodwel1

and I¡thíttaker, 1968, p. 19), or Èhe organic matËer and energy

produced used as equivalents (!üestlake, 1963, p. 3BB).

If Ëhe amounÈ of synthesized organic mat.erial available

for harvest by man and other animals ís considered, two defíni- 5 tions for primary productívity are necessary:

...Gross productívíty is the raËe of production of new organic matËer, or fixatíon of energy, including that sub- sequenËly used by Ëhe plant and lost as heat; that is, Ëhe observed change in biomass plus all losses, including respiration divíded by Èhe Ëime interval. (trùestlake, 1966, p. 317)

...Net productívity is the rate of accumulaËion of new organíc mat.t.er, or sËored energy; ËhaË ís, Ëhe observed change in bíomass plus all losses excepË respiraËíon, dívided by the time interval. The net production is the organic maËerial or energy available for exploitatí-on by secondary producers or consumers. (I,Íestlake, a966, p. 317)

Odurn (1959, p. 68) and Mí1ner and Elfyn Hughes (1968, p. 4) have equaËed the above concepË of net productivíty to Ëhe

Ëerms "apparent photosynÈhesis" (Pearson, 1965, p. 278) and "net assimilatíon". Davís (1963, 7967) however, observed the need for a furËher distinction ín the definit,íon of net primary production. He consídered there Ëo be "...no consÈant proportionality be- t\^reen net prímary productíon of organic maÈter and Ëhe neË prim- ary storage of eneïgy" (Davís , 1967, p. 253). IË is possible that equal weights of newly synÈhesízed organic matÈer would have different energy values, since this value depends on relative amounË of 1ípid, carbohydrate, and protein synthesízed. There- fore, he referred to Ëhe net rate of synÈhesís of organíc matËer trnet as "neË primary organoproductivíty", while primary energo- producËívity" referred to the net rate of formaËion and storage of potential chemical energy. Only 'rnet prímary organoproducËion" 6 r^Ias determíned in the current study. This has the followíng com- ponents: net primary weight of new aerial and subsurface vege- organoproduction taËion component.s produced in the current per growíng season growíng season / weight of organic matÈer produced in the current growing season but losË through death, l-eachíng and exudates I weíght of organíc matter produced in the currenÈ growing season but lost through consumption

+

weight of maËería1 translocaËed from nerrr to old groÌrth as reserve

weíght of reserve translocated from o1d inÈo new growth

So far only the creaËÍon of organíc material has been consídered, i.e. , the producÈion process. I,Iith ce11 death, the organic compounds produced in the above process become frag- menËed into smaller compounds Ëhrough the process of decomposi- tion. Other losses occur through consumption by herbivores. If

Ëhe raÈe and arnount of initial net producËion exceeds the subse- quent rate of consumption and decomposiËíon, Ëhe result is a net accumulatíon of organic matter. 7

Ecologically, 01son (L964, p. 101) has defined accumula-

tion as "income minus losstt. I4Iíth reference to Ëhe peaËland eco-

system, Ëhe process of accumulation can be summar izeð, as follows. Each growing season there is a net productíon of organic matter,

some of which dies at the end of the same season. Thís material,

íncluding the contTíbuËíon made by perenníal portions, represenËs

"income" in the accumulaÈion process. Of this income a fraction ís lost through decomposítion in subsequent years. This rela- tíonshíp may be expressed by the following equatíon: accumulation = income of litt.er - loss resulting from through net primary decomposítion producÈion

The objectíve of the presenÈ sÈudy \,zas to determine the magnitude of the componenÈs of thís equaÈion for a peatland ín southeastern Manitoba. C. MeËhods employed to calculate plant production and peat accumulation A number of rnethods have been proposed for general use in

studíes of terrestríal primary productíon. These have been sum-

marízed by Odum (1959, 1968), Lieth (1965), and trrloodwell and üIhíËtaker (1968). YeË, in any specific investigaËion the replace- ment Tate for plant parËs must be consídered before a method for

the measuremenË of productívíty can be decided upon. In cases where the turnover raËe of plant païts ís rapíd, biomass flucËu-

aËes lítt.1e over Ëhe growíng season and measurement of biomass change ¡¿ith tíme does not indicate the true rate of producËíon.

However, in the peaËland ecosystem Ëhe replacement of plant parts

is minimal ín a síng1e growing season. Therefore, the observed

change ín p1ant. bíomass was used as the basís for the measurement of annual net. prímary production.

Odum (1960, p. 35) suggested that sínce the point of maxi-

mum biomass is reached at differenË times for various species, then changes ín plant bÍomass should be calculated for a continu-

ous series of short term intervals over the entire growing seasori. This "short-term harvest method" al1ows a betËer estimaËe of

maxímum net primary production Èo be made.

ToËa1 net prímary productíon can be calculated either as

Ëhe sum of indívidual specíesr biomass peaks, or can be based

símply on Èhe peak ecosysËem biomass, without calculaÈing indi- 9 vidual species' peaks. Malone (1968, p. 434) suggested that this

1aËter approach r¿as va1íd only when the dominanË specíes had sim- ilar phenologíes.

Most previous production studies have concentrated on a total quadrat approach. All plants are harvested from a nunber of representaËíve areas, and ín each species the mean weight

íncrement per sampled area is equated wiÈh production. Yet, from one sampling date Ëo Èhe nexÈ, plant weighËs change noË only be- cause gro\,rth has occurred, but also because the number of índi- viduals in the sampled areas is dífferent (Traczyk and Traczyk,

i 967 , p, S33) . I¡Iithout determining the number of indivíduals harvested at each sampling date it ís not. valid to conclude that the observed weíghË change is due to growËh a1one. Therefore, in the present study net productíon was determined on an indí- vidual plant basís. Srna11 representaËive areas of vegetatíon were harvested, and Ëhe number of indÍvíduals of each species present was counËed. This allowed a density value to be calcu- lated for each species. Mean annual producËíon per indivídual was then determined for each specíes as indicated on pages 54 and Bi and estimates of producËion on an area basís ü/ere made for each specíes by multiplyíng mean production per índividual by density

(Traczyko 1967, p. 839-842). The annual production ËoÈal for the communiËy was calculated as the sum of the individual speciest 10 producËíon values.

Although production must occur before accumulatíon of organic mat.Ëer can take place ín Ëhe peaÈland ecosysËem, the rate of end product accumulation has recelved mosË attention ín prevíous invesËígations. A variety of methods have been employed

Ëo esËimate Ëhe annual peat increment, mosË involvíng direct measurement of the heíght or weighË of existíng peaÈ reserves. Dividing height or weíghË values by the radj-o carbon age of the same portions provides an estimate of the annual accumulation rate of peat.

In the presenË sËudy, Ëhe average annual accumulation rate of peat (^\) , \^ras f írst. calculated as:

n _ ------=Ëotal mêaSured wéight or height of Þêat "'-tl-\A-^ = radíocarbon age of total weight or height By deËerminíng values for both "income" and "loss" ín the ac.cumulaËion equatíon below, an annual surface accumulatíon rate was also calculated. aAtgzo-zt - A'í = Ai - K'(Aí) Aa = íncome of litter from current riet primary production and from perenníal plant porËions, ínc1udíng plant secretions (Sc^); all sources measured during 1970 Y AÃtglO-lt = At*a = amounË of ínitial peat-forming material remaining at Ëhe end of. ]-977 K' = decomposition rate of litter (Lg70-Lg7I) 11

The value At, represented the annual accumulation rate of surface maËerial, since further decomposítion would take place in

Ëhe fractíon remaining at the end of 7977. Estímating the fracËíon of original litter whích event- ua11y remaíns requires an undersËanding of the decomposítíon process.

The mathemaËical function descríbing Èhe course of de- compositíon in a peatland envirorunent ís linearraccordíng to observed values of decomposÍËion in fern petioles over a períod of seven years (Frankland, 1966, p. 46). Gore and Olson (\967, p. 301) have assumed the fraction remaining to decrease expon- enËially with time. A subsequenÈ ínvesËigatíon (Mínderman, 1968, p. 360), has indicated that decomposítion of indivídual chemical compounds may indeed be exponent.ial in nature, yeË Èhe observed decomposition rate for the combinaÈion of Ëhese components is less than exponential. Minderman Ëherefore concluded "...This makes it questíonable wheËher a logariËhrníc functíon is better than a linear one for describing the course of decompositíon. " In most Ëerrestrial ecosystems it can be expected that

Ëhe decomposition of annual litter will eventually proceed to compleËion, with all compounds broken down inËo constituent e1e- menËs. However, ín a peaËland envíronmenÈ anaerobíc condiËions prevent complet.e decompositíon, resultíng ín an accumulation of L2

ínert peat (I,üaksrnan and SËevens, L929, p. 315).

The degree of compleÈion to whích decomposítion proceeded

ín the 1ítter of surface vegetation was not measured ín Ëhe cur-

rent study. Hence, the value of ÀAa was the only estímate avaíl- able for Ëhe annual accumulation rate of peaË. This AAa value represented the average accumulaËion rate of the combínatíon of peat types accumulated during the past, rather than for indívíd- ual surface vegetatíon Ëypes noÌ¡r present. The relationship between ttíncomett and ttaccumulationrr of surface vegeËaËion üras obÈained from Ëhe value of net príuary production and the amount of this production remaining after one

year of decomposítion (A i): A.rI surface accumulation ratio = total current net primary producÈíon

The derivatíon of current net prÍmary production and surface accumulation values hras carríed out in Ëhro sËeps: (1) Defíning a peaËland area where the processes of producËion and accumulaËion were taking place.

(2) Constructing a scheme Ëo represenÈ the process of

neË primary production and the subsequent accumula-

tion of peaË. Thís scheme formed a framework for the calculatíon of empirícal values for both production and initial accumulatíon in the defined aïea. Chapter II

DEFINITION OF A SITE FOR INVESTIGATION ú

A. Locatíon Based on a preliminary ground and air survey of peatlands located ín southeastern Manitoba, arr area ín the Ìühitemouth Va1ley (Lovering, 1967, Fígure 1) was selected for íntensive

study. Both íts accessibility and Ëhe variety of vegetaËion

patterns shown in a relatively sma11 area (Figure ld) made it suitable for comparaËíve producËívity studies.

The peatland is found mainly in Section 19, Township 10,

Range 12 EPM, approximately 3.2 kílomeËers (2 rníles) southwest of Elma, Manitob a (49o 53' N, g5o 54' I,ü). Thís section repre-

sents a sma1l extension of a larger peatland found directly souËh of the study area (Figure 1c). Access to Ëhe site ís from a dirt road adjacerit to the north side of the peatland. t5

Fígure 1. Location of .:the peatland studied.

A. positíon of lüinnípeg ín relation to NorËh America B. posítion of Elma in relation to üIinnipeg

C. position of Section 19 ín relatíon to Elma

D. position of Ëhe study area ín relatÍon Ëo SecËion 19 t9

'lo

(ofter Bonnotyne, 1964, Figure 5 ) 16

B. Environment According Ëo Gorharn (1957, p. 152) "...the way ín whích

peat accumulaËes varies almost infínitely in response to dif-

ferent combinatíons of envíronmental facËors." He suggests Ëhat

the observed peat accumulaËion in any specifíc siËuatíon ís a result of the ínteractíon of four major factors; namely, geology, Ëopography, clímate, and biotic influences.

I. Geology

I,Íhile nearly all of Ëhe trlhitemouth va11ey is underlain by Precambrían crystallíne rocks (Loveríng, 1961, p. 8) determina- Èion of the exacË nature of the bedrock in the Elma area has been

hampered by the thíckness of the surface glacial drift (Davies et

aJ-, 1962, Figure 36). The ínfluence of two glacíal ice sheeËs and Lake Agassiz I and II in this region (Dachnowskí , L925, p. 348; Prest, 1965, p. 19) has been described by Smith et a1 (1967, p. 15) as follows:

As the ice melted, Ëhe rock maËerials were deposited as glacial drifts in varÍous forms. The drifË deposits' along wiËh sma11 areas of recent al1uvía1 deposits of the present sËreams, wind blown sand and organic deposits, constitute Ëhe parent maÈeria1 from which the soils have developed.

The peatland itself appears to be underlaín totally by quarxz si1Ë, as determined by peaÈ borings in the study area (Figure 6), and at a location in the interíor portion of the L7 peaË1and by Bannatyne (L964, p. 77). However, Ëhe influence of this quartz síLt on 1ivíng vegetation will depend on Ëhe depth of peat between ít and planÈ roots.

2. Topography

The main ecologícal functíon of land form lies in deËermining loca1 moisture condítions, as against the general pattern controlled by climate; buË the naËure of relíef also has an important in- fluence upon Èhe flow of nutrienLs leached from the soil by rain (Gorham, L957, p. 155).

The peaÈland under study occupíes a slight depression ín a region whích is otherwise quiÈe f1aË, Township 10 having a slope of 0-5 feet per mile (Lovering, 1961, p. 13). Nutríents from the surrounding mineral soils, which are of the grey wooded and rego humic gleysol type (Srnith et a1 , 1967, Figure 8 and folder map) r may indeed seep into peripheral portions of the peatland and make an important addítion to the peatlandrs nuËrient supply.

i{híle there aïe no open rnrat.er eritrances, exits, oï reserv- oirs found on the peatland íËself, ground Ìrater may províde some of the moisture required by surface vegetation. Observations made during the study period indicated Ëhat ground waËer changes fo1- lowed the annual paËtern first described by Manson & Miller (1955), as cited by Heinseluran (1961, p. 22), and later by Bay (7967, p. 35). The waÈer Èable rose rapidly to the surface following spring snow me1Ë, wiËh a recessíon during the summer, when pre- cipítatíon rnras ínsufficient to compensate for evapoËranspiration, 18

and continued 10r,ü levels through Ëhe wínter. From Ëhe tíme of

snow melt in April, 1970, Ëhe water table remaíned leve1 wíth surface vegetaËion until the end of May, 1970. By the míddle of August. iË had fallen 50 crn. belor¿ the surface. Subsequent rain- fall ín September brought the water Ieve1 to wíthin 20 cm. of the

surface, where iË remaíned during winter months. 3. Climate Another source of moisËure for peatland vegetation ís at-

mospheric precípitation. Smith et a1 (1967, p. 20) have des-

cribed Ëhe Elma area as "subhumid", wiËh a definite suulmer maxi- mum of precipitatíon: t'Approximately 707" of precípítaËion fa11s

as rain duríng the period of Apríl to October and abouË 30% as

snow during the five winter months of November to March."

MonËhly precípitation data was obtaíned from Ëhe meteorological statíon at. Pinawa, Manítoba, 29 kiloneters (18 uriles) north of

the Elma site. As indicated ín Figure 2, a greater than average amount of precipitaÈion fe11 during the 1970 growing season.

Thís atmospheric precipitation makes a major contribution to the nutrienË budget of a peatland (Gore, 1968, p. 490). Ir also aids ín the recyclíng of nutrients by leaching mineral e1e- menËs from vegetatíon surfaces (Taunn, 1951, p. 1S4).

A description of the Ëemperature condítions has been given by Smith et al (1967, p. 20); L9

Figure 2: Total monËhly precipitaËj-on recorded aË the meËeoro- logical staËion, Pínawa, Manitoba.

(i) nonthly averages over the 1asË four years (7966-

Le69)

(íi) nonthly values ín 1970 TOTAL PRECIPITATION ( cm.) 20

This is an area which líes in the centre of the continent a great distance from Ëhe oceâns and theír moderatíng effect on temperature. Summer t.emperatures are higher, winËer temperaËures are lower and the annual temperature range much greater Èhan the world average for the 1atí- tude. ...Ëemperatures are particularly variable during Ëhe spring, fa11, and winter seasons, when the area ís affected by frequent fronÈal dísturbances between the cold "Continental Polar" aír from the norËh and warn dry "Maríne Polar" from Èhe south . transitíon from winter Ëo summer is abrupt, occurríng normally in April, and the change from summer Èo winter is usually ín October. The temperature data obtained from the meËeorological sta- tíon at Pinawa, Manit,oba \^ras consídered to be representaLive of condítions at E1ma.

Mean monthly temperatures in 1970 were similar Ëo the av- erage of the previous four years (Fígure 3).

Smith eË al (7967) cíte a figure of 111-127 days as an av* erage length for the annual ttfrost-freett growing season, whíle during 1970 the growing season was 132 days, i.e., May 5 -

September 14.

UnforËunately the conditíons of clímate to which young growíng plants are exposed cannot be deduced directly fron fig- ures for c1ímate published by nearby meÈeorological sËations.

This is due to the fact that meÈeorologÍcal elemenËs are ínf1u- enced by the neaïness of the ground, and hence are subject to vertical change (Geiger, 1965, p. 2).

The existence of micro-environments in peatlands has been 2L

Fígure 3. Mean monthly temperature recorded at Pinawa, Manj-toba.

(i) monthly averages over Ëhe last four years (1966-

Le69)

(ii) rnonthly values in 1970

22 documented by Tsudaka et a1 (t969, p. 11),who found that each vegeËatíon type in a Pacifíc coast peatland ecosystem had its own micro-climaËe, wíËh maximum and minímum temperatures more exËreme ín bog and than in surroundíng forest and transi- tion zones. Rígg (1947, p. 468) and Ìüi11iarns (1968, p. 796) also found that minimum temperatures \¡7ere lower in a bog than in surrounding upland regions. 4. Biotic influence

Man has a conËinuous ínfluence on the peatland ecosystem situated southwest of E1ma. The presence of the tr{hitemouËh municipalíLy garbage dump to Èhe north, separated from direct contacË with the peatland by a series of now-abandoned gravel pits, and the presence of agricultural lands on the three re- maíning sides of the peaÈland, provide the opportunity for the addÍtion of nutríenËs ínto the peatland Ëhrough seepage and via air currents.

Some cutËíng of surface peat has occurred in a section

Ëo the south of the study area. Yet, this disturbance was far enough removed from Ëhe actual site of sËudy that it .t^ras as- suued Ëo have no dírect ínfluence on any values of productívíty or accumulation obtained.

On the sËudy area itself, a surveying Ëearn (1968) left its mark with a seríes of fel1ed trees and vehicle tracks. Animals 23

other than man, ê.9., deer, rabbits, eËc., have also developed a neËwork of paths across the surface of the study area. These disturbed areas were avoided r¿hen vegetaÈíon üras sampled. Due Ëo this large array of disturbances the adjectíve trpristine" could never be applied to the peatland under study.

Yet, ín víer¿ of the present influence of man and his technology on ecosystems thís site r¿as stiI1 considered to be relatively natural. 24

C. Vegetatíon in areas adjacent to the peatland

Elrna is found ín a portíon of the GreaË Lakes - St. Lawrence Forest Regíon, L-Lz, as denoted by Rowe (1959, p. 53).

Low relÍef and poor drainage have favoured the develop- menË of extensíve sr¡ramps, wíËh Black Spruce (Picea mariana), tamarack (Larix laricína), eastern cedar @g."id*Effg)-, wiuow and atder scrub...Large areas of balsam poplar Gg4lgq bálsamifêra), whíËe spruce (Lí"gg. glaùca), balsnm fír (Abies balsamea) and scatËered tamarack (!glr" larieina) are found ín1and from Ëhe rivers...Trembling aspen (foÞu1uS- Ëêmuloides) is conmon throughouÈ the section. (Rowe, 1959, p. 53)

Decíduous wooded areas surroundíng the peatland (Smíth et

al, 7967, Figure 6) have a tree cover composed prirnarily of Populus and Salix, with associated understory genera as descríbed by Anderson (1960, p. 79-83)r e.8., Córúus, Rósa, Ribes, Gâlium,

Smílacína, PeËasítes, Fragária, Máíànthèmum, Asárum. Chapter III

REPRESENTATION OF NET PRIMARY PRODUCTION AND

ACCI]MULATION IN A PEATLAND 26

The second st.ep ín Ëhis study involved the construcËíon of a scheme to represenË fírst, the dístribuËion of dry matter resulting from net primary producËion in varíous plant compon- ents, and second, the amounË of this dry maËËer which is incorp- oraËed into peat (Fígure 4).

The following pages indicate the sequential procedure used in attaching numerical values to mosË components ín this scheme. At each step ín the coÍrstrucËion process values calcu- lated ín the present study are compared to corresponding lit- erature values. Conclusions as to Ëhe significance of the ob- served values are noted in a discussion íncluded with each sec-

Ëion, since Ëhe volume of data involved ís t.oo great to be handled effíciently in a general discussion.

I/üíËh Ëhe assignment of numerical values to all possíb1e componenËs in Èhe above scheme, conclusions formed from the ob- served relaËionship beÈween Èhe processes of production and ac- cumulation in Ëhe peaËland studied, ate sunlmarized in Chapter IV. 27

Fígure 4. The distribution of dry matter resultíng from net prímary production.

Af = peat formed in previous growing seasons

Ai = maËeríal accumulaËed in Èhe current growing season I Aí = maËerial remainíng after one year of decompositíon t Af = peat remaining after an additional year of decomposition A; = total peat remaining after a yeaï of decompositíon

Cbr, = plant component produced in a prevíous growing season t Cbr, = plant component produced in a prevíous growíng season and lost through death duríng the current growíng season

C"p = currenË production lost through herbivore consumpËíon Cpn = plant comporient contríbuting to the production of dry matter

I Cpn = plant component produced during the current growing season but lost through death

EFbZ = flower-fruit produced in previous growing seasons pFp3 = flower-fruiÈ produced ín the current. growing season HV = solar energy f = inorganic ra\¡r materÍals required in the photosynthetic process j = number of non-vascular specíes present t K = decomposiËion raÈe in litter produced in the current growing season

tt K = decomposit.Íon rate in peaË formed in previous years and still subject to decomposition

Lp1 = leaves and petioles produced in the current growing season 2B

Figure 4. (contínued) currenË growíng l,SpB = laËera1s, e.g', rhízomes' produced in Ëhe season PLbl=biomassofleavesandpetíolesproducedínpreviousgÏovl- ing seasons petíoles produced ín PLP2 = currenË production in leaves and Prevíous growing seasons produced in prevíous growing PLSb5 = 1aËera1s' e.g., rhizomes, SCASONS seasons PRb4 = rooËs produced in previous growing in previous grow- PSb3 = stems, and bark when Present' produced ing seasons Rp6 = roots produced in the current growÍng season RRPT=currenËproductioninrootsproducedinprevíousgrowíng seasons Rsp5=currenËproductioninstemsproducedinpreviousgrowing seasons

Sc =currenËproductionlostthroughsecretion'i'e"raínwater P leachíng and rooË exudates when present' produced in sp4 = terminal sËem, includíng bark Ëhe current gro\^/ing season t = Ëota1 number of sPecíes Present v = a planË sPecies I = sum + = addition = production Process = accumulatíon Process ,u,, t=li NON-V¡¡¡ U. t I HV+I : (v), i=l I )HorosYN. RAw MAT'LS. /EGETATION x (v), --J i=i+l t-'

PRODTN ,^- ì. Lpr t.orl tto. sp4 RSs *o.l RRorl Lset coMPtNTst'Pn'' I I I I

J 4 I 5 t I :( X con )' E( : cpn )¡ E cpn )¡ i=l n=l ¡=j+l =l i=¡+l n=6 NON-VASC. + + 'i I t I t( L cpn )¡ I i=l I + I TOTAL NET PRIMARY PROD'N 'l I I ____J

a

;o;t lì:cpl )). I ai Ai " J -:---l n: qcd¡¡ ;undr penneu,¡L + lYR. Acc'N L__ '_ l^,F NIÞ ISECRETION (c.:n) ai K'' Af c utntl \ccrN PAST -f %- L L rlYR. AcctN i=l n=l úôN-ì,ASC- Btoll. PLbl I 5 I a, t (( t cbn) + I X Cpn))¡ Li!-t3 FFò2 =l n=l ¡ fì=l t ( : cbn)i for'L TOTAL BIOMASS PSb3 Acc'N i=i+l n=l t- +tYR. AERIAL VASC. Elotl + PRb4 r5 : ( > cbn)i PLSb5 ¡=l n:l + penRe¡¡n'l co¡¡y'¡¡rs eloMAss H,gt )UB.VASC. BlOtl. A. Ve8etatlonal patterns 30

1. PeaËland veget.ation The whole peaËland could noË be subjected to analysis be- cause of its large sLze, i.e., 140 hectares (Bannat¡me, L964, p. 16). The smaller area chosen for study (figure 5) had the shape of a parallelogram, with a width of 150 meters (E-!ü) and a length of. 250 meters (N-S). (a) Past vegêtation in the study area To determine Ëhe sequence of previous vegeËaËion types in the study area borings Ì¡rere made at each of the eighË permanenË sampling poinËs used ín producËivity sarnpling and the peat profile examined aË each point (figure 6). The presence of gleyed clay at Ëhe bottom of each of the profiles indícaËed thaË the peatland had developed ín a lake basin (Dachnowski, 1924, p. 107-108). In most cases, Ëhe enËire profile was dominated by Sphágnun peatn ofËen containing bíts of wood and charcoal. A detailed analysís of the amorphous portions of the peaÈ cores, símilar to thaË car- ríed out by Stewart & Durno (1969), would be required to deËermíne the exact sequence of Èhe hydrarch successíon in the study area. To determine the average accumulat.íon rate for exísting peaË re- servesrthree sampling points were chosen ín the sËudy area (ON

758L,125N 758, and 240N 75E), aË which peat samples were co11ecËed

1 CoordinaËe positÍons expressed wíth reference to Figure 5 31

Figure 5. Aeríal view of the study area (infra-red ektachrome filrn). The study area ís ouË1íned ín r,¡hite, with co- ordinates expressed in meters.

I = Bog Forest zone

2 = Muskeg zor:e 3 = Bog zone 4 = Lagg zone . = permanent sampling poinË

32

Fígure 6. Peatland macrostratigraphy at eighË selected points in

the study area. The lulunsell noËation for colour ap_ pears ín parenthesis. 1 = non-compacËed peat-forming naterial

2 = dark brornm (IOYR 3/3), slightly-humifíed, Cârex spp. pear, containÍng bits of wood

3 = very dark brown (rOyR 2/z), well-humifíed, cárex spp. fen peaË

4 = reddish yellow (7.5yR 7/B), non-humífíed, SÞhâgnun peat

5 = dark brown (Z.Syn 3/2), s1Íghtly-humified, SÞhågnum pear

6 = dark brown (7.5yR_3/2), slíghËly-humified, Sphagnum p""t, containing bíts of wood

7 = dark reddísh brown (5yR 2/2), moderately-humífied, sphágúurn peat

8 = dark reddish brown (syF- 2/z), moderately-humífied, sphagnum peat, containing bits of wood

9 = black (IOYR 2/7), well-humified, ?morphous pear 10 = black (IOYR 2/7), well-humifíed, amorphous peat, contaíníng bits of wood

11 = black (2.5YR 210), gJ-eyed clay and pear

L2 = light grey (7.5YR 7/0), gleyed c1_ay

13 - wood

T4 - quartz pebbles

15 = quartz silt

Y = Gramineae and Cyperaceae Y = Salicaceae s = Ericaceae

+ = Pinaceae

33 for radíocarbon datíng. The macrosÈTaËigraphy at these poínt.s was sj.mí1ar Ëo that indicaÈed in Figure 6. The results of the dating, courtesy of the geology departmenË, Brock Universíty, are given ín Table f,a. The age of the deepest samples collected indí- caÈed the peaËIand Ëo be approximately 81000 years o1d. This age falls midway between fígures for peatland age deËermined for oËher parËs of Canad.a by Nichols (1969, p. 63), reporting a maximum of

41350 years 8.P., and the figure of 111000 years B.P. found to

Ëhe begínning date for organic sedimenËatíon in a norËhern Minnesota peatland tracË by Heínselman (1970, p. 255).

As stated in the íntroducËíon, Èhe acËual rate of accumu- lation could be calculat.ed from the following equatíon:

totál measured weight or hei.ght of peat present -'-r^^- - radiocarbon age of the total weight or height The annual height incremenÈ calculaËed from these datings (Table Ia) ranged from 0.025 to 0.042 centímeters per year. This was less than the 0.048-0.062 centineter per year range estab- lished by previous authors (Table IIa) for Ëhis same 47o-49oN latitude

The t.ot.al weíght of peaË present per uniË volume was de- termíned by coubining average heíght íncrement values, ÀAt (height), with the dry weighËs of peat cores collecËed at each of the eight sampling points (Table Ib). This producË provided an esËímate of AAa (weight), the average weight of peat accumulated 34 TABLE I

THE ANNUAL ACCI]MULATION RATE OF RADTOCARBON_DATED PEAT

(A) ANNUAL I,{EIGHT INCRM{ENT AT THREE POSITTONS IN THE STUDY AREA

(a) (b) (a) + (b) Age ín Sample Years B.P. Sanple Point Depth Analysis + Standard ÀA* (heíght) Coordinates cm. Number Error Ëm. /yr.

ON 75E 185-190 BGS-138 4524 ! L26 0.0408-0 .0420

125N 758 200-205 BGS-13C 7939 ! 103 0.0252-0.0258

240N 75E 80-85 BGS-134 2960 ! 73 0.0270-0.0287

(B) DRY T,TEIGHT OF PEAT FOUND AT EIGHT SA}4PLING POINTS IN THE STUDY AREA

Sample poínt Total peat Peat dry Mean weight closesË coordinaËes depth weíght (fOSoC) to radiocarbon-datíng Þoints cm. gnr./m.2/"^. w. /m.2 /"-.

ON 2E 159 844.s 87 6.9 oN 1308 L72 909.4

B8N 77E 201 1218. 0 2L2 1006 ;9 8BN 1O6E 1051. 5 170N 22E r02 990.6 170N 87E 111 990.6

1624.0 255N 728 55 1851.4 255N 91E 60 2078.7

(C) ANNUAL I,ùEIGHT INCREMENT AT TI1REE POSITIONS IN THE STUDY AREA

(a) (b) (a) (b) Sample point HeíghË Mean wef,ght closest AA. (weíeht) coordinaËes incremenË to radiocarbon-datíng ooints¡^ t cm. /yr. gm. /ur. /cm. gn. /rn.2 /yt.

ON 75E 0. 0414 876.9 36.3

125N 75E 0. 0255 1051. 5 26.8

240N 75E o.o2l 9 1851. 4 5r.7 35

TABLE ÏI

(A) PREVIOUS ESTIMATES OF TIIE ACCiTMUT"aTION RATE OF PEAT (HEIGTTT)

Depth Heíght of ' Increment Technique Peat Investigator cm. / vr. Location Emplo cm.

Durno 0.012-0.015 57oN c-14* 200-680 (1961) England

Turner 0.035-0.065 52oN c-74 B8-173 (re64) rìngland

Tsukada 0. 036-0. 093 36o-38oN C-T4 775 (Le67) Japan lleinselman (i) o.o4B 48oN (i) c-74 (í) zts (1961) (ii) 0.33-0.41 Minnesota (ií) dated rree (ii) :z-so (le63) roots Riee & Gould 0.062 (I9s7) 47o-49oN c-74 689 lrlashington

Sears & (i) 0.076-0.13 4OoN (í) dated conífer 732 .Janson Ohio needles (le33) (íí) 0.060-0.30 (ii) Literature survey

Heilman 0.22-O.38 65oN c-74 4r-77 (1e68) Alaska

Leisman (i) 1.s0 470N (i) dated tree (1es3) Mínnesota seedlings (7e57) (ii) 1.40 (ii) buríed wire

*radíocarbon dating the basal portion of a core of known heíght 36

TABLE lI (continued)

(B) PREVIOUS ESTIMATES OF THE ACCUMULATION RATE OF PEAT (IIIEIGHT)

l{eight Surface Increr4enË Technique Vegetation Investí n. /m.'lyr. Location Emoloved

Johnson & 72-rOO 54oN c-L4 blankeË- Durnham England (1963)

and Gore & 97 54oN computer símulatíon va11eY Olson England based on product- (Le67) ivíty measuremenËs

Heilman 150-280 659N;: c-14 muskeg (1e68) Alaska 37 annually during the entire peat forming period (Table Ic).

Since AA¡ (heíeht) values urere less Èhan average values reported previously, then ít r^ras not surprísing ÈhaË the range of AA, (weight) values, 26.8-51.7 gm. l^.2/yr., \¡ras also much lower than the 72-280 gm./m.2/yt. range previously established (Tab1e IIb).

The occurrence of past fires in Ëhe area, destroying upper peat layers, r^ras índicaËed by Ëhe presence of a smal1 amount of charcoal ín the cores examined. These fires may be responsible for the lower Ëhan average rate of accumulation observed. Díf- ferences in the peat Ëypes present, and'in past envíronments aË the síte should also be considered when atËempËing to relate long term accumulaËíon values deríved from the cores Ëo current raËes of production and accumulatíon. 3B

(b) Present surface veget.ât.ion The composition and spatial dístribuËion of surface vege-

ËaËion musË be known before one can determine which specíes make

Ëhe greaËesË contribuËíon to producÈíon.

SpecÍ.es found on Èhe peaÈland surface at Elma (Appendíx A) have previously been identifíed J-n peatlands on the Pacific coasË (Riee, L925, p.266; Tsudaka eÈ a1, 1969, p. 5-7), through

Alberta (Moss, 1953, p. 46I-464), SaskaËchewan (Jeglum, L968, p. 203-2L4), Manitoba (Ritchie, L956, p. 547-551), MinnesoÈa

(Heinselman, 1963, p. 334-335), northern OnËarío (!üi1de et a1,

1954, p. 35), Michigan (Gates, 1942, p. 239), Quebec (Dansereau and Segadas-Víanna, 1952, p. 510-517), and Nova Scotia (8e11 and Burehell, 1955, p. 548). These peatland species are distríbuËed ín two planes: (i) horizontal: i.e., the length and width of the area (ii) vertical: í.e., position relative to a fluctuat- íng water tabl-e, plus relative height of aerial plant portions. (1) Horizontal diSËributíon of vegetaÈion in the study area To determine the range of species found in the study area, fíve 250 m. N-S line transects r^rere set ouÈ at regular 30 n. in- tervals, íncl.uding Ëhe entire width of Ëhe sËudy area. Along one of these transects, species found either above, be1ow, or touching 39 a píece of nylon line were recorded in one meter intervals f.or a

ËoËal length of. 262 m. The range of species encountered was then compared graphícally (Figure 7). The substanËial åmount of range overlap among specíes so ploËted, índicated the contínuously changing nature of total species composíËion along the length (N-S) of the study p1ot.

On the remaining four transects the presence or absence of specíes was determíned at ínËervals of 10 m. By comparing the total frequency of occurrence by a species on each of Ëhese tran- sects, changes in the composiËion of vegetation at various widths in the study area could be determined. Since results indicated an absence of any well-defined trends or changes over the 150 m. wídth, j-t was concluded that vegetation composition \¡las uniform ín thís direction. Aerial photographs had'previously suggest,ed Èhe same conclusions; namely, thaË there existed four concenËric pat- terns of vegetation radiating outwards from some unknown epi- centre in the peaËland (Figure 8). These concentric zones have been arbitrarily delimited as follows: zone lz Bog ForesËl: an area of closed-canopy trees (Pice" mariana), few understory herbs or shrubs,

1 S"" Appendix C for definítion 40

Fígure 7. The range of species along a single line transect.. No-

menclature is Ëhat of Scoggan (1957) for vascular spec- ies, and of Crum et al (1965) for non-vascular species (Appendíx A). Hypnum protense r __J Aulocomnium . oolustre Helodium blondowii Corex oquotilis ll Solix pedicelloris vor. hypoglouco U Alnus rugoso vor. omericono LI Betulo glonduloso l-J Rubus ocoulis Solix serissimo Solix bebbiono Colomogroslis cqnodensis Corex rostroto Sphognum m

Andromedo gloucophyl lo ll Eriophorum spissum lr

Ledum qroenlondicum , Kolmio polifolio , Oxycoccus quodripetolus , Voccinium vitis-idoeo vor. minus , ' ,Sphoqnum copillocct¡m , , Sphognum fuscum , juniperinum , Polytrichum vor.grocilius , Vocinium onqustifolium bonksiono L¡rix loricino Piceo moriono Pleurozium

Dicronum undulotum Pti lium cristo- costrensis

200 ??o

STUDY AREA LENGTH COORDINATE (meters North ) Figure 8. The concentríc nature of vegetation patterns.

Some snow stÍ11 remains' j-n Èreed areas (May, ILTO).

42

and a "feather-moss" substratum. (Type 5, Heinselman, 1970, p. 242).

Zone II: Muskeg: a Ëransition area combíning elements of the Bog and Bog Forest zones. IË ís characterized by a canopy of coniferous

trees (P. maríana), betrueen which are

found clumps of ericaceous shrubs rooËed

in a bryophyte substraËum. (Type 6,

Heinselman, 1970, p. 242).

Zone III: 3og: a treeless area dominated by erícaceous

shrubs rooted ín a bryophyte substratum

composed mainly of Sphagnum spp. (Type 7, Heinselman, 1970, p. 242),

Zone IV: Lagg: peripheral area of the peatland characË=

erized by forbsr e.g., Carex spp., and

by deciduous shrub=, ".g., Salix spp. I^Ihile the continuously variable nature of vegetation com- posítion along the lengÈh (N-S) of Èhe sÈudy area made iË díffí- culË to define Ëhe boundaries of these four zone", Urrr"tences ín the degree and type of tree cover presenË allowed the zones Ëo be dístinguished ín aerial- phoÈographs, e.g., Figure 5. These same zones could also be Ëhought of as a series of seral stages in the process of succession. According Ëo Moss 43

Fígure 9. Vegetation in Zone I : 3og Forest

(a) Looking into the closed-canopy ?icea maríana from

the Muskeg zor,e (July, 7970). Black and white

bands of Èhe marker pole are each 20 cm. in length.

(b) Understory vegeÈation Ín the Bog Forest zone, con-

sisting prínarily of Ledum groênlaridicum and Vacciníum ângúsÈifoliun, with a continuous carpet

of Pleurozíum schreberi beneaËh (May, IITO).

Marker pole colour band = 20 cm.

Fígure 10. VegeËation in Zone If : Muskeg

(a) widely-spaced PÍcea maríana (March, 1970).

(b) Understory shrubs consisËing nainly of Ledum gróeqlándicuu (July, L970). Marker pole colour

band = 20 cm.

4s

Figure 11. Vegetation in Zone ïïï : 3og

(a) Treeless bog mat composed of ericaceous shrubs

root.ed in a bryophyËe substraÈum. Muskeg zone in the background (July, 1970)

(b) Close-up of the bog surface, wiËh Ledur[ groeúlândicum,

Vâccíníum VÍËiS-idaea var. minus, and Sph¿ignun fúscum

visíble (June, 1970). Marker pole colour band =

20 cm.

46

Fi-gute L2. Vegetation in Zone,IV : Lagg

(a) Shrub overstory, composed naín1y of Salix spp., wíËh Carex spp. visible beneath (August, 1970).

Marker pole eolour band = 20 cm.

(b) Carex rostrata and Chanaed,aphne cal]zculata form the dominant understory vegetation (August, 1970ì.

Marker pole colour band : 20 cm.

47

(1953a, p. 222) t1ne Picea mariana - "feather mosst' assocíaËion, i.e., Bog ForesË, uay be ínterpreted as the edaphic cl-imax in this process. However, this natural clímax may be offset by burning, which causes retrogression to earlier st.ages of the sere

(Moss and Turner, I96L, p. 1191) The sporadÍc patËern of mature black spruce, deep indenËa-

Ëíons of Bog-Ëype vegeËatÍon into Ëhe treed Muskeg porËíon, and evidence of charcoal in peat cores, all suggested Èhat the distrí- buËion of present surface vegetation had been determined by Ëhe oc- currence of pasÈ fíres ín the study area. The existing vegeta- Ëíon paËËerns Ëherefore represent seral stages ín the process of secondary succession.

Having classified the vegeËaËion present inËo four arn.", the aim of the curreriL study could be restaËed as: first, to calculate annual neË piimary producËion in eacTi of the four suc- cessional zones defíned above, and second, to esËablísh what frac- tion of this production üras accumulated annually as peat. The re- lationships betweeri neË primary production, subsequént peaË accum- ulation, and tíme, ïepïesenÈed by successioo, r"t" then numerí- ca11y defined from the calculated values. (2) Verticál tlistríbúËion of vêgêtaËíón ín thé study ârea

In Ëhe presenË study vegetation üras considered Ëo be com- posed of three strata: bryophyËe and líchens; grasses, sedges, 4B herbs, and shrubs less than breasË height (1.3 m.) at maturity; and trees, including saplÍngs of the same specíes, greater Ëhan

1.3 m. in height aË maturíty. This arbítrary divísion was found useful ín constructing a sampling scheme Ëo measure neË primary production in. each of the four prevíously defined peatland zones. The verËical disËribution of peatland species wíth regard

Ëo Ëheir positíon above a flucËuatíng waÈer table was documenËed by Tansley (1939, p. 688) as a hurnurock-ho1low "regeneration com- plext'. The relative posítions of hurmock species on the peatland understudy (Figure 13) agreed wiËh Ëheír represeritation gíven by

Moss (1953, p. 467) f.or peaËJ.ands in AlberÈa. 49

Figure 13. Vertícal disËributíon of hurnmock specíes on Ëhe surface

of the peatland locaËed souËhwest of Elma. The relatíve

posiËion of the rnrat.eï table at Ëhe starË of the growíng

season is shown. \bccinium Sphognum fuscum vitis-idoeo vor. minus Ledum groenlondicum

Sphognum copillocer¡m Kolmio polifolio Oxycoccus quodripeto lus

Sphognum mogellonicum Andromedo gloucophyl lo Chomoedophne Sphognun req¡rvum colyculoto preseni level of the fluctuoting woter toble B. 57

RelatÍve frequency values were calculated for each of the speeies present ín Èhe four vegetatíon zones Ëo determíne whích of the species made the most importanË contributíon Èo production.

The species which either touched, or ürere above a 3 mn. díameter píece of wire ü7ere recorded at 50 points in each zorte. These points \¡rere equally spaced wiËhín the 150 m. width (E-!f) of the study area. Frequency and relaËive frequency r¡ras determíned for each specíes encount.ered ín thís exercise using the following equaËíons:

number öf poínts at whích a specíes occurred frequency = 50 poínts t species frequency válue r rìrì relative frequency (%) - Ëota1 frequency for all species -,,a r\''t-'

An arbj-trary value of 57" was used to distínguísh between import,anË (, 5%) and less imporËant (< 57") species. 0n1y specíes having at least a 5"/. relaËive frequency value \¡rere consídered on an índívÍdua1 basis ín the calculat.ion of neË primary producÈion.

The results (fabte ttf) índicared that relatively few specíes formed the bulk of vegeÈaÈíon present, with several of Ëhese spec-

Íes beíng ímporËanË in more Èhan jusÈ one zone. The fact Ëhat rankings of relaËíve ímportance changed from zone to zone for overlapping specíes subsÈantiated the view that there existed a

'tvegetation continuumtt along Èhe length of the study aïea. 52 TABLE III

RELATIVE FREQUENCY VALUES OF SPECIES FOUND IN EACH OF TIIE FOUR VEGETATION ZONES

Important Specíes Less Tmportant Specíes Zone (relaËive frequency values (re1atíve frequency values < 5"/.) > sr")

Species Value Specíes Value 7" /. Bog Ledum groenlandicum .3 Vaccinium vitis-idaea .1 Forest Pícea maríana 23.7 var. minus Pleurozium schreberi 22.9 Sphagnum fuscum 4.L Cladonía spp. 3.3 Chamaedaphne calyculata 3.2 Vaccinium angus tif o1íum 2.5 Dicranum polyseËum 2.5 Sphagnun recurvum 7.7

Muskeg Ledum groenlandicum 28.6 Cladonia spp. 4.0 Picea mariana 14.6 Polytrichum j uníperinum 3.2 Sphagnun fuscum L4.6 var. gracílius Chamaedaphne calyculata 10. 0 Oxycoccus quadrípetalus 3.1 Vaccinium vítis-idaea 9.3 Vaccínium angustif olium 1.6 var. minus Pleurozium schreberí 1.6 Kalmia po1ífolia 5.4 Sphagnum capillaceum 0.8 Sphagnurn magellanícum 0.8 PtíIium crista-castrensís 0.8 Aulacomníum palustre 0.8 Dicranum polysetum 0.8 Bog Chamaedaphne calyculaËa 18.6 Picea mariana 2.4 Polytríchum j uniperinum 15.0 Pinus banksiana 1.8 var. gracilius Cladonía spp. 7.6 Sphagnum fuscum 74.4 Sphagmrm capillaceum 1.3 Ledum groenlandícum L3.2 Sphagnum recurvum 1.3 Oxycoccus quadripeËalus 9.6 Sphagnum magellanicum 0.8 Vaccínium vitis-idaea 7.8 Eriophorum spissum 0.8 var. minus Kalmía polifolía 6.0 Aulacomnium palustre s.4

Lagg Chamaedaphne calycula Ëa 27.8 Carex aquaËilis 4.s Carex rostrata 13.5 Ledum groenlandicum 3.7 Aulacomníum palustre ].2.0 Rubus acaulis 2.6 Hypnum pratense 8.2 Polytrichum j uniperínum 2.r CalamagrosÈic canadensis 7.5 var. gracilius Salix bebbiana 6.7 Sphagnum recurvum 2.I Salix seríssima 5.2 Helodium blandowií L.4 BeËula glandulosa 0.9 var. glandulifera Alnus rugosa var. americana 0.9 Salix pedicellaris 0.9 s3 c. Bloraeernet prloarv productlon.and eubeequent accumulatfon of non-vascular ve8etatlon s4

1. Sampling scheme

Of all non-vascular speci_es found in the study area only

Ëhose indícated in Table IV were consídered to be impoïËanÈ

contríbutors to production. Calculatíon of neË primary produc-

tion for each of these species was carríed out. accordíng Ëo the

scheme previously outlined in the introduction. That ís, a number of indívídua1s of each species were harvested at. regular

monthly íntervals throughout the 1970 growing season, from which the weighË of new growth per índividual was determined.

Samples rrere collected from Ëwo r:andom points ín each of Ëhe four vegeËaËion zones. At each of the eíght poínts a línear

seríes (E-III) of 25x25 cm. quadrats \^ras set up, with Ëhe random

point servíng as origin. The use of 625 cm.2 in production ^r"rt sarnpling was based on the results of a "species-area" investiga- tíon in whích nested areas rangíng Ín size from 25x25 cm. to

50x100 cm. r¡rere surveyed for both vascular and non-vascular spec-

Íes present. The "minimum area" of 625.r.2 r"" found to have

each of Ëhe desired species occurríng consistently. The number

of such 25x25 cm. quadrats harvested at each s:mpling daËe was

determined by the densiËy of species present. A mínimum of 80 indíviduals per species per zone was required to give a production estimate T^rith a stand.ard erïor no gïeater than t ]:O"Á (the 1eve1 of accuracy suggested by Milner & Elfyn Hughes (1968, p. 12) for 55

TABLE IV

IMPORTANT NON_VASCULAR SPECIES

Species Bog ForesË Muskeg Bog Lagg

Pleurozíum schreberi +

Sphagnum fuscum + + Polytrichum j uniperinum var. grací1íus +

Aulacomníum palustre + +

Hypnum pratense + 56

productivíËy measurements) .

At each rnonthly sampling date aË least 80 índivíduals of each species vrere harvesËed from 625 in each zone, "*.2 "r""s placed in polyeËhylene bags, and returned to the laboratory. Since the non-vascular plant,s were relatively small, Ëhe separa- tion of curreÍrË from old growth had to be done for each of the índíviduals íncluded in Ëhe sample. In each of the following species this separation was performed under a binocular micro- scope, ax a magnifícation of 6x.

Aulacomníum palustre

Sínce the leaves of this specíes remaín green for more than on" y.".1 (personal observation), then the Ëota1 length of the chlorophyllous porÈíon of a planÈ cannoÈ be equated with new growth. I,lhíle Tarnrn (1953, p. 13) considered one third to one half the length of the chlorophyllous portion Ëo be índícative of new growËh, in the presenÈ study Ëhe currenË yearrs light green groïrth could be dístinguíshed from perennial green portions by samplíng A. palustre at monËhly íntervals throughout the gror,ring season.

I As the contributíon Ëo producËion by perennial leaves of all bryophytes \¡ras consídered to be negligible, no correcËíon factor was employed for Ëhese perennial portions in calculations of productivity. 57

To ínclude the contribution made to producËion by repro- ducËive structures, samples employed duríng the growing season conËaíned both fertile and sËeríle shoots. Thís sampling pro- cedure was applíed in the following specíes as wel1. Polytríchum junipêrinum var. grácílius

As suggested by LongÈon and Greene (1967, p. 306-310) curreriË terminal growth was identified based on dífferences ín leaf length ín individual plants, shorÈer stem leaves being pro- duced at the beginning and end of a growing season.

Sphagnum fuêcum

0f Ëhe three erect-growing genera examined, differentía- tíon of neü7 grohrth from old was found mosË difficult ín thís genus. Growth chamber studies, and subsequent fíeld observa- tions, confírmed Ëhe facÈ Ëhat in S. fuscum the stem portion of terminal neT¡r groùrth retained íËs chlorophyll for a single groÌü- ing season on1y.

In this study, dÍstínguishíng beËween ne\nr gror,rth and old was based simply on recognizing Èhe boundary beËween green and brown pígment in a planÈ. MonËhly samplings were made during the growing season to det.ermíne Èhe maximum weight of the chloro- phyllous portion.

Clymo (1970, p. 21) has reeenË1y suggested Èhat some of

Ëhe material in Ëhe capitulum of Èerminal new gro\^rËh porÈions 5B

is formed during previous growíng períods. Following his sugges-

tion, an average weight of the capitulum was deËermíned at the on-

set of the growing season, and Ëhis mean weíght subtracted from the total weíght of individ.ual ËermÍnal growth portions harvested Ëhroughout the remainder of the season. ThÍs procedure províded a more accurate value for current neË production by an índívidual Sphagnum sp. plant.

1 Hypnum praÈense-

,". * ,re proliferous branching sysÈem of thís pleuro- carpous moss, it was dífficult to firsË defíne an "individualr' for production purposes. For convenience, each unbranched seg-

menË having a gror¡ring point at its apex üras referred to as an

índividual. Field observations indícated that Ëhese portions

retained their chlorophyll for more than one year however, so

thaË it was impossible to distinguish between new and o1d growth.

The alternative taken üras Ëo d.etermíne the total weíght of the green portion supporting a síng1e growing poinË, i.e., the bío- mass, and Ëo consíder yearly net production per individual as one half thÍs biornass value. Pleurozium schreberí

I^Ihile an indivídual was easíer Ëo define ín this pleuro-

1 Awaitíng verificaËÍon 59 carpous genus than ín the former, iË was sti11 found impossíble to distinguish between new and old terminal growth. Therefore, biomass figures obtaíned from monthly samplings were divided in half to approximate yearly net producËíon (after trüeetman, 1968, p. 368). 60

) rimary producËion of ËanÈ non-vascular species The new growËh porÈions idenËífíed above, consisting of

leaves, stems, and reproducÈive structures, v/ere washed. in dís- tí1led r^raËer to remove any exÈraneous maËeríal from Ëheir suï- faces, and then oven-dried to constant weight at 1o5oc. After cooling in a desíccator, these individuals were weighed in groups

of Ëen, wíth no effort being made Èo separate leaves, stems and reproducËive structures. From these weíghts, a value for current net production per índividual r¿as obtained.

To calculate production of Èhese species on an area basis, the value of current net production per indivídual was multiplied by the average densíty value determined for each species. The number of indivíd.uals peï square cenËímeter T^ras first calculated by counting Èhe number of índividuals found ín eíther 6.5 or 9.5 cm. diameter p1ugs, usually containing a síng1e species, and co1- lected boËh in the wínter when individuals were Í.tozen into nat- ural position, and in the spring when ner^r groï^rth buds were evident. At both collectíon dates plugs were gaËhered from all zones ín which a specíes occurred. The number of plugs collected for each species was suffícient to gíve a density value having a sËand.ard error of less L]narr 7O%.

Next, Ëhe number of square cenËimeters occupied by each specÍes ín a square meËer was calculaÈed, employing a "grídded" 6I

25x25 cm. quadraË. Each of Ëhe twenty-fíve 5x5 cm. areas coïì-

Ëained Ëherein were alloÈted a maxímum coveï value of 4%, witin the total of the cover values recorded for a species representing

the percent cover by that species. This procedure was repeaËed

for a number of additíonar 25x25 cm. areas until a percent cover value wiËh an acceptable standard. error of estímate (< 102) was obtained. The 25x25 cm. areas surveyed r^rere.locaËed five meters south of each of Èhe eight permanent sampling poínts, one half of the quadrats locaËed at each zonal sarnpling poínt. The product of Ëhe mrmber of individuals per square centí- meter and the number of square centimeters occupied by a species in a square meteï (Í.e.,700lZ cover = 101000 square centimeters), províded an estimate of density for each of the important spec- ies. This density value, multiplied by Ëhe speciesr neË produc- tion value per individual provided a value for net primary pro- ducËíon on an area basís.

Net production values calculated for individual plants aË monthly ínt.ervals over the growing season were ploÈted against time ín Prograrnme I. Due to the límited m:mber of points, no conclusions r^rere drawn concerning the shape of growth curves.

The signíficant difference Ín Ëhe indívídual production values of Sphâgnum fúScum in the Bog versus the Muskeg zone, evidenË in the graphs of Programme I, suggested the existence Prograrnme I. Net prímary production recorded at monËhIy intervals for individuals of each of the ímportanÈ rion-vascular species studied durÍng the 1970 growing seasorl. t- t':-¡lì f i'i' l '''__--__- 62 f- c rHIS 1;;11ilR4tiù1:?i.ir,îTTti'ri I1).i i:;4.I{.Jvr.Si.\pl-lICi\LLy plibsEitrs C TilI PATTIR¡.] ilF ilIIGl]"ì- IiiCjìfrri:rT-f- Íru iÀtDIVIDU,ALS pi]lì .l'1r-\1 ,/ì(.rt¡ .\rr cPFCIËS C {lf: [/lCii ilF Ti-] ,_lj Ii.,j Ì-A]li T ir v¡1JUUL}r¡' _l STUDi Ei:) ,. t :i-iiJiìCF Pir,i](ìiìh,'.1iìË L i S T.l ¡¡¡; t------{- DII¡Fi'lsIfliJ xLI\it(l{10) ¡ r(.2(:*7) îLii.lE (1r)(l) TvLJNF { lco} clli\irì /ìcTF¡l.,i. I i) .$ z¡i,l i ( 7 l CliAì:ìACTËrì'1.40 $Sp FC { 7 } ci"lÂfÌ,,,içTtì Ëì sir'1./r ( 3 ) , $ DIIT i;':.-l { .?7 } * rljcTI{ !ül",.1 ¡rri,1Çi',1¡ e ll1,\T,t $P,/åfilË'1- rri.>ìril)î e r ( 9* Pf_R{ ro sH,f_Juu*¡T 1l DÀl-4 S;i)/fTTirAi3iri !ru N,I *ru;,,,1 lluun ur, uru ,rrJ0,.,luru à0t¡3, f99 er'JL.i"l tru j, j ,ruAl0rrr ,r, tut I ¡ .t/, I t i f '.LT 1 t t uru utt leti ìL2.8/ j),.\l y¡\)l !./ 4,i,e q q '. ./ry r sT,xi( / / e_ìLAf\j K,/ t / rx4xlå Xr / r Sp{l[ì / .t I , i'l=7 ll{_l 1)OA { = I,ll rìiA|l i 5rô(líì01 lìz|i,,I: ( i ) r$,spt,c( I j írili)û Fi,llliÅT { ¡ì l0 g A¿ril l iì[AD{5r l6í]0J ( IC2{ IT), JT=L rZ7 )rfìC,\LE 1 ¡.'iìíl l- iRii ÄT ( ;:,17 1r / 7J rr s i:l: * 2,1 .!. l¿+.l" iljì i-.rl i61 5¡l'l ) :li1_il;\Jl_: { I I o -$s;rf_c( r ) 5{-ìi"10 Í:iliìj"ì^T(9 lr Znj'iF; s r pfìCljur-.T r rAl0rr Sl--,ECiFS: ' ¡,^¿iiJr IC¡J GiìApl-l } i"rR-iTt (6rl0ù)" $P r 1¡ 1{1 0 iilR¡li\ | ( ile r4'iX y iJ'1 J i)ii :lt..t). l, = i ?lilC a5 t_ï1\:E{t-i - L Yl-Ilil ( L-i = .1ìPi:i;, ??7 r-rl'lTÌ r'ill- iL (; i.l iì I T l ", L 2 L j { i.- i ¡i í_ i L i g [_ = I ¡ 1 {_l 0 r 5 } ( n'Ìlr 121 Fl,riì¡'ìL\T e,))1r ?01I? r 3X ] ) vt_ ij!.ITi {.6r,37 I { I\tF { L) rl_=I r1ù0r5 } l,il7 Frìi-ìrl¡r1'r ù s']x¡ 20 ( lXe.r\lr3X] l Dii Zilû IP = 2ri-ilLl!l XL I\li: { I j = iì!,Âi'.il( 2Jíl XLI¡,i[{Ii') = Y/\X r4RiTt{rr,300} XLItlÊ r,:r)(2'1 lr)0 f:{_jiì14¡l,T( r r u 0ilÀI } t)li 400 IP = 1-1 lfCl I r:ilil )(i li!L:{lPì = ùLAr\.1i( 3.P = ?7 Dil Tiltl .1p - l, ,Kt, XLIi.ll-(l) = X¡\X I! = IC?:(')?) -r ,l Xl_liiii,{ ifr} = Sfr\!ì ffillii: { í:r :5:)0) $iìr\'il ( Jp},;{LIiiE ïi)il t-ìllì.¡i/i,T { | r r1+Xr ltil ¡ 1X¡ LilCAl} XLIli,,{IP) = lL¡\N}¿. ?f,)0 cll¡JT j i''ttJr ilt,Siifl Irr -- ?¡ LO{),1 Xl-I\l',iit.) = irLAilK íra-)n xL :i'.t l: { I t--, } = Y,{ x rllTl (í, :..'r; ¡ )1 1 t'':j:: .':' l,,.ill Ë'.1!.1'/li:,ì { i s sÌ)i r l,î,ll\1. } 63

ar l-ril ", -ì l- I = .1. r l(j iJ ; 5 Liiii.{'_l_) = l_L YLli\li (l-t- ) = ¡i;pfi.ì. ?33 fiIi]r'IiluF. (.11.ir\li:it \.lt{IE {ry787) L } rLL=l r lC0r 5 } (1 i{i?il-F {Í¡ t121 } lr'li:{ LL} ?L.L=l gl00r5 ) ,.,r,.:!.rìRJr[ (6? lli] ) $P ¡ Sl;1ù.,:,¡f-1.ì,*.1'1 ,{T{ 0, ¡1r5X 71,ì Azr ) {: } } !jlÌTr (i:rl'}-),) } 1i,ìLrì B pRf]lli,JCT I il:)r-r FiÌ:ì irtr { ' -r r i.l[ìTF; I{.i.,J IS e >.'.¡ i!uiijlìFi:l ye ?s ,=¿:)ft ilfiËs f-l¡: INt)ICATED fll"r AXT S tì {i {ril0 Cr:lùlT T ¡tiii: S TIÊ t-\1il ::.: .. .1;. t 1 ...:.

.,rtrÇT c.:)t-rTr-c,:i)lf tt,,rì7Ill;.ìrr\(i:- c. l'l-.1 ìiF.qf l)T PtìOilU{-.TIf.N Ct.APfl /-1,¡\7,r\, !,anrì'iil,,.r I f -' .) | , -t. t - ''.i' \lET pr.]il,)UCTIT-rn ,t.1çi1) PIR SHI]l-'T

Al3 X'1, :\\/ .ô-L 7,:, X ti' i"lll X \ \r !r, \

^1- \ \/ -r \\ ^1- \

\ : ^n' .JC8 X / l¡'r ./ V \r¿ ,/ A'È ,/ \/ // l\ 1-'r' v r,z /\'r tl Y ì X t:. i ,',' ::"':.,'.: '' >i< ^'V - ¡\4Tn L ' t.'\/ \¡¿ X ti' \/ /'\ 'r'r- /\,'.'V\L Sl/t X \/ .L A't v \r?

X ':' \u i:L ¿. X VVVVVV YYY YYYYYY Y YYY Y\i Y'{ Y1z1;YYr/!f Y',,1\'\'VYYì/YYYYY YYYYYY'/Yì'YYY YYYYYY YYVYYYY YYYYYYYYYYV Þè

¿r ¿f (f 11. 7 85 I {:, Ll l{> 2l ?n 31 36 J- 6 {¡l 66 ó 8tr :

\ i i.lÉT F jl irD l1l. l- TiJ J\ { i,iiitJ ) PTIì S \trr) T

I È. j /\-i ¡,)r : I! N." ii î r I 11 i- S i'J lj i'i il ir iì {l l'i YlS I i! il I {, !::) i,r'¡ I -S

{ I f 7 Cl'ii: j ir.i S {-; f(l SP fC I i::ì; SPHr\Gr,] I.jl4 FUSClJr,l pqilÐtjcï I Cj\ Gg.ApfJ

¡tFT tlfìoDtJcTI{li\J (¡4G¡1} pER SHi,}tiT

Â1.1 x J', X 1' 4¿ a_ ¡ I. X 1- j.11I y. X v. x .Ji I v. x

.,L .:;';' 'l' ' .:';,, l! J1.å,X v. X X /ìln y, .¡ V^. \'. V .¡. ^1- v >:r (l/, \/ \)I r /\ VJ- .A -¡' \/ r,. .i 1' v \r/ nì 1 v-'-^.' l: L !,:- /., a'

.),,rjl r:ì iI li_ \ Ii':{,'l f,ål frll ili'i ¡,Xi S .r . . : . 1: :: ': : ': i. ''':

qrFi I'.(ì:r'ilr..)ñt.\t rit',r l\l lill D,rll ÇTlìr IJliii:; i',l.lI [_ \\.,j /ìLLlrr.\l PRI]I]UCT ICN GJìAPH

\iEl i-'3.ii'ticTI0¡i (i"lGi'l) PFR sulrf.rT

A l. :l X'Ì' A.ì v -t- l\ 1' V.ç ^'{- ¡.¡i1 v

\/ r¡,

^..\/ -¡-

\t^-r -t- /t a' lrì -) \/ \ r)\)tt /, >F /\'¡-V \r' I V '¡- / ^-r V\L / ^1- v .r- j\ -¡' ir? v )F ){': \ x >:< w \r. \ ,r, 1 ,1\ V^-. '' a') /\ .'. a ' ,' a,': \/ -t' ':..:.,t. 't:. /\,-" /\ ''' i ì, .,. I h'Ì \/ 'r- I /\'\' I S!4 X )k \ V-L^-È I A-. \ V.! ^1- \ '|rt1? )./, v Y l' YY YY Y Yn/YY yY Y Y'l'/\''Y YY\r' Y Y't Y Y Y Y Y Y Y; Y Y YYY Y Y YY YYY Y Y YY Y Y'l YY YY YYY YY YYY YY'/Y YYYYV YYYY YYYYY YY YY YYY Y Y V YY Y Y Y

ooø 6000OtO

I 6 il. ).í: ;lL ttt l,I -:,b 41 4{: 5i 56 61 66 7L 76 Bl. gb 91 9b

.'lrT Di.ÍìrlUt_ | tClt: { ljiç¡'i I P l.:R Sl{ûfl I

Ot IS l.il3'fIrtiis i.'lliilillEiì íìtr. Yrs If'tDIcATËfl tr.i't lixts Zí f i: liìt

Al.l x;, /1I I t..'l' ol" /.f i.'t I 1

J{lit /,

x.i, ,\t:t 'ir.'t' J 13 '\

û.lil

lt71+

^1. /\.'\/ J.

\/ J¿ /\ 1' nl ) v

j\lFT ìrirì{llttJCT iitf'¡ {t1Gi't} pEt.Ì Sl.ii)UT

IS {)"11+'ll .-r ! iiS I fii í,j I l. /i I f: {_- f,i ,ìX 1S PiìI]I)UCT TCN GF.APH Zfl'iì.:rli'll Sp I t l 1: S : _c i' H,{G\l i.Ji\'i {:US Ct-li'l iiET Piì,tlDUCTilli! (j!Gi'4J PER SHL,rijT

1\t.l .lY {,r

Y.,7',, \/ ¡:I t" 1' ¡411 V:tt

L n'l I ,,)íi.l l i0íJ

Jl J X Y1r f¡ s- 1; 1- ,:.1.1¡;,;:;¿. '. .: *..'f t\,L) y.. w,r,A1- \/ -,- X'i' X';' S14 Y V -¡--,' ^, l¡'¡ \/ 1.. -ì-'; /1t l vr. '.J | ¿- A'j

j\r.Jt_ì D r.'rt 1ì, lf T Tf I frl =-l- ..¡¡:.. ,!.J\? I ?-Ljit { i'1 ßr.1 } P l- R S }lil f.i 1

IS ii"Il \,?s ltti.ìI{:/1Ii:i) 0ri i:ixiS A 1:ì XÌ.

/\ 1' V\L /\ '1' V \ì? ^'.' ..:i l v >; V -r- A'r \ V.L t ^-r \ V \I, ./\ 'r' \ I :i ,tc3 v,, \/ h1''v v-L ^a' ,. .., . ., x >ir . : v-r- J 1l v r, j _ ::Xli. ,:'l: '., .. : ',:.:..'':,:t.X.:)t¡ i::..;:..4li-;r. ^-¡ v ^r,l W!¿ ^1- \/ rr.

\/ -¡'-L

^\/ /\'r-'r- ('r /. V .' I -l /\ V.L ^'¡' V.L wr- ftl ) v

o i s " l-j T i\i Dl i dl : il l_ìl'i /-\X I S /'tt''t¡ ;X.,1{-;C SPF|,ii:S:Hypi{l,Jr,i pnAff:ì'iSf- pkìCt)iJCTI{lN GtìApu

i{ i:T PRí,1DtJC T IO¡i i i,4G¡"i ) pER .SHflt.tT

.1 ì ? vJ. ' ' .t. .-) /\ 't' V \'- l,\'t' ,^'¡'V'L , 41'\/.L

tJL l x >ji

^1' VJ. /\ 'f \/ J-

la,l ^-È V

Vr--1' ^ V\L A.' \/ .r- ,::, : /'¡' Y :,< Ji3 X .I ti' X ri, x),

/\..\\/ .'. - \/\L

t.\/ 't-''- ,;:t/, v J !'f A \/ rr¡

v^.- .r. ^1. /\VJ- ''\ f''t ? \/

! 7L

of zonal micro-environments, wíth one set of envíronmental con-

ditions being more favourable for growËh than Ëhe other. Dif- ferences were also apparenË in production values of Aulacomníum palustre in the Bog and Lagg zones.

Production calculated on an area basis for these species (table V) was dependent boÈh on Èhe value of indívidual plant production and on the density of the species ín questíon. lthile the rankíng of the three most productive specíes was ín- dependent of the type of producËion expression used, i.ê., gm. /plant or gm. /^.2 , r¿ith Pleurozium sihreberi > pólytrichum juniperinum var. grâcílius > Aúlâcomnium paluSËre (tagg), Ëhe order of ímportance ín the remaining specíes was changed by expressíng producËion on an area rather than índívidual basis. For this reason it is preferable Ëo have measures of both indí- vidual producËion and densÍty when comparing speciest produc- tion. Unfortunately, Ëhere are few such values presenË in the 1iËeraËure.

Longton (1970, p, 829) has observed individual net pro- duction ín Pölytiichum alpestre Hoppe (= P. juniÞerinurn Hedr¿. var. gracilius I,üahlenb.) Ëo be in the range 0.6-3.7 *gut. in various Antarctic locations, compared to the 3.9 rngrn. observed Ín Èhe curreriË study. With reference to Sphágnum spp. r neË primary producËion TABLE V

MAXIMIIM ANNUAL NET PRIMARY PRODUCTION CALCULATED FOR TIIE IMPORTANT NON-VASCULAR SPECIES FOUND IN EACH OF THE FOUR VEGETATION ZONES

(a) (b) (c) (a) (b) (c) Zone Species Maxímum current Indívidu4ls Cover 4 Zonal toËal for net primary productíon per cm. Icpr, ímportant species per indivídual tl S.E.Z .2/^.2^ ;=i" +1 " 2- mgm. S. E. Z* !1 S. E. Z Bm. /m. f . /m,2

Bog Pleurozíum schreberí 4.70 ! 6.8"Å 2.70 ! 3.7% 8490 L 4,67" L07.7 ro7 .7 Forest

Muskeg Sphagnum fuscum 0.55 5 .4"/" 4.LI t 4.6% 3135 4.L% 7.L 7.r

Bog Sphagnum fuscum 0.42 6.9"/" 4.Lr ! 4.6i¿ 45L5 + 4,6"Å 7.8 48.2

Aulacomnium palustre 0.49 + 72.8"/" 7.36 ! 5.7i¿ 1509 2.47. 5.4

Polytrichum junÍperinum 3.94 4.67. 4.35 ! 9.4"/" 2039 ! 2.77. 35. 0 var. gracilius

Lagg AulacomnÍum palustre 2.L3 9.27. 7 .36 5.77" 2289 t 3.27" 35. 9 67 .L

Hypnum pratense 0.42 7 .3"/" 22.75 9.97" 3260 t 3.27" 37.2

* standard error expressed as a percentage

\.1 t\) 73

in several species found on a blanket and va1ley bog ín England (Clymo, 1970, p. 34) was at least one order of magnítude larger

than values observed j-n Èhis sËudy. Even when the capiËu1um weight was added to production values of SÞhagnun fuScum the re-

sulting range of bíomass values, 39.2-57.8 grn. /t.2, (ra¡1e Vrt) tras sti1l far below tihe 269 gm./rn.2 determíned for the same spec-

ies by Bellamy and Rieley (7967, p. 39) ín England, and rhe 200-

800 gm. /^.2 range cited in Overbeck and Happach (1956, p. 363) for locatíons in norËhern Europe and Russia. Pearsall & Gorham

(1956, p. 198) have suggested that some chlorophyll rnay be losr by the sËems before Èhe end of the growíng season, causíng pro- duction to be underestimaËed. Since Èhe ídentification of new gro!üth ín the current sËudy was based on the presence or absence of ch1orophy11, then this suggests thaË present results may underestímaÈe annual neÈ production in Sphágnu:ir fúScum. Pleurozium Schrêberi, forming a conËinuous surface layer in the Bog Forest zone, r^¡as the most productive of all non- vascular species examined. ï.ts net prod.ucÈion value, 107 grn. /^.2, T¡ras more than twice the 43.5-65.5 gm. /^.2 range determined by lleetman (1968, p. 368) for the same species, fo,rrl'a under an up- land stand of black spruce ín eastern Canada. The wide range of producÈíon values exhibited by each of the above species ís perhaps attributable Ëo environmental dif- ferences beËween sÍËes examÍned. 74

3. Net primary producËion of oËher species present

Since not all bryophyte species \^rere considered on an in-

dívídual basís, Ëhen the sum of important species producÈíon va1- ues ín Table V represents an underestimate of Èhe toËa1 non- vascular net primary production. Forman (1969, p. 586) has preví-

ously made the assumption that unsampled bryophyte specíes would have a mean bíomass value approaching Èhe mean calculaËed from

sampled specíes. Therefore, zonaJ- net production was estimated by multíplying the sum of important speciest production values by the ratio of. tota|imporËant speciest cover percentages (Table VI). 75

TABLE VT

ÏOTAL NON-VASCULAR NET PRIMARY PRODUCTION IN EACH OF TIIE FOUR VEGETATION ZONES

(a) (b) (a) (b) Zone ZonaL total for Correction for other species: NON-VASC. ímportant species PROD I N a Total cover % bv a]-]- species gm. /m.'L ToËa1 cover 7. by important specíes g , /^.2

Bog L07 ,7 92.s / 84.9 116.3 Forest

Muskeg 7.L 74.9/3L.3 17.0

Bog 48.2 93.0180.4 5s .4

Lagg 67.r 62.9/ss.4 75.8

NON_VASC. PRODIN = 4 i, I cpo)i i=1 n=1 76

4. Biomass of non-vascular species

Zonal Tlorì-vascular biomass Ìras greater than t.he corres- ponding neË primary producËion va1ue, since each of the import- anË species studíed had perenníaI photosynthetic portions. To estimate thís biomass, green perennial portíons of each species were weighed at each sampling date. This perennial weíght, when added to thaË calculated for net primary producËion, provided a value for toËal photosynthetic biomass. Biomass for each of the vegetaËíon zones was Ëhen calculated from the sum of species' biomass values, multiplied by the correction factor for un- measured species (table VII). This value is likely Ëo under- esËímate total bíomass, as the shoot,s of certain specíes may remaín a1íve for a períod after losing their chlorophyll

(R.8. LongËon, personal communication). However, no method was readily avaílable for determining the extent of the brown living portíon. TABLE VII

THE AVERAGE BIOMASS TOTAL FOR NON-VASCULAR SPECIES FOUND IN EACH OF THE FOUR VEGETATION ZONES Zone Species (a) (b) ^ (a) (b) (c) (a) (b) (c) Mean bíomass Individuals/m.¿ 3 4 all- species cover Total I crr,+[ cpn Important specíes non-vascular n=l n=l cover biomass mgrn. /individual gr. /*.2 em, /m.2

Bog PleurozÍum schreberi B. OB 22923 185. 2 1_. 0B 200.0 Forest

Muskeg Sphagnum fuscum 3.04 12885 39.2 2.39 93.7

Bog Sphagnum fuscum 2.7 9 18557 51.8 1.15 131.3

Aulacomnium palustre 1. B1 11106 20.L

Polytr ichum juníperinum 4.77 8871 42.3 var. gracilius

Lagg Aulacomnium palustre 2.30 ]-6849 38.8 1.13 87.5

Hypnum praËense 0.52 74LBL 38.6

Total non-vascular biomass = j 3 4 r t I( I cbn)+(J cpn)l i=1 n=1 n=l i

\¡ ! 78

5. The contríbuËion of non-vascular specíes to accumulaËíon income

As Ëhere was 1iËtle evidence of consumpËion of bryophytes

by herbívoïes, ít was considered that Ëhe net prímary productíon of all bryophyËe specíes was added directly to the deËriËus cyc1e. The total calculaËed for non-vascular producÈion represented the

annual litËer input by Ëhese species (table VIII). In the case

of perennial non-vascular species, production T^las assumed to be

of the same order each year. Hence, accumulatíon income for these specíes could also be calculated from theír current producÈion values.

.{þ. 79

TABLE VIII

THE ANNUAL CONTRIBUTION MÄDE BY NON_VASCULAR SPECIES TO ACCI]MULATION Zone Annual non-vascrrlar'1irr.t ínput g^'l^'2

Bog ForesË 116.3

Muskeg L7.O

Bog 55.4

Lagg 75.8 80

uctlon.end subaeouent accumuletfon l. lerninal net prl¡nary productlon ln vascular specles

t5 t ( tcpn)¡ i= i+l n=l 81

The calculation of net primary production for important.

vascular specíes presenË ín each of t,he four vegetaËion zones

was performed ín a manner simílar to ËhaË prevíously outlined

for non-vascular specíes. However, in Ëhís case, Èhe síze of some species, e.g., Picea marÍana, led to sampling dífficultíes.

Therefore, imporËant vascular species ürere dívided into two groups (raUte tx): Group"a"- specíes less than 1.3 meters in height at

maËuriÈy, where 1.3 meters equals breasË height (Newbould, 7967, p. 13). Group"b'- species equal to, or greaËeï Ëhan, 1.3 meters in heíght aË maturity.

This section considers Èhe contribution of new leaves,

stems, and flower-fruÍts, i.e., Ëermína1 new growth, Ëo the total production of both group "a" and group "b" specíes. Also discussed are correction factors which estímate production lost as litter duríng Ëhe growing season.

(a) Sampling scheme for group rra" species

Sampling involved the weekly c1ípping of a minimum of B0 termínal growing points from each of Ëhe ímportant vascular spec- ies being considered. These were taken from the 25x25 cm. quad- rats described previously. Since more than one quadrat was har- vested at. each sampling date, subsequent areas sampled at each of B2

TABLE IX

TMPORTANT VASCULAR SPECIES

ïmporËanË species Bog Forest Muskeg Bog Lagg

Group ttatt specíes:

Ledum groenlandicum + + +

Chamaedaphne calyculata + + +

Vaccinium vitis-ídaea + + var. ml_frus

-.Kalmía polifolía + +

Oxvcoccus quádripetalus +

Carex rostrata +

Calamagrostis canadênsís +

Group trbtt specíes:

Picea maríana + +

Salix bebbiana +

Salíx seríssima + 83

the eight positions extended along a sËraíght line perpendicular

to the length (N-S) of the study plot. It was expecËed Ëhat vari- aËion in species composiËion could be mínímized by following this

sarnpling procedure.

Buffer areas, 25x25 cm. in size, \¡rere left between sampled quadrats, sínce experience índicated Ëhat sampling had a destruct-

íve influence on the bryophyte component of adjacenË unsampled quadrats.

Collected materíal was placed in polyethylene bags, one

bag per 25x25 cm. area, and reËurned to the laboraËory. Here Ëhe

contents of each bag were separaËed into species and components. This separated material was ovendried at 105oC. to consËant weight, cooled ín closed polyethylene bags, and weighed. By counting the number of terrninal portions employed ín

Ëhe sample mean production per growing point \das calculated for

each species analyzed. To determine a speciest net producËion on

an area basís, the number of growing points found ín quadraËs

sampled throughouË the growing season \¡ras recorded and an average densíty value for each species calculaËed. These densíËy values were multiplied by production/growing poinË values to províde an

estimate of Ëermínal new growÈh on an area basis.

(b) SamplinEi scheme fór group "b" species

This group is composed of species whích at maturiÈy have B4

a heíghË equal Ëo, or greater than, breast heíght.

Aceordíng to relative frequency values, only Salix bébbiana,

Salix serissima, and Pícea mâriana required indívídual sampling.

However, due Ëo Ëheír size it r,ras found impossible to sample these species on a quadrat basis. InsËead, at each sampling date a toËa1 of eighty termínal neür groÌ^rth portions, consísËing of new leaves, stems, and reproducËíve structures, \^rere clipped from

Ërees of averag e zonaL circumference in the case of P. mariana, and of average zona1- heíght for each of Ëhe Salíx species. üIhenever possible, terminal porËíons ïrere clipped from a single tTee. These clipped termínal portions were placed ín poly- eËhylene bags and taken back to the laboratory, where they were separated ínto leaf, stem, and flower-fruit, dríed aÈ 105oC., cooled Ín a desíccator, and finally weighed.

Knowíng Ëhe number of termína1 portions employed in Ëhe sample allowed a value of net, productíon per growing poínt to be calculated for each of the components. To calculate net prímary productíon on an area basís, densíty T'ras estímaËed for each species as the producË of the number of Èerminal growing poínts per rooted st,em, and the number of rooted stems per square meter.

For P. maríana, an estímaLe of the number of rooted stems per square meter was obtaíned using the quarËer method (Cottam and B5

Curtis, 1956). The circumference of tTees encountered was also

measured, from whích the average tree círcumference r^7as deter- mined. A Ëree having thÍs círcumference was selected and the

total number of individuals on this rooted sÈem r¡reïe counËed.

DensíËy for Salíx spp. \ras determíned by counting the

number of rooted sËems in sixÈeen 5x5 meËer quadrats. These

quadraËs were locaËed aË five meËer intervals along Ëhe trans-

ect used Ëo deËermine cover values in the Lagg zone. The height of the first t\^renty trees of S. bêbbiana and S. serissima

\^7as measured and an average heíght calculated for each speci-es.

Trees of this average height \^Tere examined, and the number of

índívíduals presenË \nras recorded. The product of the number of índivíduals per rooted stem and the m:mber of rooted stems per

square meter was mulÈiplíed by individual productíon values Ëo

províde an estimaÈe of terminal net prímary production on an area basis. (c) Correctíon factors for litËer 1osË fróm t.erminal portións Values of Èerminal production had to be corrected for the loss of leaves and flower-fruÍts, since noË all of the dry matter produced in Ëhe current growing seasorl remained attached to 1ívÍng portions.

Mesh bags (Figure 14) were employed in all four zones to

enclose a number of índivíduals of each important species. In B6

Figure 14. Bag-types employed in determíníng 1ítter correction factors.

(a) Cheesecloth bag used to parËía11y enclose large ín-

dívídùalsr e.g., Chanaêdâphne câlyculâra (May, LLTO).

Marker pole colour band = 20 cm.

(b) Nylon bag used to partíally enclose smaller índí-

vídualsr e.g., Picea mariana (July, L97O).

87 each of these bags both Ëhe number of. atxached new leaves and

the number of vísible leaf scars vrere couTtted aË each sampling daÈe. By equatíng the weíght of leaves harvesËed with Èhe number of aËËached leaves found in a lítter bag at that same date, boËh the weíght of leaves lost through death and the

Ëotal correcËed producËíon could be calculated as in the fo11ow-

íng example:

Total weíght of new leaves of specíes V harvested per zorle = 5.00 gn.

Number of ner's standing leaves of species V in two 1itËer

bags ín that same zone = 13 Number of fallen new leaves of specíes V ín two 1íËter

bags in that same zorte = 2

Then assuming 13 leaves = 5.00 gm. Total production is 13 * 2 = 15 leaves having a weíght

of 15 .- 13 x 5.00 = 5.77 Em.

This correctíon method was applied to leaf daËa gathered at each sampling daËe during Èhe growing season. I,lhíle leaves lost as liËter could be expected to weigh less than others re- maíning attached for longer periods of tíme, all leaves were assumed Ëo be equal in weight when applying Ëhe correction facËor. Sínce the observed leaf weíght \¡ras never corrected by more than ten percenË for any species, except Salix bebbiana 88

(0"/" - 25%) , then the error in making this assumption was not critíca1.

To calculate Lhe amounÈ of currenË production lost by reproductive st.ructures during the growing seasoTr the number of vísible flower-fruíÈ scars lnras counted aË each sampling date.

Flower weight losses could not be made according to Ëhe above example for leaves, since only corollas and sËamens were lost early in the growíng season. Therefore, Ëhe raËio of corolla to total flower weight r,¡as determined for several of the im- portant ericoids; namely, LêdurÌr gróênlándicum, Kalmia pó1ifó1ia,

Vaccinium viËiS:idâea var. minus, and Oxycoccus quadripeËalus.

The average value was 0.2g3 t IL.77".

The observed flower weight üras corrected by adding to it the value of the following expression: number of new corollas per lost litter bag Ã_. (harvested weight of new number of standíng new flor¿ers) x (0.293) corollas per 1itÈer bag

Later in the season, when flower-fruít counts indicated that mature fruits were fa11ing, the leaf correction method was employed to correct flower-fruit producËion toËals. It ís these corrected values for leaf and flower-fruit production which appear in Table X.

(d) Terminal component net primary production values

I,rlhen the weekly sums of terminal comporient producËion 89

T¡Iere examined graphically (Progrr..e 2) , a sigmoid growth

curve could be traced in most cases. The Èwo herbaceous spec-

íes, Carex rostrat.a and Calamagrostis canadensis, proved to be

excepËíons, wiËh a línear relationship between Ëime and growth evident

In several cases, e.8., Kalmiâ Þô1ifo1ía in the Muskeg zone, there was consÍderable weekly flucÈuation ín the production values forming Ëhe upper plaËeau of the logistic curve. Such

fluctuation is ín part a result of natural variation among indi- vidual plants ín the populations sampled. This fluctuaËion

could be minimized by either measuríng the same plants throughout

Ëhe growing season, or by increasing the number of plants har- vested at each date.

The maximum production value for each of the terminal

componenËs r^7as recorded in Table X. By combíning these produc- Ëion values with density values recorded ín Table XI, values of net prímary production per unit. area were obtained for each of the importanË vascular species studied (Tab1e XII). In general, Tables X and XII indícate Ëhat the greatesË proporÈíon of toËal production was present ín the leaves, fo1-

lowed by reproductive structures, and finally termína1 stems.

The proportion of producÈíon chanelled into flowers and fruits

\^ras unusually large, especialJ-y ín the ericoíd species, ürhere, 90

\,ríth the exception of Ledum groenlandícum, Ëhe weíght of repro- ductive structures \¡ras up Ëo one half the weight calculaËed for leaves of the same specíes. Differences in the product.íon and density values of specíes found ín more than one zone again suggest.ed that there were mícroenvironmental dif f erences amorì.g the zones. Programne 2. Terminal componenË net productíon, í.e., new leaf

plus new stem plus new flower-fruiË, observed ín índivíduals of each of the importanË vascular spee- ies studied during the L970 growing season. c PR.0{3t{A14¡48 2 f------9L c C THiS PRTGR.AMMËTWRITTEN I PHTCÂI-LY PRTSENTS C THË PÂTTËRN TF HhIGHT I INDIVTDUALS Ç TF ãACH DF THN Ρ4PORTANT VÅSCULåR SP*CTf;S 5TUDIf;Ð c C SfiUB,TË PROçRAMMf; c------LISTING I DT MgNS T ÛN XLI NT { lOOI ¡IC2{ I8 } I L TNT { ITO I IYLI NF{ 1ÐO cH,AttAcTËR*1û $ZûNC { 21) ' CHÂRACT ER.*35 $SPf;C { 2T } cHÀRÀcrFR $P*4{ 8}, $ÐATf;*3{ 181 DåTA $P/rNHT trrPR{JDrrtUCTIrr rûN ( rrfl4Gl{}rrr PËF.rrr SH0!rrST t / DATA SDATË/ | 1424r r t J0 l t r t J08 | r I J15 | t I J22t, t J29r I I J0ó t r I J 13', t I JZOr t *t J27r r rA03rr rÂ10tr rAlTr rr h24r çrA3lf r rSÐ?r r rSl4r ¡rSZLI / DAT,À YAX/'YI / TSTAR/I*I /TBLANK./I I/IXÀX/'NI I DATÅ $PER/1.'/ N= 2l ÐÐ 9000 t = 1r Þl RËÀD ( 5, 60CIo1 $ ZËJNfi { I } r $S pf;C { I I ó000 Fnfì,HÀT{ A10rÀ35 I RfrAD(5r 1óOÐ) ( IC2{ IT}r IT=1r l8l TSCALfr 16û0 FnRMAT{ 1BI 3r F5. I } 1141 HP.ITg(6r5000t $ZßÍ\tF{I }, $SPËC{I} 5OOO FilqMAT{IlIrI ZüNE:'rAlTrI SPçCIfrS3IrA35rT PRCIDUCTIßN GfiÀPH I} HRITh(6'1001 $P 100 F0RMÀT{ r0'r 45X¡8A41 DO 222 L=lr1CI0r5 LINE{L) = L Yl-IllffilLl = $Pf;F" 222 CoNT I t'¡UË T'¡RI Tfr ( ór 121 I (LIl{E{ Ll rL=1 r1O0r5} 121 FûRi4ÀT{rOr r9l\rZA {I2r3Xl } þr'e,ITni l6t-/,811 { Yl-INfr(L} rL=l r100 r5l 187 F0RMÅT{ | I r9Xr20( lXrA1r3X} I Dß 20Ð IP = 2rlt0rl XLïN€l 1l = BLANK ?tA XLINf;{IPl = YAX H$IITfi {ó I3OOI XLTNË 300 FilRMAT{ | t r9Xr l0OAll DCI 4üO trP = 1r1$0r1 4o0 XLINE{IPt = BLANK . KP = 18 DO 700 JP = lrKP XLIrtlfr{1) = XAX iP=IC2lJPl+2 XLINË{IPl = STAR !'IRITË t 6r50ûl $DATË { JP} rXLI NË 500 F0RMAT{ | rr4XrÀ3r lXr lt0Å11 XLINË{IP} = ßLANK ?ÐO TONTTNUü DO óCIO IP = 2rltOrl XLXi{Ë{11 = ELANK ó00 XLINE{IPl = YÀX I.JRTTË{óI7OCIOI XLINfi T..q4;F:q

92

7ûO0 F0RiqAT { | I r9Xr100Al DO 333 LL = lr l LINE{LLI =LL YI-TNE{LLI = $PËR 333 CONTINUf; bCRITf;I6¡781I {YLT I LL l,rLL=1. r 10CI r 5 l t"¡RITËlór121) I LINF( LLITLL=1r100r51 t'tRITE{6t80O) $P 8Ð0 FÐRHAT ( | Of r45XrBA4 l 9gt HRITEt 6r l0ÐÐl SCALË rrF5.1r 10Ð0 F*Rî'lAT{t-rrrN0Tg.* CTIßN IS rl * I TI }4#S NUMBFR TNDICATËD ON AXÍS gC}OO CONT INUfr STOP ËND "l

ZC'NE:BOG FÐRfiST SPECTFS:PICHA F,IÀRIANå PRODUCTTßN GRAPH

NET FRODUCTIÛhI ( MGI4} PfrR SHOÛT I6111ó2L26313ó4L465156ó16óTL76B1Bó9196 ' t I a t I a ! t a a a a a a I l. a. a t t YY YYYYYYYYYYYYYYYYYYYYYYYYYïTYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYY YY YYYYYYYYYY YYY YYYYYYYYY v24 X Jû1 X JO8 X J15 x J22 X J29 X J0ó x J13 X J X

I * h2 x À31 X o ------=,o s07 X s 14 x* s21 X YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYY aataaaaata¡laotataaa L 6 11 16 2L 26 3L 3ð +1 46 51 5ó ó1 óó 11 7b 81 86 9t- 9ó

NfrT PRTÐUITIGN {MGMI P8R SHBOT

NÛTã: FROÐUCT TON IS 2.O TTMËS ¡JUHBËIì T]F YIS If'¡DICÅTHÐ ÐN Å.XI S

\o ,(J) ZtNg I BtG FTRFST SPHCIES:LËDUI4 GR,CITNLANDICUI4 PROTUCTION TRAPH

. NËT PRÛÐUCTICIN {f',tGTqI PçR SHOOT 1 ó 11 ¡.å 2L 26 3t 36 4L 4á 5t 56 ól 6ó ?t 7b 8t 8å 91 s6 aaalaaaaoaaaaaaaaaaa YYYY YYYYYYYYYYY YYYYYYYYYYYYYYY YYYYYYYYY YYYYYYYYYYYYY YYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1424 xt J01 x*\* J0å x ----*______J15 X J?_2 X J29 x JOó X o...... ------....-* 3 x . ___\__

*'-----"t* X x* X \o 4,2+ X _n A3l X 507 X s14 x* s21 X YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYY YYYYYYY YYYYYY\ fa.tataaaaraaataaaa.

t ó 1l 16 2t 2b 31 3& 4t 46 5L 56 ár 66 7T 16 81 8ó 91 96,

l\IÊT PR,üDUCTtrCN {MG}II P#R SHTOT

NÐT*: PË.TÐUCT Tf]N IS 1.O T IT"TfrS NUMBfrR OF Y I S I NDT CATED ûN åxI 5

\o 5. I I

ZÜNC!¡4USKËG SPSCIËS:PICEÀ ¡4ARTÂNA PROÐUCTION GRAPH

! Nf;T PRODUCTION {f',IGMI PER SHCIOT

I 6 lt 16 21 2'6 31 36 +L 46. 5L 56 út óó ?1 76 81 8ó 91 961 ivvv vvyvvtt tr"rirvvvivvvvirrr"ivrrrrrrvrryvvvyyvvrî""rvir"rrirrrrivrrvirrvrir rrr rrrrri, nrrrrrr"rl t424 X JOl X * ______=___ JO8 X ì\ J15 X -.--__- + \* J22 X ,/* J29 X *...-.------o JO6 X J I J -* J *

h24 * 431 x .<;_ s07 x s14 x* \ 521 x \ -* YY YYYYVYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYY Y YYYYYYYYYYYY alattaaataaaaa.rtaal I61lló2L263t364L4b515661óó7176BtBó9196

N&T PRDDUCTION f MTI4I PñR. SHOTT h¡OT*:FR.ÜDUCTTO'\¡ IS 1.0 TI¡4ES NUMB*R OF YI5 lNDICåTËD ON AXTS

@ Ln ZüNE : MUS K# G SPSC T ËS: L€DUH GROENLANDTCUI4 PRODUCTICIN GRAPH

N €T PN,üDUCTIÐN { flcÞ{I PgR SHOCIT

l 1 ó111ó2L263136 4L 46 5L 5b 6l óS 1L 76 S1, B6 91 961 j a. 'rataaaa t a .. a I a I I . a t.... a.:] YY YY YYYYY YYYYYVYYY Y Y Y YYYYYYYYY YY YY:YY YYY YYYYY YY YYYYYY YYYYY.Y YYYYYYYYYYY YYYYYYYYYYYYYY Y YYYY YYYYYYY Y' t424 xo.. J01 x* J08 '/, J15 x* J22 X J2e r, J06 X J13 x ¿ J2û X * x */.e-.---o ,/ *',/ è

s07 s14 x+ s21 X YY YY YYYYYYYYYY YYYYYYYYY YYYYYYYYYYYYYYYTYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYY YYYYYYYYYYVYYYYYYYYYYYYYYY aaaatataataaaalaaaaa

1 ó 11 1ó 2L 26 3L 36 4L 46 51 5é ú1 66 ?1 tU rt 8ó 91 eó

NffiT Pß,flOUCTION {}IËI4} PËR SHOOT

NüTfr : PN,CJDUCT TSN T 5 2.A TiMËS NUMßËR ÐF YIS INDTCÀTËD ÐN ÀXI5

\o o\

.,-"11 j

¿ONfi: MUSKff6 SPËCI frS:CHAMÅ,ËOAPI-INE CALYCULATÀ PR,ÐÐUûTITh¡ GRAPH

Nf;T PROÐUCTITN {MGT,II PËR SHOOT L 11 16 2I 26 31 3Õ 4L 4â 51 56 ól 6ó ?l ?6 81 86 91 9ój l faaaaaaaaaaaaaaaaaaa YY VYYYYYYYYYYYYYYYY YYYYYYYYYYY YYYYVYYYYYYYYYYYYYYYYY YYYYYYY.Y YYYYY YYYYYYYYYYYYYYYYYYYYYYYYYTYYYYYY t424 X Í JOlX\ JO8 X * J15 X -o- J22 X -**--.-o J29 X ______-\\o JOó X JI3 X .-r-----___* JzA X *--:- \*

.¿. s07 x S14 X* / s21 X * YYYYYYYYYYY Y YYYYYY YYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYY aaaatlaaalalaataaaa.

l 1 6 1l 1ó 2L 2ô 31 3ó +t_ 46 5L 56 ó1 66 ?I 7ó 81 8ó 91 9ól

N*T PRAÐUCTION (MGMI PfrR SHNOT

NOTH:Pfi,fiDUTTIÜN i5 2.0 TIT4f;S NUI4BËR ÊF YI5 INDTCÅTTD ÐN ÅXTS

{\o ri

I

) ¿ßNfr:MUSKçG SPfrCNHS:V.åCCINTUI'4 VTTTS-IÐAËÅ VÅR. MÍD¡US PRODUCTION GF.f{PH N*T PRTDI..ICTITN {I4G},II PËR SHÍ]OT 1 $ 11 tó 2L 26 31 36 4L +6 51 56 å1 óÕ ?l 16 81 8ó 91 9ô, .t a t r . a t ¡ a ú a a a ù a t''' ti YY YYYYYYYYY YYYYYYY YYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYI t424 X*t*-- J01 X J08 x \*- J15 x ìì----- J22x * Jzs X -)* J 0ó X ./*' J13 X *_ * :W *-----= W, o 4:lo ñ+ #fr x *-'\-.-* Itu+ x A3t X -""'- sû7 x // S L4 X+ -."-* s21 X *'/4- YY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYY YYYYYYYYYI aaa)aattaaaat!"' aaa .L 6 ll Ló 21 26 31 3b t+L +6 51 5ó 6l óó 71 76 81 8ó 91 9ó

Nf;T P&ODUCT tr TN { I'IGþI I P€R 5HTßT

NTT#: PRfiDUTT ITf{ Ï S l.û TIf,4ËS NUi48ËÊ, OF yrs INÐICåTfitr ü,¡ ÀXI5

\

\o oo ì I rl l

j

ZNNH: PIUSK#G sPfrCI fi5:KAL'.4IÈI PI]LTFOLIå PRÛÐUCTTÛN GRAPI.I

NfrT PRODUCTIßN {MGHI PER SHOOT

I 6 11 16 2L ?6 1L 36 4L 46 51 56 ó1 óó ?l ?ó 81- 8ó 91 96: iv"t"ttvtvttvtttrvrri, y"ovvrnrv"yryivrryir""ri"rvrrrrr"ir"", irr rriy"vvivr""irrvvir", vi"rvvrrrrr' N24 X\ JOI x *- _.-f J08 X _. - J t5 X\* --:-- J22 x J29 x J0ó x ,F *-----* J * J * J --* ----'-

Â31 x s07 x X+ 514 \,_ s2t x YYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYY YYYYY aaaaaaaattaa!ataaaaa L6lLló2L2b3t3ó4L46515661667L?óBl8b9ls6

NET PRûDUCTTÜN {MGI4I PHR SHOTT

NnTf;:Pp"üÐucrI|SN 1s l.o TIM#s NUMBËR üF yrs INDIcåTËD rN ÀxIs

\o \o ZDNË 3 BT}G SPHC IËS:CHAMÂEDAPHIüË CÂI-YCULATA PROÐUCTION GR,APH

N#T PË.ODUCTITN { MGFI} PER SHOOT I ó 1l t6 2L 2b 31 36 +1 46' 5L 5ó ó1 b6 ?1. ?ð :81-; 86-; 91': 96 I . . ¡ . . . . Ð . . , r ; . : : : i YY YYYYYYYYYYYYYYYY YYYYYY YYVYYYYYYYYYYYYY YYY YTYYYYYYYYYYYYYYYYYY YYYYYY YYYYYYYYYYYYYYY YYYYYYYYYYYYY 1"124 X *\ JOl X ./* JOB X *- ---*- Jl5 X l

ttïâi I --=---o JOó X -o-o- .\ J13 X )* J2Ð X a:í!.-. *--- . M* i ir\ rt{ffiff\M -*--\* A0 3 ¡a ,.to x,F ,t ,tri"ffiffi i Ar? x \,*--_ eàwr," * ____.{. ååiis0? x *-- s 14 X* ---r-.\ S21 X \* YYYYYYYYYYY YYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYY YYYYYYYYYYYYY YYYYYYYY YYYYYYYYYYYYY

1 ó 1l 1ó 21 26 31 36 41 46 5t 56 ót 66 71 76, 81 86 et s6

N#T PRÛÐUCTION {T46MI PËR SHCIOT

NNTfr;PR#DUTT TûI\I T5 2.o TTþ1Ës NUMEËp. üF YIs INnIcÅT#Ð ÐN AXIs l

O:F¡ O:

I

I

l ¿rlNç 3 B$G SPfiC t ËS : Lf;DUt4 GRüfrNLÀNÐI CUi4 PRODUCTI ÐN GRAPH NfrT PRTDUCTTNN {HGMI PTR SHOOT 16111ó2126313ó41465t56å1b67L7å818ó91e6 taaattaatttt|'l'"|¡ YY YY YY YYYYYYYYYYVYYYYYY YYYYYYYYYYYYYYYY YYYYYYYY YYYYYYYY YYYYYYYYY YYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYY t424 X * J0l X *\ J08 X ------J L5 x * J22 x ,r--- J29 x J06 X o* . J13 X .-____* J2t \¿ J?7 403 { Å10 -* À.1 7 h24 A3l X 507 x 514 xr + S2I X -4 YY YYYY YYYYYYYYYYYV YYYY YYYYYYYYYYYYYYYYY YYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYVYY t t a a a a a a l t " " " " " I 6 11 1ó 21 26 31 36 41 46 51 56 ót 66 7t- 76 81 86 91 S6

NFT PRüÐUCT { MGI4 P-ER SHOTìT IBN ¡ l

i

I Ì!üTE:PR,ßDLIÇT IOT.I T5 I.O TIM:S NUT4BfrF. fiF YI S INDICåTiED ÐN AXTS l l

l O l H l

l l

l ".: i. :l ï zilNf; : B0 G SPEC TffS:OXYCüCCUS SUADF.I PËTALUS PRODUCTION GR,åPH N*T pnnnubrtnru {¡4cr4t PËR sHooT 1ó1lló2L263L3641465156ó166717681 8ó 91 9ó a a i a a a a a a a a a a. a t I a ata YY YYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYVYYYYYYY YYYYYYYYY YYYYY Y YYYYYYYYYYYYY M24 xI JOI X\ JOg X *o-_ JI5 X --,7 J22 X **.._ J29 X -t Joóx *-_ J ¡-3 x ->* JM,¡ \*-__ JæÊ;I;; -*I Àffi)|i.' *. Au.q x+ \*'------tl{;lf424 X ' --->* î43I X so7 x +{ -*/ s14 X* s21 X \ '+ YY YYYYYYYYYYYYY YYYYYYYYYYYYY YYYYYYYYYYY YYYYYYYY YYYYY YYY YYYYYYY YYYYYYYYYYYYYYYYY YYYY YYYYYYYY YYYYYY

1 ó 11 1ó 2L 26 31 36 4t 46 51 5ó ól óú 71 76 Bl Bé 91 96

NET PR*DUCT f ON { MGI.4I PËR SHTTT r.JTTffi: Pfi,fiDUCT TOþI T5 I.O TTI4æ5 NUMBHR ÛF YIS INDTCÅTËD ÊN ÅXtr S

'l ol

¡\) l l

I

l ..E I ,] ZDNtr3 BCIG SPECIf;S:VACCINIUM VTTTS-IÐAEÀ VAft. f,tTNUS Pf;ODUCTTON GRAPH

NË T PRTÐUCT ICIhI ( ¡4GI"lI PgR SHCIOT L6111ó2L263136+146515ó61667L76818ó919ó afaa.raa.rlaraaa.aal YY YYYYYYYYYYYYYYYYYYYYYYYYYYYY YY YYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYY YYYYY YYYYVYYY 1,12+ Xt J0r J08 J15 J22 J29 X *.- J06 X \ *.- J1-4*.Y", -* rzw l-_------__* Jffiw:',nffi+i', *[o x* "1 -'---'- þ L7 x t 24 ,X ------i( A3t X 1-* S0? X *-=-==- s 14 x* ------.- szl X \* YYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYY'YYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYY' aaaaattaaataaaaaaaa

1 6 lt 16 2L 26 3t 3ð 4L +6 51 5ó ó1 66 ?I ?6 81 86 91 96

NËT PRODUCTION (MGM} PFR SHOOT

NOTF:PR.ODIJÇTTÛN IS 1.0 TT¡4f;s NUIqBf;R TF YIS trNDIcÀTfiD ON AxTS

O 19) zoNä: B0G SPËCTf;S3KALIVIIA PTLTFOLIÀ PRODUCTION '3R.ÅPH

tó1l162L26313ó4L+65L5úå[ó67tr;768I8691

YYYYYYYYYYYY YYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Y YYYYYYYYYYYY M24 X * J01 X * J08 X J15 X J22 X J29 x J06 X Jt3 x J20 J2:l "åo3 410 ALl x 424 x p.3 t x s07 x s14 x4< s21 X YYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYY YYYYY YY YYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYY YYYYYYYYYYYYYYY YYYY YYYYYY

r6111ó2L2b313ó41465156ó166?l?68186919ó

NßTü: P&T}DUCT TfiN T5 1.0 T TF4f;S NIJMBfrP, TF Y IS I|\IÐICATËD IJN ÀXtr S ZONfr: LÀGG SPËç tr F5: CHÀ¡4ÀFDåP HNF CÂLYCULÀTA PRCIDUCTI ON GF,ÂPH

T\If;T PRNDUCTlTN { MGMI PtrR SHTOT L61r162L26313ó41+65L56ótó67L7681S69196 a t a a a a a a a a a a t a a a I a a a, YY YYYYYYYYYYYYYYYYYYYYY YYYYYYY YY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Y YYYY YYYYYYY Y YYYYYY YYYYYYY t424 X * JOI X * JO8 X o-...... -..-* J1.5 X J2? X o1' J29 X JCIð X JI3 X JECI X J27 X *-.-\-\ Âû3 X * 410 X* ,/ 41.7 X *\ 424 X 431 X -)o s07 x o* sl4 x* 521 X YV YYYYYYYYYYYYYY YYYYYYYYYYYY YYYYYYYYYYY YYYYYYYY YYYYYYYYYYYYYYYY YYYYYYYYYYYYY YYYYYYYYYYYYYYY YYYYYY ataaaaaaaaooaattaaaa

1 ó 11 ló 2L 26 31 3ó +l ¿rö 51 56 ó1 õó 7l 76 8.1 8ó 91 96

NËT PRI]DUCTIsN TMGH} PËR SHONT

['$Tf;:PfrTDUCTION IS 2.T TI}4frS NUMBfiR. NF YIS TI\¡DTCATES ßf\ ,ùXTS

H (Jro ZONfr:LAGG SPECTÐS:SALIX B€BBIÀNA PRODUCTION GRAPH NÐT Pn0DUCTI0N {l4GMl PEF $HO0T I ó ll 1ó el 26 3t, 3ó 41 4b 51 5b 61 66 ?t ?ú El 8ð 91 96 t t t a l t " " a t " " " " YYYYYYYYYYYYYYYYYY' YY YY YYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYY YYYYTYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY t424 X *\ JOI X * Jt8 X J15 X J2? X J29 X JO6 X Jt3 X JzO K *.*____._ J21 ffi¿-@dl,, AWW * A,LÐ ffi..l¡¡;;";.,, \* .l ' I A 17,:x I A.24 X '' *-/ 'lj À31 X l s07 x l sL4 x* \. s21 X YYYYYYY YYYYYYYYYYYYYYYY YYYYYYYYY Y' YY YYYYYYY YY YYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYY Y YYYYYYYYY aa aal.t" tlatlat"t' t6ltló2L2631364L465t 5 6 ó1 b6 71 76 81 Bó 91 96 l

i PRilÐUCTINN { MGM t PgR SHNû I I NËT I

I i r\¡NTg: PßÚDUCT TNî\¡ I S 2,A TIMüS NUM8trF^ NF YIS TNDTCÀTËD ÛN AXiS

ts l O I Or l

l l

I

I

1

.{ ZTJA¡fi:LAçG SP,ËCTFS:CARËX RüsTRÅTÀ PROÐUCTION GRAPH

NÊT PRNTUCTION (I4GHI PËR SHTOT I ó 11 16 2L 2e 31 36 4L 46 51 5ó ót 66 11 16 81 t6 91 96 a a a a a a a a a a a a a a a a a I a t, YYYYYYYYYYYY YY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYY YYY YYY\ t424 X f JOI X \ J08 X -*- J15 x \* J22 x t- JTg X ----=O JOó X \ rffieJW,J 13"*X*.l3'*lL" r* rwJwii: èo A@gwx*Âl?ffigïffi¡'! *-'=-'- À{.û x* Àt7 x * 424 X *I 431 X '-* S0? X +----- s 14 X* s21 X YY YYYYYYY YY YYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYY I a a a a a a I a t a " ,a I t a a I a a 1ó111ó2L.26313ó41465156ólóé7176818ó91eé

NgT PRTÐUC,T TËh+ { I,IGMI PfiR SHTOT

NüTf;:PRT}DUCTf OI{ I5 5Ð.O TIMfiS NUMBËR ÜF YIS INStrCATfrO TN #.XTS

H O ! ZSNH: LAGG SPËC If;S: SAL1X SËR TSS TI4Â PRCIDUCTION GRAPH : N#T PRTDUCTIÐN {MGMI Pf;R SHÐOT i I 6 11 16 2L 26 31 3b 41 4ó 51 56 ó1 é6 7L 76 81 86 91 96 : l a a I a a aa a a a a a I a t''' tti YYYYYYYYYYYYYYYY YY YYYYYYYYYY YYYYYYY'YYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYY YYYYYY'ì t424 Xt J01 X*- ___ JOg x *r Jl5 X u J22 X J29 X JOÕ X J13 X J20 X J2 A J\ À * 431 507 X 514 x* s2r X Y Y YY YY YYYYYY YYYYYYYYYYYY YYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYY YYYY YYY YYYY YYYYYY YYYY atataaaaaaatatt''t' 1 6 11 1ó 2,t 26 31 3ó +L 4ó 5l . 56 ól 6ó lL 16 81 8ó 91 96

NfrT PRfiDUCTIÜþ¡ {MGMI PgR SHOTT

NN?Ë3 Pfr,OüUCT TüN 1S 3,0 l TI"IäS NUMBËR NF Y IS INDIC,ATFD üN AXI S

O co

l ,r ZONfr: LÀGG SPECIf;S:CALAI4ÂGRflSTTS CANÂDENSIS PRTÐUCTTTN GRAPH

ilIËT PII,TDUCî TüN { PER SHOOT 'qGMI 1 ó 1l ló 2L 26 3l ?6 41. +6 51 56 ót 66 71 76 Br 8ó 91 9ó, t I a a r a a a t l a a r a a a t a a aì YYYY YYYYYYYYYYYYYYYYYYY YYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYY Y YYY YYYYYY YYYVYYYY ì'124 X *.

JOl X *t X *- J08 \* JI5 X +__\=-\ -- ,- .1,i I J22 X * l,,i l J29 X X *' -"i JOó \* JI3 X __ J2Û X + ù-- --a J21 X, t/- AO3 X *'' A10 X* 417 X *l þ,24 X A31 X \-\¿ SO7 X +

514 X+ I s21 X * YY YY YY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYY YYY YYYYYYYYY Y a I I a a I a I a a I I r a a a a a l- a

I 1 ó Ll 1ó 2L 26 3L 36 41 46 51 5ú ó1 óó 7t 7#, 81 86 91 96

Nf;T PROÐUCî IßN { fiGT4 Pf;R SHISTT ' f.,åNTf;:PRODUTTiüN IS 1O.O TIMf;s ÞJUM8frR IiT YIS INDICATËÛ üN ÅXT5

o \o ZI]NË : BfiG FNR,Ë5T 5 PËC, T ËS : ALL PRODUCTTON GR.APH

NãT PROÐUTT,TON (I,'.GI4I PßR SHOCIT

1 6 11 1é 2L 2b 3t 3é 4T 4ó 5L. 5ú ó1 óó 7I 76 8t 86 91 96 ta"aaaÐataata...araa YY YYYY YYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYTYYYYYY YYYYYYYYYYYYYYYYYYYY Y YYYYYY YYYYYYY t424 X *I JOl x JÛ8 x J15 x l J22 X I J29 X l J0ó X *.-______l J13 X \o J20 X J27 X -.-_=__* Âo3 x *

Att I 417 424 X *<-' --/* A31 X * I s07 X *

s14 X+ l 521 X * YYYY YY YYYYY YYYYYYYYYYYYYYYYYYY YYYYYYYYYYY YYY YY YYYYYYYYY YYYYYYY YYYY YYYYYY YYYYY YYYY YYYY YYYYY YYYYYY Y aaaotttta a , aa aa a a a aa

1 ó 1¡. 1ó 2L 26'31 3b 4L 46 5 I 56 ð1 ó 6 7t 76 I 69 19ó

Nf;T PR CIDU CT Iül'd ( ¡4Gr4 IPËR5HOOT

NüTI I PRNDUCT f8N T S 2.0 TT Mfi S NUMBfrI¿, OF Y 5 INDTCATEÐ TN AXIS ' l

l

H O ì

1 ¿frNF:MUsKfiG SPfrCtrfrS3ALL PRODUCTTOilI GRAPH

NfiT PRSDUCTTTN {M6¡4' .PEE SHOOT Lbllló2L2b313b41465l56ölúó?l7681B69196 taaaaaaaaaaaaaaaaaaa YYYY YYYYYYY YYYYYYYY YYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYY YYYYYYYYYY\ M24 JÛ1 JOB Jt5 J22 J2e J0ó J\3 JZÐ J?7 403 AIO AL7 4.2+ A3t so7 sl4 I

s21 n'/ I I YY YY YYYYYYYYYYYYYYYYYY YY YYYYYYY YYYY YYYY YYYY Y YYYYYYYYY YYYYYYY YYYY YYYY YY YYYYY YYYYYYY YYYYY YYY YYYYYYI

I aaatta : l a a la a a taaa rl

i L6Llló2L?_63L 6 4 I 4å 5 I 56 ó1 6 ó VL 76 8l_ 8ó 91 9ói

N f;TP RTDUC T ¡ üÀr ( 14GþI IPFNS HÛOT

f'.}ÐTfr 3 PRûDUCT TË]N T 5 4,O TI È4frS TIUF!ÐfiR TF Y IS INDI CATf;,N üN AXT S

H H : ZONT BTG SPgCTES:ALL PRTTUCTION GRÂPH

I{frî PRTIDUCTION I MGÞTI PER SHSNT 1611162L2b313ó4L465L56ó1ó6?lv6Bt8691e6 I a r t t .a , a a t a a a I a a a , YYYYYYYYYYY YYYYYYYVYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYY a . YYYYVYYYYYYYYYYYYYYYYYYYYYY YY YYYY YYYY YYYYYYYYY M24 X \* x Jß1 I J0e X * ______-______--_ J15 X f ---______- J22 X + --=..--* J29 X * J0ó x -o_o Jt3 x J20 X J27 x Â03 410 A17 424 å31 SO7 X \* s14 X* \---\--=---'- 52 I x 'rt YYYY YY YYYYYY YYYYYY YY YY YYYYYYYYYYYYY YY YYYYYYYYYYYYYYYYYYYYYYY YY YYYYYYYYYYYYYYYYY YYYYY YYYYYYYYY YY Y taaaaaaaIIaaIa,Iaaa

I 6 11 1ó ZL 2b 3t 3ó 41 46 51 56 6L 66 ?l 76 8t 86 91 s6

NñT PNNDUCT I ÐN I f'{Gf\4I PfrÈ SHnOT

NOTfr: PRr]ÛiJCT ION I S 3.0 T NUMBTR OF Y 'S trNI}TCATED IJN ÀXT S '}¡IfiS

H ¡J I l

)

l

i l l l ZtSN#: LAGG SPËcTFS:ÀLL PRCID UCTI NN GRAPH l

1\ ET PNO DUCT ION (MGMT P Efi SHOOT l

t_ å 1l L6 Zl 2b 31 3ó 4L +6 51 5 b ó1 ó6 7l 76 Bl 86 91 9ó altaaaat ta a a aaa'atala \ YYYYY YYYYYYYYYYY YYY YYYYYYYYYYY YYYYYY YYY YYYYYYY YYY YYYYYY YYVY YYYYYYYYYY YYYYYYYYYYYYYYY YYY YYYYYYYYY ttz+ x * J01 X \_ Jt8 X -o Jt5 x -*'-\-. J22 X __.:--.\o X X o x 'o-.-_*_ x olo

417 X -\o h24 X A31 X s07 x o.-..-.-.....--.....-o 514 Xr, s21 X : YYYY YY YYYYYYYYYYVYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYY YYYYYYYYYYYYVYYYYIr1 aaalaataalaaaaaaao" l 1ó111ó2L2631364L465156ó1óó7116818ó9196

'.i ., . : I ,,1, ,' .. i: i,i | :- i.t:;:;ti;.i ', , . :.., ;. iìl:r' ti:¿",'!:1 ,,;;,.,-,,. **.r,.0;,*lj,ìrrt,li¡;;]i.ru,.li,,.i, N$TH:FRfi$UCTTTJN TS 50.O TTM

I

l

l

I TABLE X

MAXTMI]M ANNUAL VALUES OF TERMINAL CO}{PONENT NET PRTMARY PRODUCTION

Bog Forest Muskeg Bog Lagg

Important Species LSFF SFF SFF S FF

Group ttatt specíes

Ledum groenlandícum L27.0 L9.9 8.1 90.4 12.r 0.2 64.0 LL.2 1.9 (*) (*) (*) Chamaedaphne calyculata 60.9 27 .5 30.9 58. 5 2L.4 33.6 7 6 .4 30.3 28. s (*) KalmÍa polifolía 4L.7 8.4 17 . S 36.6 9.1 19. 6 (*)

Oxycoccus quadripetalus L4.2 4.6 L7 .2 Vaccíníum vítis-ídaea 43.1 14.8 16.1 32.9 10.0 16.3 var. minus

Carex rostrata 2327,0 967 .0 2.7

Calamagrostís canadensis L94.0 237 .O 1.3 Group ttbtt specíes

Picea mariana 47,6 10.9 68.6 rB.2

Salíx bebbíana 127.0 23.3 L9.7

Salíx seríssíma 195.0 52.3 32.5

L = maximum leaf weíght per ÍndÍvidual (mgm. ) maxímum (mgm.) S = stem weight per indivídual TJ H FF = maximum flower-fruít weight per indívídual (*g*. ) F. * = value for flower-fruit found on 1969 Ëermínal growth 115 TABLE XI

DENSITY VALUES FOR IMPORTANT VASCULAR SPECIES FOUND IN THE FOUR VEGETATION ZONES (A) Group "a" species

Important Species Bog Forest Muskeg Bog LagS t/^.2 t/m.2 rlm.2 r/*.2

Ledum groenlandícum L92.0 843.2 73r.2 ! 9.5"/. ! 5.9"/" ! 5.77"

Chamaedaphne calyculata 395.2 724.8 920.0 !l.0.57" ! 6.27" ! 8.8"/"

KalmÍa polífolía 184.0 398.4 !\4.3"/. ! 6.77"

Vâcciníum vitíS-idaea 67 6.8 844.8 var. minus t 7.47" ! 7 .77"

Oxycoccus quadrípeËá1us 1064.0 ! 9.0%

Carex rostrata 35.2 !72.77. CalamagrosËis canâdênsis Lt2.0 lLL.57"

rln' 2 = number of indíviduals per Square meter, * one standard error expressed as a percent (a) croup ttbtt species

Important Species Bog Forest . Muskeg Lagg (I)x(R) = T/m'' (r)x(R) = rlm.¿ (r)x(R) = r/m.¿

Picea maríana 3182 0.782 2488.3 2s85 0.L97 s09.2

Salix bebbíana 189 4.90 926.r

Salix serissíma 76 1. 19 19. 0

I = number of índivíduals per rooted sËem R = number of rooted sËems Per square meter I/m.2 = number of indívidual-s per square meter TASLE XII

VALUES OF MAXIMI]M ANNUAL NET PRIMARY PRODUCTION EXPRESSED ON AN AREA BASTS FOR TERMINAL PLANT COI4PONENTS

Bog Forest Muskeg Bog Lagg

Important Specíes Lpl Sp4 pFp3 Lpl Sp4 FFp3 Lp1 tp4 pFP3 Lpl Sp4 FFp3

Group ttatt specíes

Ledum groenlandicum 24.3 3.8 1.9 76.2 10. 1 0.3 46.8 8.2 r.4

Chamaedaphne calyculata 24.L 10. 9 12.2 42.4 15.5 24.4 70. 3 27 .9 26.2

Kalmía polifolía 7.7 1.5 3.3 L4.6 3.6 7.8

Vaccinium vítÍs-idaea 29.1 10.0 10.8 27 ,8 8.5 13.8 var. minus

Oxycoccus quadripetalus 15.1 4.9 rB.3

Carex rostraËa 81. 9 34. 0 0.1

CalamagrosËÍs canadensis 2t.7 26,5 0.1

Group ttbtt specíes

Picea mariana 118.4 27.L 0.3 34.9 9.2 0.2

Salix bebbíana LI7.6 2r.6 TB,2 Salix serissima 3.7 1.0 0.6

Lpl = maximum annual Èermínal leaf net primary producËiott (g*. /*.2) H ôi Sp4 = maximum annual terminal stem neË prímary production (grn. /*.2)

pFp3 maximum annual terminal flower-fruiË net prímary productíon (gm. /n.2) 'E LL7

u. 2. Drevlous Lfowfng seasons to cq¡tt"na net prlmarv oroduc t1o:r

¡: jrl n=l 118

Species retaíníng functional leaves for more Ëhan one growing season have the opporËunity to conËinue photosynthesiz- ing during wínter monÈhs, and also ín subsequenË growíng sea- sons. Freeland (L944, p. 185) observed photosynthetic åcËiviËy ín Picea mariana during winÈer monËhs, although only a neglig- ibl-e amounË of organíc material would be created at thís tíme (Bourdeau, 1959, p. 66). However, during suiluter monthsr aP- preciable increases in the weighÈ of coníferous perenníal leaves do take p1ace, as reported by Viro (1955), cited in Bray and

Gorham (1964, p. 742).

To determine Ëhe dry weíght íncrement ín older leaves of P. mariana, for which the life span may be up Ëo tlrelve years

(Fraser and McGuíre, L969, p. 76), samples of two hundred leaves were collected at monËhly ínt.ervals during the growÍ-ng season. Trees sampled were those employed in the weekly sampl-

íng of terminal components. Employing the líbrary programme (STATS 25), avallable at

Ëhe University of Manitoba Computer Center, all possible mean leaf weights were compared. The t-tests indicated a signifí- cant increase in the weíghË of bl-ack spruce leaves produced ín previous growing seasons, both ín Ëhe Bog Forest and Muskeg zones. The average increase for Èhe monËhs of August and

September amounted Èo approximaÈe1y 247" of the oríginal May LL9 values. Sínce black spruce was Èhe dominant evergreen specíes present, then the contribuÈíon made Ëo current production by older leaves of group "b" specíes \¡ras assumed to be equal to

24"/" of. theír biomass (Table XIII). In Ëhe case of group "a" species, all imporËant erica- ceous shrubs involved in this sÈudy reËaíned at least some of their leaves for more than one growing season. Ìfhí1e trühíËtaker (1,962, p. 361) found thaÈ Èhe growth of older leaves in several large erícaceous species in the GreaË Snoky MounËains was 102 -

16% of the ËoËal shooË productíon, Hadley and Bliss (a964, p. 348), using infra-red gas analysis, observed a negaÈive net photosynthetíc raËe for perenníal leaves of both Lédum groen- landicum and Vaccínium viËis-idaea var. minus.

Samples of two hundred second or third year leaves vrere collecÈed from the Bog zone aË monthly íntervals for each of the five important ericoíds studied. Comparing all possible mean weíghts, only September values showed a signífícanË ín- crease. Since Èhe senescent leaves contained ín thís final

sample were collected from the surface of Ëhe Bog, a greaËer percentage of large leaves ülere presenÈ Ëhan Ín prevíous monthly

samples. This sampling problen \¡ras responsible for the signi- fícant weight increase noted. Therefore, Ëhe annual contribu- tíon to current net primary productíon by older leaves of group

"a" species \¡ras considered to be zero, i.e., PLp2 = O. TABLE XIII

CURRENT NET PRIMARY PRODUCTION IN BLACK SPRUCE LEAVES PRODUCED TN PREVIOUS GROI'IING SEASONS (a) (b) (c) (a) (b) (c) 'l,leight Zone Species % weight increment of perennía1 leaves Number of per rooted stem rooÈed stems PLpoLL by perenníal leaves ^ gm. per square met.er gm, /m.¿

130. 5 Bog Pícea maríana 2¿t 695.5 0.782 Forest

Muskeg Picea maríana 24 327.2 0.197 15. s

PLp2 = maximum annual net primary production by leaves produced in previous growÍng seasons çgn. /t0.2)

oNJ r2l

l3 ¡rl n=l L22

trüoody stems and branches of perennial vascular specíes increase in weight wíËh each growing season, expandíng both in length and in diamet.er. Whí1e the amount of stem elongatíon

can be determined by analyzing terminal rie\nr gro\nrth, direct cal-

culation of the radial increment in sËem and bark ís difficult.

It may be estimated, however, as the dífference between total

annual woody increment and Èhe corresponding termínal sËem groÌüËh.

Total woody incremenÈ r¿as calculaËed by weighing a rooted

sËem, dividíng the observed dry weight by the agel of Ëhe stem,

and multiplying the quotient by the number of rooËed sËems of

thís species found in a square meter (table XIV). In the above

calculation, fíve rooted sËems were employed for group tta" spec-

íes, one st.em for each of the group "b" species, all stems har- vested at Ëhe end of the growing season, í.ê., September 2B,

L97O. The value of termínal sËem growth (Sp¿) was subtracted

from the Ëota1 woody incremenÈ value (RSpS + SpA), to yield an approximaËe value for radial stem and bark growth (Table XV).

The presence of tr^ro negative RSp5 values in Table XV indicated

thaÈ this procedure \n/as not entirely satísfactory. Therefore,

RSp5 values should be considered as estimates on1y.

t = maximum number of annual increments on a stem "ra(group "a" specíes) or the number of annual rings (group "b" species) TABLE XTV

TOTAL ANNUAL I/üOODY INCREMENT IN THE IMPORTANT VASCULAR SPECIES STUDIES

Important Species Bog ForesË Muskeg Bog Lagg (w)x(#)=l (lü)x(#)=J (Ïü)x(#)=l (w)x(#)=l

Group ttatt species

Ledum groenlandícum 426.0 62.5 26.6 L74.0 267.2 46.5 68.4 29r.2 ]-9.9

Charnaedaphne calyculaËa 1_11.0 190.4 2r.1- L2L.O 324.8 39. 3 s14.0 254,4 130.8

Kalmia polifolia 46.7 52.8 2.4 s4. 3 r57.3 8.5 Vacciníum viËis-idaea 15.6 48r.6 7.s 15.0 739.2 11.1 var. mínus 862.4 17.0 Oxycoccus quadrÍpetalus .L9 .7 Group ttbtt specíes

Picea mariana 68200.0 0.782 53.3 39400.0 0.197 7.8

Salíx bebbiana 17000.0 4.90 83. 3

Salíx serissima 5200.0 1. 16 6.0

hI = average annual total woody increment (mgm. /rooted stem) // = number of rooted stems per square meter (gm./*.') I = toa"1 annual woody increment = ¡ L n=4cP' H (,¡.J TABLE XV

THE ANNUAL RADIAL INCREMENT IN IMPORTANT VASCULAR SPECIES HAVING I,TOODY STEMS

ImporËant Specíes Bog ForesË Muskeg Bog Lagg

RSpr+Sp4 RSp5 RSp5*Sp4 RSp5 RSp5+Sp4 RSp5 RSp5+Sp4 RSp5

Group ttatt specíes

Ledum groenlandicum 26.6 22.8 46,5 36.4 t9.9 ]-I.7

Chamaedaphne calyculata 2L.L L0.2 39.3 23.8 130.8 r02.9

Kalmia polifolia 2.4 0.9 8.5 4.9

Vaccíníum víËis-ídaea 7.5 - 2.5 11. 1 2.6 var. minus

Oxycoccus quadrípetalus 17.0 72.L

Group ttbtt species

Picea mariana 53. 3 26.2 7.8 - L.4

Sa1íx bebbíana 83. 3 6L.7

Salíx seríssíma 6.0 5.0

Sp4 = maxímum annual net prímary production of termínal new stems and bark 1gm. /m.2) RSp5 = maximum annual net primary producËíon ín stems and bark produced in pi"lriorr"-years (e . /*.2)

¡.J .s. L25

l= irl n:¡ I26

At this point values have been derived for each of the

aería1 components conËríbuÈing Ëo Ëhe production of dry matter.

The data Ís summarízed in Table XVI. Comparíng the relative

conËríbutíons of aerial component.s Ëo Ëotal production, Ëhe only consístency found in all specíes was that current leaves

\¡rere most imporËant. The relatíve importance of Ëhe other com- ponents varied from species to specíes. It would be of benefit Ëo compare the producËion values observed ín the current study with those recorded ín other sít,- uatíons. Unfortunately, there is very 1ittle data with which

Ëhese producËion values can be compared. The fact that produc-

tion values depend both on Ëhe weight of an Índividual and on

the number of such individuals found per unít area, also makes

iË dífficulË to compare producÈion values given only in terns of weight per unit area. For exampLe, Traczyk (L967, p.845)

reported ËhaË the net producËion of Vacciniuur vitís-idáea L.

in Èwo Pinus associations ranged from 0.15 to 0.83 gm. /^.2, con- síderably lower than Lhe 47.4 to 52,7 gn./m.2 r^oge índicaÈed

for aerial component producÈion by Vaccíníum Vitís:ídâea var. minus in the Muskeg and Bog zones. YeË, productíon by a single plant inTraczykrs study was found Ëo range from 0.067 to 0.083

gm., wiËh Ëhe corresponding range at Elma 0.071 - 0.098 gn. Thus, it is necessary Èo have both índívídual producÈion values TABLE XVI

SI]MMARY OF AERIAL COMPONENT NET PRIMARY PRODUCTION IN EACH OF THE IMPORTANT SPECTES STIIDIED

Lp1 PLp2 pFp3 Sp4 RSp5 5 Rank I cp" n=1 ,2,2 ,2 gm. /m. gm. /m. gm. /m. Bm. /m.2 g^. /n.2 gr'/^'2

(A) Zone: Bog Forest

Group ttatt species

Ledum groenlandicum 24.3 (4øZ)x 0.0 (02) 1. e (4i¿) 3.8 (77() 22.8 (43%) 52.8

Group ttbtt specíes

Picea maríana 118.4 (397.) 130.5 (437") 0.3 (0%) 27.r (9"/.) 26.2 (9i4) 302.5

(B) Zone: Muskeg

Group ttatt species

Ledum groenlandicum 76.2 (62i4) 0.0 (02) 0.3 (L7") 10.1 (82) 36.4 (2e7") 123. 0 1

Chamaedaphne calyculata 24.L (42%) o. o (oz) L2.2 (2ti¿) 10.9 (re%) ro.2 (r8%) 57.4 3

Vaccíníum vítis-idaea ze.L (62i¿) o.o (o?t) ]'0.8 (22%) 10.0 (2Li¿) -2.s (-s7") 47.4 4 var. manus

Kalmia polifolia 7 .7 (577") o.o (o%) 3.3 (25%) 1. s (L7"/") 0. 9 (7%) L3.4

Group ttbt' species

Picea mariana 34.9 (607") 1s.s (267") 0.2 (O%) 9.2 (t6"Á) -L.4 (-27") sB.4

*Figures ín parenthesis indícate Ëhe percentage of total aerial net primary production ts Lpl = nerø leaves; PLp2 = perennial leaves; FFp3 = flower-fruits; Sp4 = neÌ^l sËems; RSp5 = radial sËem incremenË N) \t TABLE XVT (contínued)

Lp1 pLp2 PFp3 Sp4 sSp5 5 Rank I .po n=1

(C) Zonez Bog

Group ttatt species

Chamaedaphne calyculaËa 42.4 (39%)* 0.0 (02) 24.4 (24%) 15. s (rsi¿) 23.8 (227.) 106.1

Ledum groenlandícum 46.8 (6e"/") o. o (oi¿) L.4 (27t> 8.2 (Lzi¿) 1L.7 (L7%) 68.1

27.8 (53%) o. o (oi¿) 13. B (26i¿) B.s (16%) 2.6 (s%) 52.7 @Vaccinium víËis-idaea Oxycoccus quadripetalus ls.1 (30%) 0.0 (oz) 18.3 (362) 4.9 (10%) L2.7 (24"/") s0. 4 4

Kalmia polífolia 74.6 (47"Á) 0.0 (0%) 7 .B (25i¿) 3.6 (L2%) 4.e (L6%) 30. 9 5

(D) Zone: Lagg

Group ttatt specíes

Chamaedaphne calyculata 70.3 (3Li¿) o. o (07!) 26.2 (L2"/") 27.e (L2%) L02.e (4s%) 227.3 1

Carex rostrata 81. 9 (7Li¿) o.o (o%) 0.1 (0%) 34.0 (2e%) o. o (oz) 116.0 3

Calamagrostís canadensis 21.7 (457.) o.o (o%) 0.1 (oz) 26.5 (55"/") 0.0 (0i4) 48.3 4

Group ttbtt specíes

Salíx bebbíana L17.6 (54%) o.o (oz) LB.z (8"/") 2r.6 (1oZ) 6L.7 (28i¿) 2L9.I Sa1íx seríssima 3.7 (337() 0.0 (07") 0.6 (sz) 6.0 (s3%) 1.0 (e%) 11.3

*Figures ín parenthesis índj-cate Ëhe percentage of Ëota1 aeríal net primary production FFp3 Sp4 ne\^r stems; RSp5 = radial stem increment ¡\) Lpl = new leaves; PLP2 = perennial leaves; = flower-fruíËs; = oo L29 and density values to correctly assess production potential for a specíes when iË ís found either in diverse geographic loca- tíons, or ín different ecosystem types. An addÍtíonal column in Table XVI índicates the relaÈive ímporËance of a specíes t.o zonal- production. This irnportance ranking closely para1le1s the rankíng produced earlier, based on relatíve frequency values (table III). Thís agreenent verifies the assumpËion that a specíesr relative productívity is pro- porËional Ëo iÈs frequency of occurrence. Total aeríal productíon for importanË vascular specíes Ís found in the first column of Table XVII. Not all species

ürere represenÈed ín these productíon figures, since only spec-

ies havíng a relative frequency value greater tilan 5% were stud- ied on an índivídual basis. To obtain an estimate of the productíon conÈribut,ed by other group ttatt specíes, t,heir Èerminal ner^r gro\,lth was harvested aË each sampling date, and Ëhe weight expressed as a percenÈage of ÈhaÈ of lmporËant species encountered ín the same quadrats. At the end of the growÍng season an average percentage value was determined and Ëhe calculaËed aerial production sum íncreased by this percentage (Tab1e XVII). For group "b" specíes, iL was assumed thaÈ Èhe producË- iviËy per rooËed stem of all broad-leaved specíes approached 130 TABLE XVII

TOTAL AERIAL NET PRIMARY PRODUCTION FOR ALL VASCULAR SPECIES OCCURRÏNG IN THE FOUR VEGETATION ZONES

(A) Group "a" specíes (a) (b) (a)+(a) (b) Zone 5 Contribution by Other Species 5 I cp,, I cp,, n=1 n=1 ImportanË All Specíes Soecies e . /r.2 7" + Or.e Standard Error g . /^.2

Bog 52.8 2r.3 t 6.9 64.0 ForesË

Muskeg 24L.2 5.3 t 1.0 2fi.9

Bog 308. 2 2.7 t 0.6 3t6.4

Lagg 39L.6 15.6 + 3.9 452.7

(B) Group ttb" specr-es

(a) (b) (a) (b) ^ Zone 5 il of rooted stems/m.z f.or all specíes 5 I cp,, I cp* n=1 n=1 Important All Specíes Soecies g*. /*.2 gm.lm-2

Bog 302.5 0.782/ 0.7 82 302.5 Forest

Muskeg 58.4 0.244 / 0.r97 71. B

Bog

Lagg 230.4 L3 .09 / 6.06 497 .7 131

Ëhe mean value calculated for Salíx bebbiana and S. serissíma, and símilarly that the producËíon figure of needle-leaved species approached that of Picea mâriâna. A Èotal production value for group "b" species \¡ras arrived at by multíp1yíng the calculaËed productíon figure per rooted sÈem by the total number of rooËed

sËems of all specíes found in a square meÈer (Table XVII). ZonaL aerial production Èotals for group "4" specíes showed a Ërend consisËenË with Èhe spatial- dístribution of the

four zones, í.e., Lagg > Bog > Muskeg > 3og Forest. Group "b"

species producËÍon ü/as also greatesÈ in the Lagg zoÍte, with a trend in dírect oppositÍon to group "a" species productíon va1- ues evídent in Ëhe remaining three zones, í.e., Bog < Muskeg <

Bog Forest. As a result, total aerial production values in Ëhe

Bog, Muskeg and Bog Forest zones were all quiÈe similar (Table

XVIII). Production in the Lagg zorte, 950 grn. /^,2, üras almost Ëhree Ëimes as great. r32

TABLE XVIII

TOTAL AERIAL VASCULAR PRODUCTION

(a) (b) (a)+(b) , , Zone 5 5 AERIAI I cp', I cp,, VASC. n=1 n=1 PRODIN ttatt ttbtt Group Species Group $pecíes grn./m.z g ./^.t g*. /^.2

Bog Forest 64.0 302.5 366.5

Muskeg 253.9 7r.8 325.7

Bog 3]-6.4 3L6.4

Lagg 452.7 497 .7 950.4

AERIAL VASC. PRODIN = t 5 I r I cPr,)i i=5*1 n=1 133

D . 5. The aerlal cornponent blomass of vascular soecies 134

Biomass values of aeríal plant components produced in previous years were obtained from c1íppings made at each weekly sampling date. By combining Ëhese values with the weight of current Ëerminal productíon, a veekly value for the total bio- mass (TB) of a single planÈ was deríved for each species:

TB= 5 Icprr* I.to n=l n=l number of rooted stems ín the weekly sample

Due to dífferences in the amount of woody bíomass con- taíned ín the weekly samples values of TB varied considerably over the growing season. Therefore, in calculatíng Ëotal bio- mass for plants of each specíes on an area basis Ëhe average of weekly TB values was multíplíed by the mean number of rooËed sËems found ín one square meter (table XIX).

A biomass value for aería1 componenËs of all vascular species (Tab1e XX) was determined wíth the following equatíon: aerial bíomass of all vascular ÈotaL aeriaL producËíon of specl-es all vascular specíes aeríal biomass of ímportant toËa1 aerial product,íon of vascular species ímporÈanË vascular species TABLE XIX

AERIAL BIOMASS VALUES OF IMPORTANT VASCULAR SPECIES FOUND IN EACH OF THE VEGETATION ZONES STUDIED

Bog ForesË Muskeg Bog Lagg (Ð x(/i) =l (x) x (//) _L_r (x) x (//) =I (x) x (/l) -L-T Group ttatt species

Ledum groenlandicum 2.75 62.5 l-34.s 0.887 267.2 237.0 0.44r 29r.2 I28.4 !L6.07" !8.3"/. !5.3"/" L7 .9"/" t72.27" t6.5"/"

Chamaedaphne 0.738 r90.4 140.5 0.445 324.8 151. 0 r.77 254.4 452.7 calyculata !7 .9% !].0.77" t8.2i¿ !6.27" !\0.L7. !7 .97"

Kalmía polífo1Ía 0.523 52.8 27 .6 0.282 757 .3 44.0 tL3.87. !L4.97" !t3.L7" !8.5%

Vaccinium vítís-idaea 0.117 481.6 56.3 0.072 739.2 53.4 var. m1nus !5 .ti¿ !6.67. !4,97" !7 .07"

Oxycoccus quadripeËalus 0. 041 862.4 35.5 !7.]-7" !7L.77.

Carex rostrata L.24 35.2 43.5 l].B.4i( !I2.77.

Calamangrostis 0.207 7L2.0 23.2 canadensis tJ.7.O% !7]-.57"

I = me"n aerLaI biomass peï ïooËed stem (gr. I one sËandard error expressed as a percent) i/ = number of rooted sËems found in a square meËer t one sËandard error expressed as a percenË I= 5 3 ' i cpn t I aor, , total aerÍa1 biomass i-n grn.m.2 (,H n=1 n=l (.rr TABLE XIX (contínued)

Bog Forest Muskeg Bog Lagg (X) x(11) =¿ (x) x(/l) =l (x) x (i/) =I (x) x (/l) =T Group |tbt' specíes

Picea maríana s353. 0 0.782 4L86.0 1867.0 0.1,97 367 .8

Salix serissima s7 .7 L.T6 66.9

Salix bebbiana 203.7 4.90 998.2

X = *.ar, aerial biomass per rooted stem (gr. t one standard error expressed as a percent) # = number of rooted stems found ín a square meter * one standard eïror expressed as a percent I=-urr 5 3 I Cpn * I c¡r, , total aeríal bíomass in gm./rn.2 n=1 n=1

H U.) o\ TASLE XX

TOTAI AERIAL BTOMASS OT'VASCULAR SPECIES

(a) (b) (a) (b) Zone 53 (lcpr,)+(|ct"¡ aerial producËion by all vascul-ar species I n=l- n=1 aería1 productíon by ímportant vascul-ar species For Important Species gm. /m.2 z*. /m.2

Bog Forest 4320.5 1.031 4454.5

Muskeg 829,2 1 .087 901. 3

Bog 4t2.6 1-,026 423,3

Lagg 1583.9 7.527 24tB.B

t 53 I t( I cprr) + ( I cbn)li r aerlal biomass toËa1 I=i=j*1 n=1 n=l

H U) ! 138

15 t ( tcpn)¡ ¡=jtl n=l 139

Of the aeríal planË components conÈTibuËing to the pro- duction of dry matter, iÈ can be expected ËhaË leaves' repro- ductive structures, and some branch wood and bark wí11 be lost each year through death. In the case of deciduous specíes it is the leaf maËeria1 produced ín Ëhe curïent growing season that ís lost, while in semi-decíduous and perennial species leaves formed in previous growíng seasons are losË. Tt \¡7as assumed that the number of leaves fa11íng from perennial portíons was equal to the number of newly produced leaves. Sínce leaf material was losË from eiËher current or pererurial portíons buË noË boËh, then the annual amount of leaf litter was determíned from the produc- tíon values calculaËed for Ëhe new leaf componenË (tpf). How- ever, Ëranslocatíon of maÈerial in senescing leaves musÈ also be considered, sínce it reduces Ëhe amounÈ contributable by new leaves. The amount of weight lost from leaves during senescence was calculated for each species studíed on an indivídual basís. At Èhree sarnplíng dates in 1970 (¡uty 20, Augusx 24, September

27), Ëwo hundred new leaves of each of the important vascular specíes were collected, theír dry weíghË determíned, and the largest of Èhe three weights used Ëo calculaËe the maxímum single leaf weight in each of these specíes. Senescing leaves of the same specíes were also co11ecÈed on August 24th, when the leaves were stil1 aËtached to livíng stems, and on September 28th L40 when the leaves had fal1en. Unfortunately, ericoíd leaf sam- ples collected from the bogts surface contained a greaËer per- centage of large leaves than did prevíous samples, since after falling smal1 leaves were difficult to co11ect. This resulted

in September leaf values beíng equal Ëo, or signíficantly

greater than, Èhe maxímum nernr leaf weíghËs. Therefore, August values of perenníal leaf weight hTere used Èo determine the sen-

escence weight loss. Since Oland (1963, p. 686) found the dry weight loss from leaves Èo take place duríng a period Ëhree Ëo

four weeks prior to abscission, Lhen ít was considered valid to

employ these AugusË values Ëo represent minimum leaf weights.

Using an unpaired t-test the maximum and minimum leaf weighËs \¡rere compared. These values are 1ísËed in Table XXI . If a signífícant decrease was indicated, then the percenËage

lost during senescence \¡ras calculated for the species as follows:

maxímum observed minímum observed leaf ¡¿eight - léaf ineíght 1^. x Loo"/" maximum observed r""iffia Comparing the observed senescence losses wiËh existíng líterature values, the I77. Ioss reporËed by Mutoh et a1 (1968,

p. 72) f.or the grass Miscanthus sp., r¡ras nuch less t1nan 43.5"/"

1osË by Calamagrostis caúadênsís. Bray and Gorham (1964,

p. L42) eLte a sÈudy by Viro (1955) in whích 19 - 237. of dry weight in deciduous angiosperm leaves was lost on seriescence' L4L

TABLE XXI

-IÀIEIGHT SENESCENCE LOSS IN LEAVES OF IMPORTANT VASCULAR SPECIES ImporËant Zone M S D %I,üeightLossOn Specíes Sanpled Senescence

Group ttatt specíes

Ledum groenlandicum Bog 9.53 8.15 74.4

Charnaedaphne calyculata Bog 7 .O4 4.98 43,4

Kalrnia polifolia Bog s.16 3.7 4 27 .5

Vaccínium vitís-ídaea Bog 3.92 4.33 0 var. nínus

Oxycoccus quadripetalus Bog 7.69 1. 65 0

Calamagro stis canadènsís Lagg 38.4 2L.B* 43.5

Carex rostraËa Lagg 258.0 2L6.Ox 16. 3

Group ttbtt specíes

Picea mariana Muskeg 1.82 1.76

Picea maríana Bog 1.0s 1.04 0 ForesË

Sa1íx bebbiana Lagg 24.0 77.2x 28.3

Salix serissíma Lagg 31. B 45.7* +

![= maxímum leaf dry weíght (mgm. ) observed duríng the growing season *= senescent leaf dry weíghts (mgur.) recorded on September 28, I97O c- senescent leaf dry weight (rngm.) recorded on August 24, L970 D- dífference between "M" and "S" l-eaf weights indicated by an un- paired Ë-tesË (P=0.05), where 0 = no difference; - = signíficant decrease; += significant íncrease r42 slightly less than tne 28i% loss determíned for Salix bebbíana. The fact thaË perennial leaves of Píceá mâriana conËinue to gaín weíght ín subsequent growíng seasons accouïrLs for the fact that senescenÈ perennial leaves showed no appreciable díffer- ence in weighË from the maximum weight of current leaves.

Although senescence values \¡¡ere calculated from changes in leaf weight on1y, reproductive strucÈures also lose weighË when senescíng. Therefore, the senescence correction \^las aP- plied to both leaf (l,pf) and flower-fruit (FFp:) weighËs (Table

XXII). Summing the resulËing values for ímportanÈ species and correcËing the toË41 for Ëhe contríbution by t'othertt species provided an estímate of total leaf and flower-fruiË materíal added annually to peat.

Bray & Gorham (7964, p. 119) esËimated that in both an- giosperm and gymnosperm forests leaf líLter represenÈed an aver- age of 70% of. Ëhe total annual lítter increment. Therefore, based on Ëhe relative values of leaf and flower-fruit produc- tion, it was estimated that reproductíve sËructures contributed

LI?" to Ëhís t,oËa1 , while the remainder of L9"/" was contributed by woody tissues. To calculaLe the t.otal annual litter incre- ment, Ëhe weight of leaf and flower-fruit 1itËer was multiplíed by the value fraction 100/81 (Table XXIII). Corrected values índicated thaË the greaËest amount of TABLE XXII

POST-SENESCENCE DRY I,üEIGHT OF LEAF AND FLO.IÀIER-FRUIT COMPONENTS ADDED ANNUA],LY TO THE PEATLAND'S SURFACE (a) (b) (a) ; (a) (þ) (c) tlC" - ab)l (c) = (d) Lp1+FFp3 % Lost on Senescence Lp1 +FFp3

sm. /m.2 *. /n.2 z^, /*,2

(A) Zone : Bog ForesË 1.031 L45.5

Group ttatt species

Ledum groenlandícum 26.2 L4.4 22.4

Group ttbtt specíes

Picea marÍana 118.7 118 .7

(B) Zone : Muskeg 1.087 183. B

Group ttatt specíes

Ledum groenlandícum 76.5 14.4 6s.s

Chamaedaphne calyculaËa 36.3 43.4 20.5

Kalmia polifolia 11.0 27.5 8.0

Vacciníum viËis-ídaea,r"t. lin.rs 39. 9 0 39.9 Group ttbtt species

Pícea maríana 35 .1 35.1 (c) =correctionfactorfor,,oËher|,species,í.e.' (,Þ. tF-lt (d) = I (lpi + FFp3)i , toral leaf and flower-fruit litter weíght ín imporËanÈ specíes i=j*1 l^^rL - -r TABLE XXII (contínued) (a) (b) (') ; (a) (b) (c) Il(a - at)J (c) = (d) Lp1+FFp3 7. Lost on Senescence Lp1+FFpi ,2 e , /^.2 gm'/m' gm. /m.2

(C) Zone : Bog L.026 L7 4.8

Group ttatt species

Ledum groenlandicum 48.2 L4.4 4L.3

Chamaedaphne calyculata 66.8 43.4 37 .8

Kalmía polifolía 22.4 27 .5 16.3

VaccinÍum viËis-idaea 4L.6 0 4L.6 var. m1nus

Oxycoccus quadripetalus 33.4 0 33.4

(D) Zone : Lagg L.527 426.7

Group ttatt specíes

Chamaedaphne calyculata 96.s 43.4 54.6

Calamagro st is canadensis 48. 3 43.5 27 .3

Carex rosËrata 116.0 16.3 97.r

Group ttbtt species

Salix bebbiana 135 .8 28.3 97 .4

serissíma sH Salix F, I4s litter fe1l annually in Èhe Lagg zoÍLe, this amount, 524.8 grn. /^.2, beíng between two and Ëhree tÍmes greåLer than the amount falling in any of the oËher three zones. Yet, when Ëhe amount of annual líËËer fall was compared I^Iíth the value of aerial production, the Bog and Muskeg zones had the greaÈest annual rate of ín- corporaËíon. Litter production in all zones amounted to at leasË

48"/" of the aería1 neË production value. Reiner and Reiner (7970' p. 514) had previously found the proportion of above ground net prínary producËion enËeríng Èhe detriLus paËhr^ray as litter fal1 to be greater thån one half - 51% in a sr^ramp , 557" in an oak for- est, and 64"/" in a fen. The latÈer value is greater than t}re 55% recorded for the marginal fen ín this study. TABLE XXIII

TOTAL ANNUAL CONTRIBUTION OF AERIAL VASCULAR PORTIONS TO THE PEATLAM'S SURFACE

(a) (b) (a) (¡) = (c) % of Current Aerial Net Prímary Productíon Zone gm./rn.2 e ./*.2

Bog Forest 145 .5 L.23 ]-78.9 48. B

Muskeg 183. B L.23 226.L 69.4

Bog L74.8 L.23 2L5.0 67 .9

Lagg 426.7 L.23 524.8 s5.2 (a)= I , r ) (l'Pr+rFPs) i , total leaf and flower-fruít 1ítter weÍght for imporËant species i=j*1 (b) = correcËíon facËor for oÈher litter types (100/81 = L.23)

(c)= t 3 5 I tt Icti>+ C I cpilli , rorAl, vASCULAR LrrrER 1=j*1 n=l n=1

rF o\ L47

D . 7. Product lon,bíocr¡¡s,arrd accuaulatlon of ¡qbsqr.f¿cc conÞonents of vascrrl¡r spccies

r8 t ( t cpn)¡ ¡ =j+ I n=6 148

In a peatland there is a contínuous development of nernl rooËs as aerial stems become buried under accumulatíng peat

(Heath et a1, 1938, p. 348). Because these roots represent a source of direct additíon Ëo peat. iÈ was necessary to esËímate

ËheÍr bíomass and producËion values. UnforËunately, the diffi- culty encountered in sampling subsurface porÈions made íË ím- possíble to calculaÈe net produetion for individual components

Cp6 through CpB on a specíes basis. InsÈead, subsurface neÈ prímary producËion in each zone tras estimated (table XXIV) on the assumption thaË:

maximum aerÍal maximum subsurface net producÈíon = net production average aerial bÍomass average subsurface biomass Although Ëhis equation has not been experínentally verified (Newbould, 1968, p. 188), no other suitable rnethod exisËs for the esËímatíon of rooË production. Values for aerial productíon and biomass ín Ëhe above equation were deríved prevíously, while subsurface biomass va1- ues r¡rere obtaíned by sampling t\^7o 25x25x25 cm. blocks of peat from each of the four zones. The above sampling was carried out at a síngle date ín both July and September to a1low for Ëhe pos- sible ËranslocaËion of reserve maËeríals beËween aerial and sub- surface portions (Mooney and Billíngs, 1960, p. 597; Dahlrnan and Kucera, 1968, p. 1201). Due Ëo this liniËed sampling of sub- r49 surface plant components, biomass values are only approximaËe. Most information concerning the relatíve magníËude of root productíon has been derived through the use of the so cal- led "rooË/shooË" ratio, whÍch in thís case ís mean subsurface bíomass divided by mean aerial biomass. Although Ëhe usual range of values observed in forested areas is 0.2'0.3

(I,Íhíttaker and tr{oodwe1l, 1968, p. 11), values for the Bog ForesË and Lagg zones r^rere appro*it"t.1y 0.5, vüith fígures for the oËher Ër^ro zones boÈh greaËer than uníty (Tab1e XXIV). RooË/ shoot ratios wíth values between three and eíght have prevíously been reported by Chapman (1970, 'p. 447) for ericaceous shrubs in a dry heath ecosysËem in southern England. Values of subsurfacef aetía1 producËion ratíos \,rere símí- lar to bíomass ratíos, wiËh the greatesË absolute value of root productíon, i461' 1 grn. /*.2, found ín the Bog zone. The observatíon that zonal root/shoot ratíos increased !üith greater light exposure, although originally applied Ëo in-

(Maggs, 1960, p. 434) \,'las also díviduals of a síngle species ' relevant in the currenË situaËion. As competitíon for light increases among specíes it can be expected that a greaËer per- cenËage of the total bíomass and productíon wíll be aerial, \nrith less emphasis placed on subsurface absorbíng and support- ing organs. Therefore, it was noË surprísing to fínd that the TABLE XXTV

THE TOTAL SUBSURFACE PRODUCTION IN VASCULAR SPECIES FOI]ND TN EACH OF THE FOUR VEGETATION ZONES

Zone Mean Subsurface Maxímum aerial productíon SUB. VASC. PRODIN Mean subsurface bíomass Bíomass Mean aeríal bíomass Mean aeríal biomass

e^'/^'2 em'/m'2 g . /^.2

Bog ForesË 2280.0 366 .5 / 4454.4 186. 9 0.51

Muskeg L644.0 32s .7 /90L.3 593.5 L.82

Bog 1956.0 3L6 .4/ 423.3 L46L.T 4.62

Lagg 1304. 0 9s0.4 /24LB,B 5L2.5 0.54

SUB. VASC. PRODIN = T 8 I c I cpr,)i i=j*1 n=6

H o(Jr 151

Ëhree treed zones each had greaËer aerial bíomass values than

Ëhe treeless bog zorte, r¡hi1e subsurface biomass values were of similar magnítude ín the four zones.

There r¡ras no way of estimating the fracËion of current subsurface production and perenníal biomass added to the de- triËus cycle annually. Therefore the value calculated for sub- surface net production was considered to be equal in magnitude to the actual amounË of subsurface "litËer" accumulaËed an- nua1ly. This was a valid estimate of accumul-ation irr"ot., sínce t,he neÈ producÈion Ëotal represenÈs the annual addítíon rnade by subsurface plant componenÈs to existíng peat reseïves. I52

E. Totâl ¡¡çr orimarv oro

jq ( r5 rg t E cpn)l E ( xcpn)i E ( t cPn)i a=l n=l ¡= jtl n:l i=i+l n=6

r8 l=l n=l 153

Total neË prímary production was calculated as Ëhe sum of non-vascular, aerial vascular, and subsurface vascular produc- tion. However, the weight of dry matËer produced in the curreriË growíng season, but lost from planÈs eiÈher through herbívore (Ccn), (Scn)¡ root exudates consr-rmption or by secreÈion e.g. ' and raÍnwater leaching, was noË íncluded ln the above total.

Consequently, Ëhe magnitude of these losses had to be estímated from exísting líterature values. The amount of annual leaf consumptíon found by Crossley (1963, p. 429), Bray (1961, P. 73), and Bray and Gorham (1964' p. I44) approximated 57" to 87" of plant bíomass. Based on the srna11 amouriË of insect damage observed in erícoid leaves (per- sonal observatíon), and Èhe fact thaË moss consumpÈioll \^7as neg- ligible (Smírnov, 1958, p. 365; 1961, p. 180) it was expected tha| 5% would represenË the maxímum percentage lost through con- sumption.

A smal1 amounÈ of míneral matter is also 1osË from aerial plant surfaces through raÍnwater leaching (Tanm, 1951, p. 184;

Rodin and Basilevích, 1-965, p. 99; Car]-j-sle, Brown and trlhite' L966, p. 97). The counterpart of such weight loss in subsur- face portions is root exudates (Stenl-íd, 1958, p. 630; Bonner, 1960, p. 396; lloods, 1960). However, íÈ was expected that both of the above exudate losses did not amount to any more Èhan 1% ts4 of the Ëotal calculated net prímary production.

Therefore, to account for the uruneasured losses of con- sumptíon (5%) and secretion (I7"), total current net primary productíon r^ras estímated as J:06:Z of the calculated value in each of the four zones (Table XXV).

The treeless bog zone üras the mosË productive of Ëhese zones, with an annual dry matter increment of almost 2000

W. /m;2. This value r^ras much greater than the 300 - 600 gm. /m.2 suggested by Rodín and Bazíl-evich (1965, p. 50) for moss in the U.S.S.R. It was also greater than the maxímum value of

420 gn./*.z t"porËed by Gore and Olson (1967, p.311) for a hígh leve1 blanket peatland in England. Most other literature values for peatland production refer only to above ground com- ponents (Barclay - EsËrup, 1970, p. 246; P'Yavchenko, L96O, p. 597; Solonevich, 1963) in which net productíon ranged from 178 to 670 gm./^.2. with the exception tt trr. Lagg zone, aerial totals calculat,ed in the curreriÈ study also fel1 in thís range. It is possible that subsurface production was overest- inated ín the current study, since the method of determination was based on the yet unverífÍed assr:mption that Ëhe rates of

Ëurnover are the same for above and below ground plant compon- enfs. TABLE XXV

TOTAL NET PRIMARY PRODUCTION, TNCLIIDING CORRECTION FOR UNMEASURED LOSSES

Zone (a) (b) (c) (d) t (a)+(b)+(c) I (a) = (e)

gm. /rn.2 g*. /^. 2 gr.l^.2 g ./^.2

Bog ForesË 1l_6.3 366.5 186.9 1.06 709.9

Muskeg l-7.0 32s.7 593.5 l_.06 992,6

Bog 55.4 3].6.4 l_461. 1 1_.06 1942.6

Lagg 75.8 950.4 5L2.5 1.06 1631.0

(a)j4 I ( I cprr)i, NoN-vASC. PRoD'N í=1 n=l- (b)Ës I ( I cpn)i , AERTAL VASC. PROD'N l=j*1 n=l (c)t8 I ( I cpn)i , suB. VASC. PRoD'N i=j{l n=S

(d) = correction for Scn*Ccn H L¡l lJl (e)tB I ( I cpn)í , TorAL NET PRTMARY PRoD'N í=1 n=l 1s6

veCctat lon zoncs

t30 E (( tcbñ, + ( E cenD¡ i=l n=l n=l

t ( t cbnll ¡31 n:l t57

Total plant biomass was calculated as the sum of net pro- ducËion and perenníal bionass values (Table XXVI). These Ëota1 bíomass values declíned from the Bog Foresx zoîe, through Ëhe adjacent Muskeg zone, to Èhe Bog zone beyond. On Ëhe other hand, zonaL net producËion values showed exacLly the opposite trend, í.e., Bog > Muskeg > 3og ForesÈ. Since community sËab- ility has been observed to increase wiÈh either a decrease in productívity or an íncrease in bíomass (Leigh, 1965, p. 777), then Ëhís suggested that of Ëhe cornmunity types examined, the

Bog Forest zorie would be least suscepÈible Ëo change.

A simílar conclusion rnras reached from examining calculaËed values of the neË production/bÍouass ratio (Tab1e XXVI). As suc- cession proceeds Ëhe ratio expressed by primary productíon/total biomass wíll drop due to an íncrease in the bíomass and a re- ducËíon in the primary producÈion (Margalef, 1963, p. 360). The calculaËed P/B values suggesËed the successional sequence Ëo be Bog -> Muskeg -> Bog ForesË, which agreed with the scheme pre- víously proposed by Moss (1953a, p. 222). I,[hile the P/n value calculaËed for Èhe Lagg zone (0.428) índicaËed that ít followed the bog sËage in the peaÈland sere, in the presenË sítuation it was thought ËhaË Bog vegetat.ion replaced Lagg vegetatíon as peat accumulated and bog vegetation spread into surrounding areas. The replacement of lagg-type vegetation by bog species has prev- 1s8 iously been suggesËed by Cooper (1913, p. 203). Therefore, Ëhe course of secondary succession occurring in the study area üIas considered to be Lagg -> 3og -> Muskeg -> 3og Forest. TABLE XXVI

TOTAL PLANT BTOMASS IN EÀCH OF THE FOI]R ZONES

Zone (a) (b) (c) (a)+(b)+(c) = (d) PlB ,2 2 gm. /m. Bn. /m.2 *m. /rn. e . /^.2

Bog Forest 200. 0 44s4.4 2280.0 6934.4 0.102

Muskeg 93.7 901. 3 L644.0 2639.0 0. 378

Bog 131.3 423.3 1956.0 2510.6 0.77 4

Lagg 87 .5 2418,8 1304.0 3810. 3 0.428

(a)i43 i tc I cpn) + ( | ct.r¡l1 , non-vascul-ar biornass i=l n=l n=| (b)r53 I tC I cpn) + ( I cbn)11 r aeïial vascular bíomass 1=j*1 n=l n=l (c) 185 I tC I cprr) + ( I cbn)li , subsurface vascular bíouass 1=3*1 n=6 n=4 (d)rBs tC cpn) + ( cun¡1r tota]- plant biomass I I [ , H í=1 n=l n=l_ (Jr \o P/B = ratio of net prímary producËíon to total biomass 160

G. 9lrim.rti¡r& rlrr..!mt,unr of peri àgcqñulêt,cô lnnuÀlly r¡ì r¡¿ctt of the fouf zr)t¡!,s

t4 t ( t cpnlr ¡=l ñ31 l=¡il n=6

135 E ( Ecb;l +(Ecpn))r l:i+l nsl

E ( tcbnli i = ¡.1 n=4 L6l

As índícated in Ëhe introducËíon, values for both the surface accumulation rate of peat, AA 1970-71, and AAa, the aveïage amounË of peat accumulated annually, were esËímaËed for each of the four vegetatÍ-on Èypes Values of AA, ïIere previously calculated (p. 33,) from measured heights and weights of radíocarbon-daËed peat. They represerited an estímate of the average amourit of peat formed annually by plant types found in the dated cores.

The annual raËe of surface accumulation fot a number of these same planË t)æes was calculated from empirícal values deríved for each of the Ëerms in Ëhe following accumulaËion equation: ÀAtgzo-zt - A'i - Ai K'(Aí)

1. Calculating accumulation "íncometl At Ëhis point, consíderation has been given Ëo all con- ceivable sources of accumul-aËion income. The sum of these va1- ues provided an estímaËe of Ai, whích is the iníËía1 weíght of peaË-forming maËerial added to Èhe peatlandrs sutface annually (Table XXVII). Of four zones examined, it was ,roa to find the ".rtntisíng that the Bog zone showed Ëhe greaÈest annual accumulatíon of 1itËer, l75O gm./m.2, since this zone also had Èhe greatest net primary production. In Ëhe oËher three zones, the amount of L62 annual 1ítter was subsÈantially 1ess, i.e., 489-LI29 g^. /m.2.

In Ëhese zones more of the neÈ primary production .t^lâs associ- ated with woody Ëissues, whÍch ü7ere not added to the surface on a yearly basís. TABLE XXVII

INITIAL I,üEIGHT oF PEAT-FoRMING MATERIAL ADDED ANNUALLY TO THE PEATLANDIS SURFACE

Zone (a) (b) (c) (d) (a)+(b)+(c)+(d) Ã. as a7" t.n Aí of tlåt Primary Production g^, gm. /m. ' /m. ' /m. ' *. /^.2 /l^'2 "m. "m.

Bog Forest 1l_6.3 L78.9 l-86.9 6.7 488. B 68.9

Muskeg 17.0 226.L 593.5 9.4 846.0 8s.2

Bog 55.4 2L5.0 L46L.1 18.3 L7 49 .8 90.1

Lagg 7s.B 524.8 5r2.5 L5.4 l-1_28. 5 69.2 (a)if ) ( I cprr)i , NON-VASC. PRoDf N Í=1 n=l (b)g:, 3' I t( I cPr') + ( ) cbn)li , rorAl. VASCULAR LrrrER i=j*1 n=l n=1 (c)tB I c I cpn)i , suB. VASC. PRODTN i=jÈ1 n--6

Aí = CURR'T ACC'N H (,o\ 164

2. Calculat.ing accumulation'rloss" The decomposition rate (rt ) of vascular and non-vascular lítter components \¡ras estimat.ed by enclosing leaf lítter ín re- coverable nylon mesh bags and determining the weight loss afËer one year.

Observed decomposiÈion raÈes depended on a number of factors. These íncluded Èhe amount, condítíon, and placemenË of enclosed material, as well as the type of enclosure employed. 1. The type óf enclôsure used: The confinemenË of 1ítter in mesh bags has raísed the question of wheËher or noË observed decornposition raËes are natural. Effects of confÍnement on lítter breakdown have been examÍned by several authors,

I,triËkarnp and Olson (1963, p. 146) finding Ëhat leaf confinemenË led to a t\¡ro to three times slower raËe of decompositíon, while

!üood¡,¡ell and Marples (1968, p. 462) concl-uded thaË confinemenË had no serious effect on Ëhe naËural rat.e of decomposition.

Bocock (1964, p. 278) ]has suggested Ëhat the effect of confíne- ment depends on envíronmental condiÈions with effects beíng less marked on ttacidíctt as opposed to rrbasictt sítes.

The effecËs of confínement \^rere considered to be mínimal in thís study. Gílbert and Bocock (1962' p. 348) revier,¡ed the litera- ture concerning the types of enclosures co'non1y employed in 165 decomposition studíes, and concluded that mesh bags were the most convenient to use. The mesh síze employed regulaËes the type of decomposer agents enteríng. Considering that microorganísms rep- ïesent the chíef source of decomposer acËion in peatlands (Dubos,

1928, p. 26; Clymo, 1965, p. 754), Ëhen the use of 1 un. mesh nylon bags should have had 1ítt1e effect on the naËural raLe of decomposition (Edr¿ards and IIeaLh, 1963, p. 77). This 1 mm. size uras small enough to pïevenË Èhe loss of mat,erial Ëhrough frag- mentation.

2. AmounË of maËeríal enclosed: Using mesh bags 10x30 cm. for vascular species, and 5x10 cm. for bryophytes, an effort rnras made Èo enclose an amounË of leaves which would resulË in a normal spatial dístribution when replaced on the peaËlandrs surface. The number r^ras standardÍzed at one hundred for each of the vascular species, wiËh Ëhe exception of Carex rostrata' for whích only ten leaves and two sheaths were employed. Non- vascular bags contained the green biomass portion of one hundred planËs, minus the apices, which ordinarily do not undergo de- composítion.

3. CondiËíon of Ëhe malerial subjected to decomposítion: Newly fallen leaves and green bryophyte portions were co11ecËed in all four vegeËation zones aË Ëhe end of SepËember (L969), and re-

Èurned to Ëhe laboratory for preparaËíon of Ëhe decomposition L66 bags. Since both air and oven dryíng reduces Ëhe amount of natural deeomposítíon (llo11ny, L897, as cited ín Starkey, 7924, p. 295; Clymo, L965, Table VI), the 1ítter \¡ras sËored ín a cold room (6oC.) unËil replaced on the peatland siËe seven days later. A portion of the leaves and mosses collected was oven- dried (105oC.) just before the liËter bags ruere replaced on the peaËlandts surface. Using the percentage weight loss recorded ín Ëhís porËion, the oven-dry weight of litter replaced on the síte was esËímaËed.

4. Placement of Ëhè deconpoSiÈi-on bags: Two bags per species per zone were placed at an arbitrary posiËíon ín the zone from which the litter ùras collected. Leaf portions were placed dírectly in contact with the moss layer, and in all cases among natural lítter of the same species (Fígure 15). Moss decompo- sition bags were placed 0-5 cur. below the surface. This iní- tial placement was completed duïing the first week of OcËober,

L969.

In October, 1970, Èhe bags were retrieved, returned to the laboratory, conËenËs oven-dried at 105oC., and weíghts determined. The initía1 decompositíon rate in each species (Table XXVIII) was calculated according to Ëhe followíng formula: 167

FÍgure 15. Nylon mesh bags used to det.ermine the ínitial d.ecompo- sition .rat.es of leaves ín each of the four vegetation zones.

(a) LíËter bag located ín the Bog Forest zone, con- taíning leaves of Ledun gröênlândicun.

(b) LiËËer bag containíng leaves of Chamaedaphne

calyculâta in the Muskeg zone. 168

TABLE XXVIII

FRACTION OF ORIGINAL üIEIGHT LOST IN LEAVES SUBJECTED TO DECOMPOSÏTION FOR ONE YEAR

Bog Forest Muskeg Bog Lagg KKKKtr¡l

(A) Vascular species

Group ttatt species

Ledum groenlandicum 0.332 0.178 0.138

Chamaedaphne calycúláta 0. 28s 0.301 0 .L7 6 Kalmia polifolia 0.r42 0. 355

Vaccíníum vitis-idaea var. mínus 0.343 0.387

Oxycoccus quádripetalus 0. 071 Carex rostrata 0.220

CalamagrosËis canadensís

Group ttbtt specíes

Picea mariana 0.243 0.337

Salíx bebbiana 0.290 Salíx serissima 0.26L (B) Non-vascular specíes Pleurozium schreberí 0.247

Sphagnum fuscum 0.017 0.001 PolyÈríchun juniÞerinum var. gracilíus 0. 139 lf4eggrÊiglg palústre 0.089 0.076

Hypnum pratense

I K = decomposit.ion rate r69

xo x urhen t = 1 x = xo (l-Kt)Ë or Kt = - xo where X = fínal 1iËter weíght after time t Xo = initíal liËËer weight Kt = linear decomposítíon rate between tíme zero and tíme t.

The rate of iníËial weight loss in vascular leaves, L47" -

387", was gïeater Ëhan the 5% - 757" observed both by Cormack and

Gimingham (L964, p. 245) and Chapman (1967, p. 680) in a dry Calluna heath. For non-vaseular species, the observed decomp- osíËion rat.e of Pleurozium schreberi, 24-7"/", agteed well with the 25.5% loss reported by Míkola (1954), as cited in Kílbertus (1968, p. 22), tor Ëhe same species. Decomposítíon weíghÈ los- ses ín other non-vascular species ülere quite sma11, with a neg- lígible amount, O.Li¿ - I.77", lost in Sphagnum fuscum. I'ühile Clymo (1965, p. 749 - 752) lnas reported losses of up to 207" in several other species of Sphâgnurn, the smal1 amount of de- composiËíon observed ín the currenË study \^las not restrícted just to S. fuscum. The coTresponding range of decomposítion values for Sphagnum magellânicum, also found in the Bog zone, was 0 - 3.42, wiËh 0% decomposÍtion found in bags containing

Sphagúum capillâceum.

Thus, whíle a smal1 amounÈ of non-vascular maËerial was originally accumulated as l-itter, Èhe percentage of Ëhis bryo- 170 phyte material remainÍng afËer one year' and presumably ín subsequent years as well, üIas much greaËer than ín vascular species. !ühile the toËal amount of peat-forming material initially has a low bryophyËe contenË, the relatíve ímporËance of this componenË can be expected to increase over Ëhe years, as evidenced by the composíËion of older peat. L7I

3. CalculaËing ínítia1 accumulaËion

The value of a specíesr iniËial decompositíon rate (Kt ) was mulËiplied by its corresponding liÈter value (Ai) to pro- vide an esËímate of the weight 1osË during the first year of decomposítíon. The sum of these products was subtracted from the zonal litter value to give the annual surface accumulatíon ¡l rate, A'1. These A i values are deríved in Tables XXIX - XüII. The zonaL At i values üIere beËween t\^lenty and thirty per- (Ai) decreased in cent less than ínítial 1ítter values ' and magnitude wiÈh succession. This was the result of both an in- crease in average zonal decomposiËion values (Kt ), and a cor- responding decrease in initíal líËter values (Ai).

Such changes favour the hypoËhesis that a dynamic equílibrium will be establíshed between t'income" and "loss" in the cliurax síËuation (Jenny et a1, 1949, p. 428)- A further inplícaËion of these successional changes ís that Ëhe theoreËj-cal models suggested by Jenny et al (1949), Greeland and Nye (1959), and Olson (1963) to describe the course of organic mat.Ëer accumulation can noË be applíed to calculate equílíbrium values of peaË. BoËh litter production and inítíal decomposition rates are assumed to be consËant in

Ëhese models, yet neiËher appeared Ëo remaín fixed ín value in the currenÈ study. Therefore, equations defining the relation- TÀ3LE )O(IX

I/üEIGHT OF VASCULAR LTTTER REMATNING IN THE FOIIR VEGETATION ZONES AFTER ONE YEAR OF DECOMPOSITION (a) (b) ("),,- (a) (h) (c) (d) Il(a - ab) (c) (d) = (e) . r I Lpl + FFp, K' Lp1 + FFp3

Em. /m.2 Bm./m.2 gm. /m.2 (A) Zone : Bog Forest 1.031 L.23 L28.6

Group ttatt species

Ledum groenlandicum 22.4 0.332 15.0

Group ttbtt specíes

Pícea mariana LLB.7 o .243 86 .3

(B) Zone : Muskeg 1. 087 r.23 L66.9

Group ttatt specíes

Ledum groenlandícum 65.5 0.178 53. B

Chamaedaphne calyculata 20.5 0.285 t4.7 Kalmía polifolia 8.0 0.L42 6.9

Vacciníum vitis-idaea var. mínus 39,9 0.343 26.2

Group ttbtt specíes Picea mariana 35.1 0.337 23.2 rr = followíng one year of decompositíon (c) = correcËíon factor for other species, i.e., aerial prodrn by all vascular specíes aeríal prodrn by important vasc. specíes (d) = correction factor to include oËher litter Ëypes ! (e)= t 5 3 NJ I tf I cp"l + ( I c¡rrlli r aeríal vascul-ar lirrer remaíning after decomposition 1=j*1 n=l n=l TABLE XXIX (contínued) , (a) , (b) (a),,- (a) (þ) (c) (d) II(a - a¡)l (c) (¿) = (e) r,pi + nrpi K' r,p, + rrpi g*./^.2 e ./^.2 e ./^.2 (C) Zone : Bog L.026 L.23 L62.7

Group ttatt species

Ledum groenlandícum 4L.3 0.138 35.6

Chamaedaphne calyculaËa 37 .8 0.301 26.4 Kalmía po1ífolía 16.3 0.35s 10.5 Vacciníum vítis-Ídaea var. mÍnus 4L.6 0.387 25.5

Oxycoccus quadripetalus 33.4 0.071 31.0

(D) Zone : Lagg L.527 t.23 400.2

Group ttatt species

Chamaedaphne calyculaËa 54.6 0.L76 45.0

Calamagrostís canadensis 27 .3 0.231 2L.0

Carex rostrata 97 .L 0.220 75.7

Group ttbtt species

Salix bebbíana 97 .4 0.290 69.L Salix serÍssíma 3.1 0.26L 2.3

(,\¡ TABLE XXX

T/üEIGIIT OF SUBSIIRFACE''LITTERII RM{ATNING ÏN THE FOI]R VEGETATION ZONES AFTER ONE YEAR OF DECOMPOSITION (a) (b) , (a) - (a) (t) = (c) Zone Mean Zonal K g^, /^.2 + one Standard Error % g . /^.2

Bog Forest. l-86.9 0.277 ! 7.7"/. 135. 1

Muskeg s93.5 0.218 t :-2.7% 464.L

Bog T46I.L 0.1_55 ! 2L.87" L234.6

Lagg 572.5 0.231 ! L7,6i¿ 394.r

" = following one year of decompositíon (a)Ë8 I C I cpn)i , suB. vASc. PR0D'N i=j*l n=6 (c) decomposition i C l-an"), , subsurface vascular "litter" remaíning after i=j*1 n=6

\,1 s. TABLE XXXI

I,TEIGHT OF NON-VASCULAR LITTER REMAINING AFTER ONE YEAR OF DECOMPOSITION (a) (b) (a) - (a)(b) (c) tlC" - ab)l(c) = (d)

(A) Zone : Bog Forest

Pleurozíum schreberi to7 .7 0.247 81. 1

(B) Zone : Muskeg 2.39 L6.7

Sphagnum fuscum 7.r 0.017 7 .O

(C) Zone : Bog 1.15 49.3

Sphagnum fuscum 7.8 0.001 7,8

Polytríchum juníperinum var. gracilius 35.0 0. 139 30.1

Aulacomnium palustre 5.4 0. 089 5.0

(D) Zone : Lagg 1.13 64.6

Aulacomníum palustre 35. 9 0. 076 33.2

Hypnum pratense 3L.2 0. 231- 24.0 (a)=4 I cpr, , annual lítter n=1 (b) = xt , decomPositíon rate (a) - (a) (b) = * , litter after decomposition

(c)=correctionfacËorfor|'oËher''species,í.e.,specíes"lrtnä (d)= i å ) C I cpil)i , roral non-vascular lítter following decomposition ! i=l n=l L¡ TABLE XXXÏÏ

TOTAL I,üETGHT OF LITTER RTMAINING AFTER ONE YEAR OF DECOMPOSITION

(a) (b) (c) (d) (a)+(b)+(c)- (d) PrÍmary Zone Ai Ai/Aí A:a / total- Net Productíon ,2 gm. /m. gm./rn.2 g ./*.2 grn./m.2 s ./^,2

Bog ForesË 87.6 L28.6 135.1 6.7 344.6 0.705 0. 485

Muskeg L6.7 L66.9 464.r 9.4 638 .3 0.7s4 0. 643

Bog 49.3 162.7 L234.6 18.3 L428.3 0.816 0.735

Lagg 64.6 400.2 394.L 15 .4 843. s 0.7 47 0. 517

(a)j4 I ( I cprr)i , toËal non-vascular lítter followíng decomposition i=l n=l

(b)t5 3 I r< I cp;ir + ( I Cbä) I i , aería1 vascular liËter remaíníng after decomposítion i=j*1 n=l n=1 (c)tB I ( I cp,,)i , subsurface vascular "litËer" remaíning after decomposítion f=j*1 n=6

(d)=IY"of t B =Sc c cpn)i Prb I I ! i=l n=l o\ Al = toËal weight of liËter remaíníng afËer one year of decompositíon 177 ship of both litter production and íniËial decompositíon rate wíth tíne must be established. In the present study, an at- tempt was made Ëo deríve such equations by plottíng observed zona! litter and decomposition values against the maximum rad- íocarbon age of each zone. UnfortunaËely however, prevíous surface fires in Ëhe area had altered surface vegetaËion types such thaË it was ínpossible to derive a logícal relationship between total peaË depth, presenÈ surface vegetaËion type, and Ëime, in the four zones. Only in a situatíon where unídírec- Ëíonal successíon has occurred can these relationships be quan- tified for use in Ëhe above models. . To determine the relatíonship beËween surface accumula- Ëion and current neË primary production a "surface accumula- tion raËío" vtas est.ablíshed, i.e., the zonal Ar1 value divided by zor'ia:- net primary production. Table xxxll índicated that following an initÍal year of decomposition, at least 0.48 of the original net prímary producËion toËal sti1l remained, wiËh thís fracÈion havíng a maxímum value of 0.74 ín the Bog zorle. sÍnce decomposition had noË been completed during this fÍrst year, Ëhen Atí values did not índicaËe the amounË of orígínal producËion r¿hich would evenÈually remain as inert peat'

The value of thís undecomposed fraction could not be calculaËed direcÈly. Howeveï, ÀA¿ values represenËed a rough estimaËe of 178 thís annual accumulaÈion ra¡e. Derived by radiocarbon dating existíng peaË reserves' Ëhe range of these valuesr 26.8 - 51'7 ,2 gm./m.-, trvas consídered to be a s1ÍghÈ underestímate of Èhe true accumulation rate, due to the past occurTence of surface fires in the aFea. Yet, esËímaÈes of even Ëwice this range would sËil1 amounË Ëo less than one fífth the amount of orígína1 producËíon Ín any zof1e. Thus, the percentage of original net primary productíon which is eventually sËored as inert peaË is sma1l indeed. A concise sunmary of the ímportant successional changes occurring during the accumulation process, rePresented ín this ease by income, loSs, and net accumulation terms, iS provided ín Table XXXIII. In addíËion, a visual sulmlaïy of the distribution scheme for plant ma¡Ëer resulting from net prírnary productíon is found in Figure 16. Thís ís sirnpl-y the original scheme noÌ47 havíng numerical values attached Ëo each of the componenË b1ocks1. Direct comparison of successíonal changes in any of the cal- culaËed values can easily be made using these fígures'

Not knowing the fraction of 1íÈter remaining unde- it was imPossible to calculate values for composed,I ' t K r' ,AfandAa.| - TABLE XXXIII

SI]MMARY OF SUCCESSIONAL CHANGES TN NET PRIMARY PRODUCTION AND ACCI]MULATION

AËËribute

(A) Accurnulatíon íncome Total annual net prímary production (gm. /^,2) 1631.0 1942.9 992.6 709.9

PercenËage of aerial productíon ín non-vascular species 7.4 l-4.9 5.0 24.L

PercenÈage of aeríal production in vascular species 92.6 85.1 95.0 75.9 Vascular ttRoot/Shootf' ratio 0.54 4.62 L.82 0. 51 Percentage of total net prímary production added annually 69.2 90.1 85.2 68.9 as peat-forming materíal Total net prímary production/total biomass, i.e., P/B 0.428 0.77 4 0. 378 0. 102 (B) Accumulation loss

Mean zonal decomposítíon rate during the ínítial year of decomposíËion 0.231 0.155 0. 218 0.277

(C) Net accumulatíon Length of accumulatíon períod (years) 2960. 7939. 4524.

PresenË peat depth (cm.) 57 .5 106.5 206.5 166.0 L45565.4 Present peat weight (e . /^.2) 10645s.5 10s498.9 2297L0.6

2 ÀAt9zo-t9zt (gm. /rn. lyt.) 830.5 1"423,2 632.9 336.6 AA tgzo-tg7L / Total neË primary production 0.517 0. 735 0. 643 0.48s AAt 0414 (height) (cm. 0.0279 0. 0255 0. H lyr.) \j \o ÀA* (weight) (g*/r. 2 lyt .) 5L.7 26.8 36. 3 180

Fígure 16. Numerical values for both net primary production and the annual accumulation of peaË ín each of the four vegeta-

tion zones. All numerÍcal values shown are in grams per square meter.

(A) Bog Forest zone

(B) Muskeg zone

(C) Bog zone

(D) Lagg zone : ( :cPn)i

t8 r=r ô=r'"' || t ( : cÞi)i NET PRrwYro'N I i

¡ .rs.o (rcb;) +(rce;)l r rr - rËcpir¡, -.] i io;r I I l=i+l ñ:l ñ=l I a l_-TõÏL sseiiu-F uilEtr---l

(teñt+t:cañ))i 15E t : (:cbñ) + ( t coñ))i i=¡ .:t o=¡ fø'L acc'N

t ( tcPn )i t ( :cpn)r

L s2a.â Ir35l tt * (tcpi)\ -l : :cojl | ! tr 3co;r *ticoirr, I t=¡+t ñ=t n:t I I 1ôlÁl VÀSCUI AR LrTÉR I - l._

15A (t6n)+rtcÞñ))i 5B E ( tcb") + (: cÞn))¡ Tfr'L ACC'N Chapter IV

SUIN,NNV AND CONCLUSTONS l Bi-

In the preceeding pages an effort has been made to ans\¡rer the two basic questíons posed in Ëhe íntroduction, i.e., what is the net prímary product.ion of peatland vegetaËion, and whaË fracËion of productíon is subsequently accumulated annu- a1ly as peat? In the present study both quesËions were asked of four peaËland vegetaËíon types - a marginal lagg' a tïeeless bog, a muskeg, and a bog forest. All were found ín close proximity' and represented different seral sËages ín Ëhe process of peat- land successíon in souËhern Manitoba. This added anoÈher di- mensíon Ëo Ëhe problem, wíth the aím of the current study beíng

Ëo esËablish numerical relationships beËween peaËland production, accumulaËion and tíme. The simple equation ttaccumulation = income-losstt was first expanded and presenËed in Ëerms of a block diagram to define all potential sources of boËh income and 1oss. Numerí- cal values l¡reïe atËached to each of the blocks in thís scheme to solve the accumulation equaÈíon in each of the vegetaLíon types examíned.

"Incomett ín thís equation resulted from the annual pro- ducËion of dry matter ín surface vegeËation, íËs death at Ëhe end of Ëhe growing season, and subsequenË accumulaÈion as ttlittertt. 183

The annual net prímary production of vegetaËion in each of the four zones \"ras measured on an índívidual basis. This in- volved establishing dry weight values for current producËíon Ín each of the comporienËs of índívidual plants. Time linítations prevented the desired degree of accuracy (standard error of t LOT") from being achíeved in all measurements, e.g., radial stem íncrements. All species considered to be ímporËant con- tributors to zonaL neÈ primary productíon were studied on an indívídual basís. "Indivídual'r sampling r¡ras carried out aË regular inËervals through an entire growing season, whích a1-

1or¿ed maxímum producËion values to be derived for each compon- ent, and also allowed the pattern of dry weíght íncrease to be plotted. The majority of species had a sigmoíd growth curve.

The variatíon among weekly production values in the upper plat- eau porËíon of Ëhe curve could be reduced by increasing the number of planÈs sampled at each date.

The assumption that the relaËive producËivíty of a specíes was related to iËs frequency üIas orígínally used to delimit "important" and "1ess imporËant" species in each of the four zones. This assumption \^ras verÍfíed by comparing specíesf rankíngs based on relative frequency and aerial pro- ducËion. YeË, comparison of the absoluËe neË producËion vâlues of the same species in two or moïe of the zones examined, indi- i84 cated that differences existed both ín plant density and in

índívídual plant productíon. These differences suggested Ëhe existence of. zona]- microenvironmenÈs.

Such differences also indícaËed that values of both density and índivídual plant productíon musË be known before any conclusions can be drawn concerning the productíon poËen- tía1 of a species. ToËal aeríal net primary produetion in each of the four zones was calculated as the producÈ of the sum of important species I production and a correcËíon factor for the productíon of unmeasured species. This correction was calculated on Ëhe assumpËion that unmeasured species had a productíorÌ mean equivalent to the average value of Ëhose specíes in which pro- duction \4ras acÈually measured. Aerial productíon Ëotals were , greatest in Ëhe heavily Ëreed zones, i.e., Lagg (1026 gn./m.') and Bog Forest (482 gn. /-.2), with smaller totals recorded in

Ëhe Bog (371 gm. l^.2) and Muskeg zones (342 eu.. /^.2). Since noË all measurements were made with the same degree of accuracy' dífferences in the magnítude of zorra1- toËaIs was of greater ín- teresË Ëhan were the absoluËe val-ues of Ëhese riet production totals. While the moss component of vegeLation formed almost a contínuous layer in the Bog, Muskeg, and Bog Forest zones' up 185 to 95% of the aerial dry maËter produced annually \^7as conËríbuted by vascular species. However, rl.on-vascular productionr espec-

íally Sphagnum production, may have been underesËimated, since sorne diffÍculty hras erlcounËered in dístínguishíng beËween new and old growËh.

The neË prímary production of subsurface components \¡7as calculated directly for each zone. Values of the subsurface bíomass/aeríal biomass ratio \¡lere greater than uniËy ín both the Bog and Muskeg zorles, indícatíng a high percentage of total productíon Ëo be associated with these subsurface portions. The greatest subsurface net production toÈa1 , |146I-1 gm. f^.2 ,as r"- corded in the Bog zone, wÍth a mínimum of 186.9 gm./rn.2 ín the

Bog Forest. The aerÍa1 plus subsurface net primary producËion total was also maxímum in the Bog zone, \g43 gm./rn.2, while values of the same toË41 declined through the other three zones

Ëo a minimum of 710 gn./rn.2 in the Bog ForesË. These calculated net productíon totals were much greater than Ëhose previously reported.

The results for aerial production in Ëhe current study

\^rere comparable Ëo existing literature values. Iri contrast, values for subsurface production, and consequently for the toÈa1 of aerial plus subsurface produCËion, hlere much greater than previous estimates. However, iË was suggesËed that Lhis may 18b have been partly due Ëo the method of analysis. Thís indicates

Ëhe need for a suítable, YeË accuraËe method for the estimation of annual root producËíon for use in future studies. Combíning the above production toËals with biomass val- ues Ëo form production/bíomass ratios (PlB), allowed some ím- portant conclusíons Ëo be drawn concerning the directíon of secondary successíon in Ëhe four vegeËatíon types. It has been prevíously inferred that the amount of bíomass suPported per unít of production increases wiËh succession to become a maxi- mum in the climax situation (odum, L969, p. 263; Margalef, 7963, p. 360). If this is the case, then P/B values calculaËed in the present study indicated a successíon of vegetatíon Ëypes proceeding from the Bog, Èhrough Ëhe Muskeg, to a Bog Forest- type of vegetatíon, as previously hypoËhesízed by Moss (1953a' p. 222). lilhíle the lower P/3 value of the Lagg zone suggested it to be moïe mature Ëhan the Bog zoÍte, ín the presenË situatíon it was thought that bog vegetaËion replaced lagg vegeËation as peaË accumulated and bog vegeËation spread inËo surrounding ar- ',iþl eas. Therefore, the couTse of secondary Succession occurring in the sËudy area is belíeved to be Lagg -> Bog -> Muskeg ->

Bog Forest. According to the accumulation scheme, a portíon of aerial L87 net prímary productíon ís added Ëo the surface of the peatland at the end of the growing season, whíle subsurface production

ís added directly to former peat Teserves. Aeríal 1ítter amounted to a minimum of. 49il of annual net primary production in each of the four zones, while includíng subsurface lítter raísed this minímum figure to 697..

t'Loss" in the accumulation process ís due primarí1y Ëo the decomposition of planÈ litter. The initial decomposiËion weight loss recorded for vascular leaf litter T^las greater Ëhan the corresponding loss occurring in non-vascular species. There- fore, even Ëhough the initial litter conËribuËion made by bryo- phyËes was smaller than Ëhat of vascular species, after several ye.ars of decomposition ïron-vascular remains would eventually form the bulk of accumulated Peat.

On a zorra1- basís, approximaËely one quarËer of the or- ígínal 1ítter was lost during the first year of decomposiËíon, with the aveïage initial decomposíËion rate increasing wíth succession, i.e., from the Bog to Bog Forest zones. This favours the hypothesis that in the clinax siËuation "loss" equals ttíncomett. The fact thaË Èhe average zona]- decomposÍtion rate does not remaín consËant with time is of great importance when con- síderíng the possibílíty of calculaËing equilibrium accumula- lBB tion totals from models based on geometric progressions. The models of Jenny et al (L949>, Greenland and Nye (1959) and

Olson (1963) assume both constant litÈer production and initial decompositíon rates, while neiÈher appeared to remaín consËanË over the successional period in the currenË study. Unless the funcËíon defining the relatÍonship between litter producËion, ínitíal decomposiËion ïaÈe and Èíme are known, Ëhese accumula- Ëion models should noË be applied. The fact that succession

\^ras not unídi-rectíonal in the present, study prevenËed the re- lationship between each of Ëhe Ër¿o variables and tíme from being esËablíshed.

The empiríca11y derived values for both "íncome" and ttlosstt \^rere used to solve the accumulation equation ín each of the four zones. After one year of decomposiËíon Ëhe amount of peat-forming material present ranged from a maximum of I42B grn./m.2 ín the Bog zone, Ëo a minímum of 345 gm./in.2 in the Bog ForesË. Thus, the relationship between surface accumula- tion and successíonal Ëime is similar to ËhaË between zonal net primary productíon and time, i.e., Bog > Lagg > Muskeg > Bog ForesË. A relationship between annual neË primary production and the resulting surface accumulaÈion was deríved by dividíng the surface accumulation ËoËal by the neÈ prirnary producËion ob- 189 served in the same zone. Thís ttsurface acctrmulation ratiott r¡ras a maxímum in Ëhe Bog zone, where almost three quarters of the original net primary production stí11 remained after one year. A mínímum value of 0.48 was recorded ín the Bog Forest zone.

Since decompositÍon had not been completed in Ëhe litter afËer one year, Ëhen Ëhe fraction of iníËia1 producËíon everit- ually accumulaËed as inert peat would be considerably 1ess.

An approximaËion of the annual- accumulation rate of inerË peat \nlas provided by radiocarbon-dating a porËion of the peat accumulated during previous years. The range of values indicated by Ëhís C-14 dating, 26.8 - 51.7 gn. 1..2, represented less Ëhan one Ëenth the value of original production ín any of the four zones examined. Reducing Lhe zonat value for materíal remaíning after one year (Rti) by one order of nagnítude pro- vides a reasoriable esËímaÈe of the relaËive amount accumulated annually by each vegeËation Ëype. CalculaËíon of the actual amount of peat forued by each vegeËatíon Ëype woul-d requíre an examinaËion of the decomposí- tion process over a number of years. Such an examinaËion would provide values for Ëhe decomposition and accumulation raËe of peat forned ín previous years, i.e., Kt'and Af, which \^7ere noË calculated in the present sËudy. Tirne línitaÈíons prevenËed 190 this from being undertaken. Ileinselman (1970, p. 259) has re- cenËly emphasized the need to also understand the chemícal and microbial factors regulaËing the raËe of peat accrunulaËion and decay, for these factors regulaÈe the Ëopographic evoluËion of surface vegeËatíon types. An investigation of abíotíc influences on Ëhe rate of accumulation ín the four zones is suggested. Thus, while t,he presenË sËudy has provided a parËial soluÈíon to questions concerning Ëhe rate and amount of peat accumulation, questions concerníng the ttholnltt and ttwhyrr of peat accumulaËion

sËi1l have to be answered. &tBLIOGRAPI{Y L92

Anderson, S.M. 1960. An investígation of soil vegetation rela- tionships ín Southeastern Manitoba. M.Sc. thesis, University of Manitoba. iii + 129 pp.

BannaÈyne, B.B. 1964. Preliminary survey of bogs for peat moss in SoutheasËern Manitoba. tr{innipeg: Manitoba Department of Mines and NaËural Resources - Mines Branch. IV + 43 pp. Barclay-Estrup, P. L970. The descríption and interpretation of cyclical processes in a heaËh conmunity. II. Changes in bíomass and shoot productíon during Èhe Cálluna cycle. J. Eco1. 58: 243-249. Bay, R.R. 1967. Interpretation of fundamental hydrologic relation- ships of forested bogs ín northern Minnesota. Ph.D. thesis, University of MinnesoÈa. vii + 116 pp. 8e11, H., and J. Burchell. 1955. '!üínLer resting stages of certain Ericaceae. Can. J. Bot. 33: 547-561. Bellamy, D.J. 7966. Peat and íts importance. Díscovery 27i 12^76.

and J. Rieley. Lg67. some ecological sËaËístícs of a "miniature bog", oikos 18: 33-40. Blackman, G.E. 1968. The application of the concepts of growth -, analysís to Ëhe assessment of productíviËy. FuncËioning of terrestrial ecosysËems at Ëhe prímary productíon leve1. Pro- ceeding of the Copenhagen syrnposium. Ed. by F.E. Eckardt. Liège: UNESC0. p. 243-260. Blíss, L.C. 7966. Plant productivity in alpine microenvironments on Mt. trüashíngton, New Hampshíre. Eco1. Mono. 362 725-L55.

Bocock, K.L. L964. Changes in the amounts of dry maËter, niËrogen carbon and energy in decomposíng woodland leaf lítter ín re- 1aËion to the activities of the soí1 fauna. J. Ecol. 52: 273- 283. Bonner, J. 1950. The role of toxic substances in the interacËions of higher planËs. Bot. Rev. 16: 51-63. Bourdeau, P.F. Lg5g. Seasonal variations of the photosynthetic effíciency of evergreen conífers. Ecology 40: 63-67. 193

Bray, J.R. L961. Measurement of leaf utilizatÍon as an índex of minímum leve1 of primary consumpËíon. Oíkos 12: 70-74. _, and E. Gorham. 1964. LítËer productíon in forests of Ëhe world. Adv. in Eco1. Res.2:1-02-157. Burke, Ìü., and P.J. OrHare. 1962. Problems of peaËlands. TransacËions of joint meeËing of commíssionó. Internatíonal Soc. of Soil Scí. New Zealand. IV & V. p. 647. Car1is1e,4., A. Brown, and E. I,'Ihíte.1966. Leaf fal1, leaf pro- duction and effecËs of defoliatíon by TorÈux viridâna in a sessile oak woodland. J. Eco1. 54: 87-98.

Carpenter, J.R. L956. An ecological díctíonary. New York: Hafner Publíshíng Co. VIII + 306 pp.

Chapman, S.B. 1967. Nutrient budgets for a dry heaLh ecosystem in the souËh of England. J. Eco1. 55: 677-689. . L970. The nutrient contenË of the soíl and root sysËem of dry heath ecosystem. J. Ecol. 58: 445-452. clymo, R.S. 7965. ExperimenËs on breakdor.¡n of sphagnr:m in two bogs. -a J. Ecol. 53: 747-757. . L970. The growth of Sphagnum; Methods of measurement. J. Ecol. 58: 13-49. cooper, w.s. 1913. The climax forest of Isle Royale, Lake superÍor, and íts developmenË. Bot. Gaz. 15: 189-235.

Cormack, E., and C.H. Giníngham. L964. Litter producÈíon by Calluna vulgaris (t.) Hu11. J. Ecol.52t 285-297. Cot|am, G., and J.T. Curtis. 7956. The use of dístance measures in phyÈosocíological samplíng. Ecology 37 z 45I-460.

Crossley, D.A. L963. ConsumpËion of vegetation by insects. Radío- ecology. Ed. by Schultz, V. and Klement, A.W- New York: Rein- ho1d. p.427-430.

Crun, H., trü.C. Steere, and L.E. Anderson. L965. A lisf of the mosses of North America. The Bryol. 68: 377-434. L94

Curtis, J.T., and R.P. Mclntosh. 1951. An upland foresË coritinuum in the praírie-forest border regíon of I,Jisconsin. Ecology 32: 47 6-496.

Dachnowski, A. 1913. The peat deposÍ-ts of Ohio: theír origin, formation and uses. (revíewed) J. Ecol. 1: 286-292.

. L924. The stratigraphic study of peat deposiËs. Soí1 Scíence 17: 107-133. . L925. Profiles of peaË lands r¿ithin linits of exÈinct glac- ial l,rke Agassí2. Bot. Gaz. 80: 345-366.

Dahlman, R.C., and C.L. Kuera. Tagging naÈive grassland vegetatíon with carbon-14. Ecotr-ogy 492 L799-1203.

Davies, J.F., B.B. Bannatyne, G.S. 3arry, and H.R. McCabe . Lg62. Geology and mineral resources of Manj-toba. I'Iínnipeg; Manitoba Department of Mines and Natural Resources - Mines Branch. XIV + 190 pp. Dansereau, P., and F. Segadas-Vianna. 1952. Ecological study of the peat bogs of eastern NorËh Ameríca. I. Structure and evolution of vegeËation. Can. J. 3ot. 30: 490-520. Davis, C.C. 7963. On quesËíons of producËion and productívíty in ecology. Arch. Hydrobiol. 59; 145-161. . L967. Circulatíon of matLer versus flor¿ of energy in pr"a"ctíon studies. Arch. Hydrobiol. 63: 250-255.

Deevey, E.S. 1958. Bogs. Sci. Amer. OcÈober, p. IL4-720. Dubos, R.J. Lg28. Influence of envírorunental condiËions on the acËivíty of ce1lulose decomposing organisms in the soi1. Ecology 9: L2-27, Durno, S. I96L. Evidence regarding the rate of peat growth. J. Eco1. 492 347-35L.

Edwards, C.4., and G.I,ü. Heath. 1963. The role of soil anímals in breakdown of leaf material. Soil organísms. Ed. by Doeksen, J. and J. VanderDríft. p. 76-84. 19s

Engelmann, M.D. !966. Energetics, terrestrial field studíes and animal producËiviËy. Adv. Eco1. Res. 3: 73-7L5.

Forman, R.T.T. L969. Comparison of coverage, bíomass, and energy as measures of standing crop of bryophytes in varíous eco- systems. 8u11. Torrey 3oË. Club 96: 582-591. Frankland, J.C. 1966. Successíon of fungí on decayíng petioles of Pteridium aquílínum. J. Eco1. 54: 4I-63.

Fraser, D.4., and D. McGuire. 1969. Total gror¡rËh of a black spruce (3&gg maríana) tree at Chalk River, Ontario, Canada. Can. J. Bot. 472 73-84.

Freeland, R.O. Lg44. Apparent photosynthesis in some conífers during the wínËer. Pl. Physíol. 19: 179-185.

GaËes, D.M. 1968. Towards understanding ecosystems. Adv. Ecol. Res. 5z L-25.

Gates, F.C. L942. The bogs of northern Lower Michígan. Eco1. Mono. L2: 2L3-254.

Geíger, R. L965. The climate near the ground. Canbrídge: Haryard University Press. XIV + 611 pp.

Gilbert, O.J., and K.L. Bocock. \962. Some methods of studyíng the dísappearance and decomposition of leaf lítËer. Progress in Soí1 Zoology. Ed. by P.lü. Murphy. London: ButËer\nrorths. p. 348-352. Gore, A.J.P. 1968. The supply of síx elements by rain to an upland peat area. J. Ecol'. 56: 483^495

and J. Olson. 7967. PrelimÍnary models for the accumu- laËion of organic matter in an Eriophórum/Calluna ecosystem. Aquí1o Ser. BoËanica 6: 297-313. Gorham, E. 1957. The developmenË of peatlands. Quart. Rev. Bío1. 322 145-766.

Greenland, D.J., and P.H. Nye. 1959. Increases in the carbon and nitrogen contents of tropical soils under natural fallows. J. Soi1. Sci. 10: 284-99. 196

Hadley, 8.8., and L.C. B1íss. L964. Energy relationships of alpíne planËs on Mt. trüashíngton, New Hampshire. Ecol. Mono. 34: 331- 357 .

Ilale, M.E., and lü.L. Culberson. L966. A thírd checklist of the líchens of the continental United States and Canada. The Bryol. 692 L4L-L82. Heath, G.H., L.C. Luckwill, and O.J. Pu11en.1938. The rooting syst- ems of heath plants. J. Eco1. 26: 331-352.

Heitrman, P.E. 1968. Relationship of availabílity of phosphorus and cations to forest succession and bog formatíon ín interior Alaska. Ecology 49: 331-336. Heinselman, M.L. 1967. Black spruce on the peatlands of former glacial Lake Agassíz and adjacent areas in Mínnesota. Ph.D. thesís. Uníversity of Minnesota. 328 pp. . L963. Forest sít.es, bog processes, and peatland types ín the glacíal Lake Agassiz region, MinnesoËa. Ecol. Mono. 33: 327 -37 4 . . 7970. Landscape evoluÈíon, peaËland types, and the envír- onment in the Lake Agassiz peatlands natuta1- area, Mínnesota. Ecol. Mono. 4Oz 235-26L

Jeglum, L. 1968. Lowland vegetaËion at Candle Lake, southern boreal foresË, Saskatchewan. Ph.D. thesís. University of Saskatchewan. XVII + 251 pp. Jenny, H., S.P. Gessel, and F.T. Bingharn. 1949. Comparative study of decompositíon rates of organic matter in temperate and tropícal regions. Soil Scí. 68: 4I9-4j2. Johnson, G.A.L., and K.C. Dunham. 1963. The geology of Moor House. Monographs of Èhe Nature Conservancy Number Two. London: H.M. SËationery Office. KilberËus, G. L968. Décomposition dtune mousse: Psèudoscleropodium purum (ttedr'r) Fleísch. dans la nature. Bu11. de lrEcole Nation- a1e Superieure Agronomíque de Nancy. Tome x. Fascicule 1: 20-32. t97

Kímura, M., I. MoËotani, and K. Hogetsu. 1968. Ecologícal and phy- siological studies on the vegetation of Mt. Shimagare. VI. Growth and dry matter producËion of young Abíes stands. Bot. Mag. Tokyo 81: 287-296.

Leigh, E. L965. On Èhe relation between the productivity' biomass, díversíty, and stability of a community. Proc. Natl. Acad. Scí. 53: 777-783. Leisman, G.A. 1953. The rate of organic natt,er accumulaËion on the sedge maË zones of bogs in the lËasca State Park region of Minnesota. Ecology 34: 81-101 . Lg57. Further data on the raÈe of organic maËËer accunu- in bogs. Ecology 38: 361. Leíth, H. 1965. Indirect methods of measuremeriË of dry maËËer pTo- -lat'ionduction. Methodology of plant ecophysiology. Proceedings of the Montpellier Symposium. Ed. by F.E. Eckardt. Paris: UNESCO. p. 513-518. Lems, K. L956. Ecological study of peat bogs of eastern North Ameríca. III. Notes on the behaviour of Chamaedaphne calyculata. Cdn. J. 3ot. 34: 197-207. Longton, R.E. 1970. Growth and producÈíviËy of the moss PÓlytrichum alpestre Hoppe in antarcÈíc regions. Antarctic Ecology vo1. 2- Erl. by M.!I. Holdgate. New York: Academíc Press. p. B1B-837. _, and S. I¡I. Greene' L967. The growth and reproductíon of Polytríchum alpestre Hoppe on SouËh Georgía. Phí1. Trans. R. Soc. 3 252: 295-322. Loveríng, J.H. L961. Regional geography of the llhítemouth va11ey. M.A. thesís. Uníversity of Manitoba. x * 204 pp.

MacFadyen, A. L948. The meaning of productivity ín biological systems. J. Animal Ecol. 17: 75-80.

Maggs, D.H. 1960. The stability of the growth pattern of young apple-trees under four levels of i11umínaËíon. Ann. Bot. N.S' 242 434-450. Malone, C.R. 1968. Determinatíon of peak standing crop biomass of herbacious shoots by the harvesÈ method. Amer. Midl. NaËur. 79: 429-435. 198

Manson, P.W., and D.G. Míller. 1955. GroundwaËer flucÈuatíons in certain open and forested bogs of northern Minnesota. Uní- versity of Minnesota Agr. Expt. Sta. Tech. 8u11. 21-7-29 pp,

Margalef, R. 1963. On certain unifyíng príncíples ín ecology. Amer. NaËur.97:357-374. Mikola, P. L954. Experiments on the rate of decomposítíon of forest lítter. Communications intituí forestalis Fenniae 43: 1-50. Milner, C., and R. Elfyn Hughes. 1968. Methods for the measurement of the prímary production of grassland. I.B.P. Handbook No. 6. Oxford and Edínburgh: Blackwell. XII + 70 pp

Minderman, G. L969. Addítion, decomposition and accumulatíon of organic matter in foresËs. J. Ecol. 562 355-362.

Mooney, H.4., and trü.D. Bi11ings. 1960. The annual carbohydraËe cycle of alpíne plants as related to growth. Amer. J. Bot. 47:594- 598.

Moss, E.H. 1953a. Forest communities ín northwestern Alberta. Can. J. Bot. 31: 2L2-252. . 1953b. and bog vegetation ín northwestern Alberta. Can. J. Bot. 31: 448-470. and G.H. Turner. L96I. Bryophytes from the Edmonton regíon, Alberta. Can. J. Bot. 39: I777-\I93.

MuËoh, N., K.H. Yoshída, Y. Yokoí, ìf. Kimura, and K. Hogetsu. 1968- Studíes on the producËion processes and neË productíon of Miscanthus saccharíflorus connuníËy. Jap. J. Bot. 202 67-92.

Newbould, P.J. 7967. Methods for estimating primary production of forests. I.B.P. Handbook No. 2. Oxford and Edínburgh: Blackwel1. IX + 62 pp. . 1968. Methods of estimaËing root productíon. FuncÈioning of terrestrial ecosystem at the primary producÈíon 1eve1. Pro- ceedings of the Copenhagen symposíum. Ed. by F.E. Eckardt. Liège : IINESCO p. 187-190. Nichols, H. Lg6g. Chronology of peaË groTÍth ín Canada. Palaeogeo- graphy, Palaeoclimatol., Palaeoecol. 6z 6I-65. L99 odum, E.P. L959. Fundamenrals of ecology. 2nd. ed. Phíladelphía: I/ü.8. Saunders. XXVII + 546 pp. . 1960. Organic producËion and turnover in an old fíeld succession. Ecology 41: 34-49. 1968. Energy flow Ín ecosystems; a hisËorical review. Amer. Zoo1. B: 11-18. . Lg6g. The strategy of ecosystem development. Scíence 164: zoz-zlo. Oland, K. L963. Changes ín Ëhe conterit of dry matËer and major nutríent elements of apple folíage during senescence and abscission. Physiol. P1ant. 16: 682-694. Olson, J. Lg63. Energy storage and the balance of producers and decomposers in ecological sysLems. Ecology 44: 322-33L' . L964. Gross and net production of terrestrial vegetatíon. ----T-. ucol. 52 (Suppl. ) : 99-118. overbeck, F., and H. Happach. L956. Uber das trùachstum und den l,Jasserhaushalt eíniger Hochmoorsphagnen. F1ora, Jena L44: 335-402

OvingËon, J.D. L965. Organic production, turnoveÏ and mineral cycl- íng ín woodlands. Bío1. Rev. 40: 295-336.

Pearsall, W.H., and E. Gorharu . 11956. Production ecology. I. Standíng crops of naËural vegetaËíon. oikos 7: 193-201 Pearson, L.C. 1965. Primary productíon ín grazed and ungrazed deserË communíties of eastern Idaho. Ecology 46: 278-85. Prest, V.K. Lg65. Geology of Èhe soils of Canada. Soils in Canada. Ed. by R.F. Legget. ToïonËo: U. of Toronto Press' p' 6-22'

P'Yavchenko, N.I. 1960. The biological cycle of nitrogen and ash elements in bog foresËs. SovieË Soil Scí. 6: 593-601' Reiner, w.4., and N.M. Reíner. L970. Energy and nuËrient dynamics of forest floors in three MinnesoÈa forests. J. Eco1. 58: 497- 519. 200

Rigg, G.B. L925. Some Sphagnum bogs of Ëhe north pacific coast of Ameríca. Ecology 6: 260-278.

. 1947. Soil and air temperature of a Sphagnum bog of Ëhe pacific coast of North Ameríca. Amer. J. Bot. 342 462-469. _, and H.R. Gou1d.1957. Age of glacier peak eruption and chronology of post-glacial peat deposits ín l,üashingËon and surrounding areas. Arner. J. Sci. 255: 341.-363. RiËchíe, J.C. \956. The vegetation of northern Manitoba. Studíes in Ëhe southern spruce forest zone. Can. J. Bot. 34: 523-56I. Rodin, L.E., and N.I. Bazilevich. 1965. Productíon and mineral cycling ín terrestrial vegetation. Transl. ed. by G.E. Fogg. Edínburgh: Oliver and Boyd. V + 288 pp.

Scoggan, H.J. il957. Flora of Manitoba. Nat'1 Mus. Can. 8u11. 140. OtËawa: Dept. of NorËhern Affairs and Nat1. Resources. V + 619 pp.

Scott, D., and I/ü.D. Bíllings. 1964. EffecÈs of enviror¡mental fact- ors on standing crop and productivity of an alpine tundra. Eco1. Mono. 342 243-270 Sears, P.8., and E. Janson. 1933. The rate of peat growth in the Eríe Basín. Ecology L4: 348-355. segadas-vianna, F. 1955. Ecologícal study of the peaË bogs of east- ern North Aruerica. II. The Chamaedaphne cályculáta cornmunity ín Quebec and Ontario. Cdn. J. Bot. 33: 647-682- sjors, H. L948. vegetation in Bergslagen, Sweden. AcËa Phyto- geogr. Suecica 21. 299 pp. (In Swedísh, English summary)

Smírnov, N.N. 1958. Some daËa about the food consumption of planË producËion of bogs and by anímals. Proc. Int. Assoc. Límnol. 13 : 363-368 . . 1961. Food cycles in sphagnous bogs. Hydrobiología 17'z: tls-ß2. Smith, R.E.,I,I.A. Erhlich, and S.C. Zo1-taJ-.7967. Soí1s of the Lac du Bonnet area. Manítoba soil survey. Soítrs report No' 15' lüinnipeg:.ManíËoba Dept. Agric. and Can. Dept. Agríc. 118 pp' 20L

Solonevích, N. 1-963. The strucËure and producËivíty of certain bog plant cornmunitíes. Tr. 3ot. InsÈ. Aknd. Nauk. SSSR 3: 3-93. 3.4. 462 106L27.

SËarkey, R. 1924. Some observatíons on the decomposítion of organic matÈer ín soí1s. Soil Scí. 17z 293-31-4. SËenlíd, C. 1958. Salt losses and redistríbution of salts ín hígher plants. Encyclopedía of planÈ physío1ogy, Vo1. 4. Ed. by trü. Ruhland. Berlin: Springer Verlag. p. 6A5-637. Stewart, J., and S. Durno. 1969. SLructural varíaËions in peat. New Phytol. 68z 167-182.

Tamm, C.O. 1951. Removal of plant nutrients from the tree cro\,üns by rain. Physío1. Plant. 4: 184-8. . 1953. Growth, yield and nutritíon in carpets of a forest moss Gy]ggg4lgq spléndêns). Meddel. Skogsforsk. InsË. 432 1-140

Tansley, A.G. 1939. The Brítish Islands and Ëheir vegetation. Cam- brídge: University Press. XXXVIII + 930 pp. Thíenemann, A. 1931. Der produkËionsbegriff in der bíologíe. Arch. Hydrobíol. 222 6a6-622 Traczyk, H., and T. Traczyk. a967. Tentatíve esËimation of the pro- ducËion of herb layer. Ekologia Polska - Sería A 15: 823-835. Traczyk, T. 1967. Studies on herb layer production estímate and the síze of plant fall. Ekologia Polska - Seria A 15: 838-867. . L967. A proposed new way of estimating the production of the forest herb layer. Ekologia Polska - Seria B 13: 242-241. Tsudaka, M. 1967. Pollen successíon, age and recurrence surfaces ín central Japan. Amer. J. 3ot. 542 821-831. , R. Del Moral, M. FÍtzgerald, S. Munch, and K. Schlichte. 1969. M-5 field trip: lowland Sphagm¡m-sedge bog and lake habi- ËaË. XIth InËernational Botanical Congress. (Mímeographed) 49 pp. 202

Turner, J. 1964. The anthropogenic faetor in vegetatíon hísËory. Tregaron and lnlhixall Mosses. New Phto. 632 73-90. Víro, P.J. 1955. Investigatíons on foresË lítter. Conmun. InsË. Eor. Finl. 45. 65 pp

I,rlaksman, S., and K. SËevens. 1929. Contríbutions to the chemical compositíon of peat. The role of micro-organísms i"n peat formaËíon and decompositíon. Soil Science 28: 315-340. trrlebsËerts 3rd New Internat.ional DíctÍonary of the Englísh Language Unabridged. 7967. Ed. by P. Babcock Gove. Springfield: G & C Merriam. 2662 pp. trrleetman, G. L968. The relationship between feaËher-moss groT¡rth and the nutrition,of black spruce. Proc. 3rd. Intl. Peat Congress. Ed. by C. La Fleur and J. Butler. Ottawa: Runge Press. p. 366- 370. and R. Harland. 7964. Fo1íage and wood production ín uft- thinned black spruce ín northern Quebec. ForesÈ Scí. 10: 80-88. trüestlake, D.F. L963. Comparisons of plant producËivíty. Bio1. Rev. 38: 385-425. . 1966. Theoretical aspecËs of the comparability of product- ívity data. Primary productiviËy in aquat.íc envíronments. Ed. by C.R. Goldman. Berkeley and Los Angeles: University of Cali- fornía Press. p. 313-323. trühittaker, R.H. 1961. EstimaËion of net primary producLion of forest and shrub communiÈíes. Ecology 42: 177-780. . L962. Net production relations of shrubs in the Great Smoky Mountains. Ecology 432 357^377.

and G.M. trüoodwell. 1968. Dimension and producËion rela- tions of trees and shrubs in the Brookhayen Forest, New York. J. Eco1. 56: 7-25.

-, and L969. SËrucËure, production and díyersity of oak-pine forest at Brookhaven, New York. J. Ecol. 57; 155- -itrãL7 4. -, . 1970.-. CommuniÈíes and ecosystems. Toronto: McMí11an. XI * t6Z pp. 203

I^Iílde, S.4., G.K. Voigt, and R.S. Píerce. \954. The relationship of soí1s and forest growËh ín the Algorna district of Ontario, Canada. J. Soí1 Sci-. 5: 22-39.

I,Ji11íams, G.P. 1968. The Ëhermal regime of a Sphagnum peat bog. Proc. 3rd. Int1. Peat Congress. Ed. by C. La Fleur and J. Butler. OËtawa: Runge Press. p. 195-200. llitkarnp, M., and J.S. Olson. 1963. Breakdown of confined and non- confined oak 1itËer. Oikos L4z a38-747. tr{o11ny, E. 1897. Die zersl:uzuîg der organíschen stoffe und die huinusbíldungen mit rilcksíchÈ auf díe bodencultur. 479 pp. tr'Ioods, F.W. 1960. Bíologícal antagonísm due Ëo phytotoxic root exudates. Bot. Rev.26z 547-569.

I,üoodwell, G.M., and T.G. Marples. 1968. Production and decay of litËer and humus in an oak-pine forest. and the ínfluence of chronic ganna irradiation. Ecology 49: 456-465. _, and R.H. I,lhíttaker. 1968. Primary productíon ín terresËríal communit.íes. Amer. ZooT-. B: 19-30. APPENDICES 205

A. Specíes identified in the study area Voucher specímens of the followíng specíes, collected from the peatland near E1ma, Manít,oba, have been placed in Èhe herbarium of the University of Manítoba. NomenclaËure and ar- rangement of vascular species ís aceording to Scoggan (1957), whí1e Ëhat of bryophytes is after Crum et a1 (1965), and for lichens, Hale and Culberson (1966). (a) Vascular species

Pínaceae Pínus banksiana Lamb.

Larix laricína (ou noi) K. Koch

Picea mariana (Mi11.) SSP. Gramíneae CalamagrosËís óánadensís (Míchx.) Nutt. Cyperaeeae Eríophorum spissum Fern.

Cárex aquaÈiIis tr{ahl.

Carex canescens L.

Carex rostTata SËokes Liliaceae Smilacina Ërifolia (L.) Desf. Salicaceae Pópulus balsámifera L. Populus Ërémuloides Míchx.

Salix bebbiana Sarg. Salix pedicéIlarís Pursh. var.

hypoglauca Fern.

Sâ1ix petiolaris Sm. 206

Salícaceae Sa1íx serissíma (nailey) Fern.

Salix pyrifolia Anderss. Salix dÍscolor Muhl. Setulaceae Alnus rugosa (Du Roi) Spreng. var.

qme¡licana (Regel) Fern. Betula glandulosa Michx. var.

glandulífera (Regel) G1. Saxifragaceae Ribes hirtellum Michx. Rosaceae RubuS idâeus L. var. sËrigosus

(l.lictrx. ) Maxíur. Rubus acaulis Míchx. Amelanchier alnifolía Nutt. Onagraceae Epílobium angustifolíum L. Cornaceae Cornus stol-onifera Míchx.

Erícaceae Lédud groenlandicum Oeder

Chamaêdaphne calycúláta (L.) Moench

Ka}iia polif o1ía trùang.

Andronédâ glaucoÞhy11a Link Gaúltheria hispídula (L.) Bigel. Oxicóccus quadrípetalus Gi1ib.

Vacciniurh ânguSËífolium Ait. Vaccinium myrtí11oides Michx. 207

Ericaceae Vaccinium vítís-idaea L. var. mínus

Lodd.

Caprífoliaceae Lonicera víllosa (Michx.) R & S var. solonis (Uat.) Fern.

Composítae PetasiÈes sagitËatus (Pursh) Gray

Petasites vitífolius Greene (b) Non-vascular specíes

(i) BryophyËes:

Sphagnaceae Sphagnum capillaceum (I,Ieiss) Schrank

Sphagnurn fuscum (Schirnp.) Klinggr.

Sphagnun mage11ânícum Brid.

Sphagnum rècurvum P. Beauv.

(-æ""" ¿gË")

Dicranaceae Dicranum polySêtun Sw.

Dicranum undulatum Bríd.

Aulacom.niaceae Aulaeorinium pâlústre (Hedw. ) Schwaegr. Thuidiaceae Thuidiun recogúítum (Iledw. ) f,ina¡. Helodium blandowíi (Web. and Mohr) ÏIarnst,.

Brachytheciaceae TomenËhypnum níténs (Hedw. ) Loeske EntodonËaceae Pleurozium schreberi (nri¿. ) ruirt. Hypnaceae Hypúum prátènse Koch ex Sprucel

1 Awaiting verification 208

llypnaceae Ptilium crísta-castrensís (Hedw. )

De NoË.

Hylocomniaceae Hylocomium splendens (Iledr^r. ) B.S.G.

' Polytrichaceae Polytríchum commune (Hedw. )

Polytríchum juníperinum Hedw.

var . gracílius l,üahlenb. (ii) Lichens Cladoníaceae Cladonía carneola (Fr.) Fr.

Cladonia cenoÈea (Ach.) Schaer.

Cladonia cristatella Tuck. Cladonía gracj.lia (L.) Wíl1s. var. dilatata (Hoffm.) Vaín.

Cladonia mitis Sandst. Cladonia multíformis Merr.

Cladonia rângiferina lüÍgg. 209

B. Data processíng by digíta1 computer

The Ëremendous number of calculations required to calc- u1aËe producËíon and accumulation Ëota1s in the cuTrenË study

1imíts the feasibilíty of applyíng a similar Ëechnique in other sítuatíons. The dígita1 computer proved to be a partial solu- Ëíon Ëo this problem.

A computer prograrune, writËen ín ÌüATFIV to accompany the origínal scheme (Figure 4), handled the fína1 portíon of the data processing ínvo1ved. Input Ëo Programme 3 consisted of net primary production values (g*./*.2¡ tor eomponents of all important specíes in each of Ëhe vegetation zones studied. Ilhen corresponding biomass and 1ítter values were also supplied, the fína1 result \¡zas an ouËput of. zonaL neË primary production, bíomass and surface accumulation totals, as well as ratios ex- pressing the relatíonshíp between annual neË productíon, bío- mass and accumulatíon.

Explanatory conments have been ínserËed 1ibera11y throughout the lísting of the programme to índicate what calc- ulatíons are beíng performed. Symbols employed are those in-

Ëroduced in Fígure 4. Programme 3. Calculating the annual net prímary productíon, biomass,

and surface accumul-ation rate of peatland vegetation

according to the scheme presenËed ín Figure 4. t plr-ìGR.{\,,lr,l.i l 2rt {: THIS PF,IGïr,/li'414i: iS WiìITl'¿N itj ,r-Jê,TFIV F{-lA îHl; 'i B.i4. 3óû*ó5 L pF.OnUCTlÛ\: rr û,{LciJL,xrl:j5 îH1,i *,r\lti ÈlrCCUMtJLlìTI üfl üF VlrìG1':.T.STI U¡,t i$i rå P#AT!-Ailli ËCilSYSTi:¡"1 C C ¿,LL llU;\4|:RlCÅL \,/åLU{iS Èrii' I[t GRAiqS PËF. SQUA.Ëi: M*Ti:F

L tH,{È.Ât Ti;ii'l.B * î I TLli I lilTr,îÊ,îfì':.4 \l:llS / ,fiUT /6/ LnGïC,åLY..1 ûK iì*.41{'4 Ctif P 124 t 5 } r CLìlì F l ?4: r *] *.n,ç.e4 } , piìiJD l Zi-l o ptì.trüc { 24) qt4L*4 SUllPiif (4) rSUSîBL {4) ì,¡,,.rr..' :,r R.I AL +1+ :.r ULìDffC { 4] R I $L {'4 CZ | 2 4 J C4 B ( r { } r C 61 24 ) r C B { I } r C IÐ t 4 } r C I 3 4l , C. 15 | +l , C t I { B } , {( Cf9 (B } rC21{B } rC'21141 t(.24{4) tC27 tBl tC?-9t 4}?C30(4} rC.l3{ 4l + C3627{ 8} r (,3629141tQ363Al4l tC3â3314t ¡C39 {+) t.. 'C25l4I rACH I¡'4PilrìTÅ[]T sPÍ:ciiis TS GTvtri! A coDËD i\ui4siR {ûl-15}r L, I,JTT}-I STiIITLT¿I,iì SPTCTIS HÅVif'IT THË sAMi.i CLA,SS-. I Pf:F"üi\'li\T.â.L I'ld0 .5*r'4 I Lri::CI DUüIJS { ß ) nR D{:C IDUU|"JS(Å, }, I Tili; 5,4'14ìï TYPf,:-V*,SCULÅi:.(+) t,q NnþJ-V,ASCLtL4R.(* ), ,$,Ì{D Ti-l* Srir'4rr Znf!il-BíJr-j i:üÊ.li5T{ 1) r¡4USKliG{2) ?BnG{3} rÅilD LAGGI4}" L THI5 Iìi:slJLTS Tt\i 24 zi:t"J$:*Typr*cLÀss-spIcif:s Çí]MBIt.tATTutJs

t 1+Bl5 PTIi:À t4¿ìliIii.írl¿\ {i\4ILL,) BSp. BCG ËÛiiËS1" t l+808 Li:Ðri:4 GÍiCËiNLtrNilfCUf4 ttrÐ[R BTG FÛ'ÀTST 1'*ßn4 PL,{:Ulf,jZ I UM SCHftìïB*R { BË.Tt}" } t4IîT I " BI]G FfIÑfiST 2+í115 PII:1;h 1.4;lf:i¡,i\l¡, (Ì4ILL.) BSp" IJIUS r KI;G 2+8OE LíÈDU14 GIì[]i:NL,âI.JDICU}4 CrDåìII ¡4IJSK ËG r 2+346 CH.Âþ1AXit-1.åpl-.t,\jf. cÅLycuLAT,À ( r L" l i4ûryflcH i']USK iG 2+BIO Vê,CCII.,]IUI,ì VTT]S.TDAi;!1i L. VAR. MTi..IUS LilÜD" MIJS KiJG L 2+BQ7 K¿,L¡,1IÁ. Pf;LI F{-'lLl15 hjl't-.1G. 14 USK,:G 2*4,35 5p!-1.e,çr\iuM FlJsc.tJM {scHTi'ltp. } KLIttGGiì" ¡4USKriG t 3+8Ð6 C!-.lS,MiìË{iÂpHNìri CALyüUL,XTt { L. }MügNCH BOç 3+Bú8 L[D'rJ14 Gi?nËji\iLAl'.JDTCtJM û'{D[+? tsCIG f 3+8CI9 I]XYCOCCiJS QU/j,DËTPi:TÅLIJS GTLIB" BÙI; a 3+Bltl VÀ{:.CTF¡Ii_Jt1 VI:f TS*1Dåi.åi L" V,Ap t4IhlUS L'tDü. Ð rì/- t¡ " 3+$rl7 KÄL r4i PflL I F{}LI Å 1,.¡Å1,tìGo , BÜG L 3-8Ol .åtJL¡\CflMhiTUM PÂLUSTÊf;{HiìDhJ, } SCHhl¡\*Gp," BilG c 3*.803 Pi]LYTRTCHUII eñ/- J{,JilIIP{P. 1[IU¡4 H*D!,"J. V,Â,TI,. GF{A,I ILIUS U I-: IJ 3-¡,Û5 SPFIÁGt,lUÌq FUSCUM ISC.HI¡,1p. ) KLII'JGcR, f3ilG 4+BC6 CH.4,:vlÀå:D/:,pHl'ifi c¡,LycuLÅTå, { t-" ) þ1tìfr¡icH L A6G L 4+!,I4 5.AL TX Bi::'3ßI A¡.ti\ .S.ðRG, L1-"IJ¡J L 4+.À12 C¿\Rf; X RiiSTiql-\T/, STüKtis LAGG w 4+Å13 , Så,L IX SEf{IS5f ¡4A { BA.ILËy¡ FfÍ{¡j, LAUL] I CÅ.LA14ÅGIìcST 4+.,å.11 S CÅN,{Dtì\lS 15 { MICHX. } NUT.f LP. UlJ L ÀlJL,4CUf4rtiLJ[4 " 4*Bü1 P¿iLUSTftfi {Hi:Dt^J. } SCH,dÅilGf?" L 7-. \_t Ll L, 4*BC? IlYPNUþ1 P{:i,¡TilI.ISI KÜCH Ë:X SPR,UCË L ALrl.r

tHÅA ÄiCT'LR* L $/-flfilFi 1241 t $TYPfi t24l t$CLÅ. SS { e4 } cHilRÅ1CT ïil,{< I 1_CIhtii I Typ f cL,4s 5 CH.4R¡\(.TIfi*f $Züi\ ( I ), STyp{I}' CHÀfi,,¿rCTi:k.-';2 .SSPilC { 24 } CH¿\R,iCTi:R+2 S PüC t- C RfiÅÐ Thlç Ti\i ii-l* DATfc C,.åF.n ûËD;::R {:***-*-* C DATÄ $Zil¡lË / rLrr, Ir r s.l f , I ZE ¡, iÊ ?tZl ¡uZr tr2t eq2r,, | e * 3t, 3o r r3, ? 13¡ r l j,:t,fi jl r¡3tllitt'l 4rrr41 tí r4t 1r4' uu4o rr+t 1t4t r+! {*t t+r i)Â'Tê, 6TYPlîlt*t r r f r r+t ? ¡+¡ lo*¡lr+ft{-rr' .rt. t t | ¡ I I | r + e * , + , + , t + r , r.- ¡ I l* ! ç r- 1 , | + { , { + | + l*t ol+t rt,ir,t--t,l-t / D.À,T,\ SCLII 5S/rfJierBtr!errtRrrlßrrlBr?rFrrr$te¡.rlrre 2II | I f rq l r.{ r * Bf ,r B, r tBr, I Br r rBf r rBr, Bt r Är, r r *< tfr.rrf4rrlj:.rrrRrrrBt / tL5 tr rûBt tû6i¡rlOr nå.Tå SSPT::Ç/ ttû4or'I?!r-t,û"Str 'rC7r rrû5¡ I * | 0ótr ¡ 08r r | û9t r I lû+r1S?| r tû1t r rü3| s Ìû5¡ y tûór r I 14r r ?¡ tlZttrl3¡rrllirr3ltrl$Zr / DA,TA 6ZnN/ | lr, I Lt tr ?t i t2t ¡ rZt, t3:r r 4a, r4r ¡ ,$Typ/ r,,-r D,ÀTA. t+r, r* r, r¡r ? t-r rr.r-l rläf rr¡+l r / | | il'åT.A $*.1' ZTC!ì t /r $B/ t LFI' / z itl tpLP 2- /' $Ðl tFFp3 /r $i /' S? +t / | 'F$F/tRSD5t /tfiG/ f tílRFt /1çH/ |BIllMr/r$R/ÛPRilÐr/ cHAþì.aCTÊiÊ*5 $5/ | PFr.ûÐr. | /

C P9.TDUCTNG ,i TiTL{ CAfiI] FÛIì THi P'ìÏNT NUT c*^--"-*- rl I R,frÀi) { I l.l r lOl r!*Nl}=41 0û0 } TTTLn i¡dRIT*{ iluT r 1Ll2| T:rLl.1 101 F ü Rll4T { ,¿180 ) lû2 F0RM.AT(rlrrABÕ//l IJK=.TRlJ|: " C 199 FûR.|4ÅT(r rl c. -* C. C l-1.,ïADTNG Ii\ THjÍi D.4T¡+ rCHiiCK ll\lG Tt SF?i THAT TT IS Cf;DïD C{-i?R¡iCTLv c--**-'"-*

1*û 0 nn 1{]0 1 '1. =L ¡24 P^fi,r],il(tilrllû1) ZCI',I)ËrTYPÍ"j¡CL.¡\SSrSPl-iCr(C,UMP(lrJlrJ=lr5lrCÐli¡(ï)s * BitÈ4( I ), PF.nD ( I ) rPRùDC{ I} C CCIMP{ l rJ ) = Pi?üDUCTI{if.i V,4LUf:S tdGT/Ll\lIT ÅRäé, FtlP. FiVt A'i;RIÁ.L f Pt_ Ê,N;T Ctìt4Pi-ì\ritillTs C CilF.F{I) = Cll{ì.Ri:1CTIill\ F,eCT*iì. USfiÐ Tû.àCCiIUNT F[ìP. Pir.i]l"rUCTiili\l C ilY UhlMf,iiÌ.SuRgn SPi;ìtlilS C BTüÞ1{ I } = Ti-}'l',4L f}Ifit.l.a,SS ('¡lGT/Uil{IT /iR*:Èt} nF rl#RIål- PLÂNT CilMpfi.È.li:ì¡.iTS C pnnD{ I ) = TilTÀL iìlcT/l.jN 1T Å\Ai:,*. üF AilF. LAL C0l4plNfNTS ¿\DÐ;ìil TO Pfnl.T C PRtiDC { I } = TüT,a.L þJtTlUhil T 4ft.Í:;Ê, üF ,åL:RI AL Ct¡1Pnßli:i\il-S AûDlJi:.ì Tû Pth'I j f, lìIi\U.S ilí:CLiNiPnSITION h,ËT0HT LDSS ilvf::{:r. CJNI': Yii},f},rS TIi"li:= 1 lt1 FilR!'{,¡XT { 3Al. rÅ.2 r5Fl "2¡,Ê6o 3 t3F7 "Zl j{ì{ (¿uNil.',jQ"$zßNñ(T ) I "l,,ND" {TYP.{"frÇ.$îYpl*t I} } .nåhlÛ" ¿< {CLÅSS"üQ.$CLÊ,SS{I}} .AÌ\û" (SPl':C.SQ.$SpËC{l}} } üil TU lût1 0¡l* A CHÀRAtTfß VÂßi,ÀBLii IS t,S[:D i^IITH À RírLATïûrlAL CPf:R,{TCn 0f{*AcHÊ.R,ACT{lF.VÅ*'lÀnLí:ìT5U5riD'{TTHÅ'F.ËL,sTILìNÅL,fPi'T..íìÀT|q 1,"lITH fli\l* ¡' CHÀRACTËR V.å'q,IÅBLIi: TS U5ì:.D A R'HLÅT:tnNAL 'fpTiRÀTOÈ, r. ûf'jj. /i CHÉ\RAüfi:R V¿!fìiÅBLdi 15 U*qí::D l"liTH  R.äLÀTICIN¡,L ilprr:RÀTUË, l¡|R ITï ( llUT r I102 ) I FÂLSH. ''lK=" 1102 FüF,t'l,t\T{ rû*.*,iRRt*lß',i.ì. CDLS t-5 0F ii\PUT CÂ',lD¡ rT31¡Üi:'!llt f r cllicK¡ } It0l cû.iltTi\uiï , TF(.N,]T"ÇK} STCP C C nUT THH Df\T/r If,lpUT FûR iÏ,{CH SP#f,ÏHS { 'rd,t.IiT¡lG C i^IRITË(D{JTr199) ,::,,. ( ',"1.rr, I TH !UT r777 ) $¿\' $Br$Cr -$llr $ir SF r $Gr SHr $flr 777 FtR-14.{T { | n r4,4,4Y,r4{i:,4r 3X} rA4r I Xr"44i4Xr2 (dr4 r3Xl rÊ,51 tt2û DD I14t I=1r24 ','llìTT!:tlUTrl!-2f SZ'-ìíri';{ I) i}r$[LASStI I $SPl:Ð{ ï } ¡ {Cüi'1P { ï rJ } ç' 1I4l ) 'STYPf;l r *= 1r 5 ) ¡ CIIRF t I I I 810ì! { Í ) I PRCD { ï ) I FR8*[ri{'I } 1I21 FÐËi,4AT ( t t r 3.¿\l r.A2r 5F7,2 r F6"3 r3F1 ,21 C

I Tl-lIS P,ql'iT OF T|"{L PI¿{-lGR..{Þ18[ [,{LCIJLATËS îHÍ: Af\li"lU.Â'L PRnÐUCTI,Ì\l {' 212 \,, ¿ C,ùLCULÀ'f ï Nll; TlJl; TttTirL pÊfitluCT TAi! ÜF F TVË ,rìf R I.ÅL CiliqPútii:l't-t'S $ C SUB P1 C SIJB P5, FÛIT [.¡\CH S PTC Ti:S C C þJRïTi:{:UTrl99l 2Çû0 Dn 3ût I I= I r 24 S US=0 Dû Z]JZ" J=lr5 2û42 5U11=SUl4+Cili'4p ( I r,J ) C2{T)=Stjlvi 'l (ilUTr 30û1 WË.ITri ZLOLT $Ztf\íï { I } ,$TYPä(TI,$CLÁSS(I )r$5PËC{T)rSUM 2101 F0Rt4ÀT{t NrrSUt4 ilF c suB P1 * C SrJil P5 f-ll!) r *rFB"2) SP.:^Cf tS r3É.1r.{2 r î"'¡':' ' FITJ}TNG TiIir /Th,Ii T,åL PÊTDUCTIÛFIr SU¡4 CF C SUB Pl * C SUts P5T Ç4 P. i'4PCRTÄ\IlT FI]Iì LL I V.4S ÜULÅ11 AND \CN-VÅSCUL Afì SPf,T T ÊS

4.0tCI c,åL{_ Cni\4PF"S lC4,C2't ,.{P, ï Tiì ( íl uT, I 99 t 500t l$ 50Ð1 I=1rB 50Cl lJf{ITil{ßtJTr5t'JI } SZilN{ I ,?$TYP(tr]rC4{I) tr¡l.i4ÄT( | r?t¿ût.ttì f 51û1 rÅ1r t TYP'L 0ri,lre PRODUf,.TIT-jf'J iS ¡sFB.2) C {:6 14ULTI PLYif'¡G îHi, PRllr-ltjf,T Iili.J CÅLCIJLAT'*Ð Fii$q i¡4p0F.T,¿,fïT Sp*CIÌ::S t,.Þ BY THi: CiJR.Iì9:CT] 1]i! F¡,CTIIii FÜr{ c** PR.ÛDUCTTCN! BY UN14i{i1,SUüi:D SP{ìCTtS {: 6üC0 DC 7CI,1 I I =I y 24 Có { I I =C?-l-I l*CilF"i-{ I } 7ûCI I r- ill.lT I i{u'f

tg CÅLCULðTI NG TH{- CüRfläCTi:n ¿\fP. IÅL PilüDUCTIûN FûH V.å.SCrJLÄ,ii ÅtJD {:B i\JÜi\l-VJr\SCIJLÅfi, SPiit Trì.5 i,\i ?.¡XCH ûF TfJ{i F{:lUp, c*-*-"--* ZCl\iIS r ß000 CfiL.L Cil14pllS (CB¡Có) WR IT* I CtJT I I99 } 9CI0* D0 9ÌJrl I I=l r B i..iRIT,{ 9001 {üuTr9101) $ZCf!{ 1l ?$Typ{ I }, c8 ( I ) 9lt1 Ff;iìf4¿\T{ | ¡ y'ZCtrJ;ii ¡ I r rpp.cDUcTIüNi rtrle Typs rÀ1r CORRiicT,Tû Ff R L,Nl4,rA5 *URFDSPüCIi:S lS reF{1,2} ' -. C c1t cÅLCUL,.lTING iûT,¡.1 ,Ai:ft Ïgl- pR.nill,cTlCIi! c**---*.- txl THfi Filut" zntii;s : c It00t Dû lrJ00l 'l=It/+ I00ü1 CI0{ I ),=tlB {2ì.I *t) +CB {2*.I } 'dRI iiî{{tuTr l9e} IICO0 D,l 11tüL 1=Ls4. l]-tû1 ì¡ll:lfîfittlljT'1lt0t) Iet-tü{I) . lIlO1 FtlIìMAT( | | r t¡\ïRTAL P7"CIDUCTl8lÊrtË'!,ì ZûNS ! rllrr IS ,,Fg"Zl C cl3 å,DnTt'iG 13utssu{ìFÀcfi PFiüilucrTarx r.Qr.'. re.IÅL TrlrÀLS cALcuLrìTiiD {:i,àjdLIi:Êi C].3 Fniì fiAt¡t ilF TtiË FlUtì. Zflji:;S .,.,... c *.-----' l2ù00 tìi:å,D i f'l , I21I] I ) SUB PF.,D, SUtsTBL C SLJBPNi]{i zül'l¡\L suBs iJilFACf PRüDUcr IûN { þ{GT/tJ¡{ r r A.fì[.A ] C SUBTBL{f} = Z0N/\L StJBSUP.ËÀCË BI0¡4Â,S.S {,.JGT/UNITT Ä,p,i^} lzL{} l FÛfi¡4Â.T ( BFB"2} C C f{RTTI\lt ül"Jî THr-. Ðl¿ï,¡\ VåLIJI:S FtìR 'SUBpt:Ìür ÅND rSUÊlT3Ll t*'***-"' 2L3 tì r,^ilì I T* { il t-li r 1 99 ) I23r32 i.Lq,T Trij{tlJT t LZ4A 2I SUnPirrlr I2+Û2 trtlíìl-tliÏ(r rrrSr.JSSlJF:FÁliî Þ.Ë:CDUCTIShI {ZCflË-l l-4) IS rr4F8"2} i.IRI Ti {i"]tJT, L24O3 ) SUBTBL | 1,'-5UB"SU!ìr:.¿,C¡: L?-4A3 FR.qAT{ BI0!1ÂSS {ZtiNhS f'"4} IS ' '4Fg.2l C t4RïTË{flUirl99} 130ü0 Dû L4;J{iI T=lr4 . CL}lT" )=C10 ( I ) +SUßPirü{ I ) 140t1 rr'¡Ê.I îïî{flUTr 13101) i rC13 ( I } :r,.l¡¡,¡,,i 13101 F,îRi'1iiÏ(t r?tå;:,qIÁL,AN{: SUBSI.JF=FÀS,ff:'PROfJiJCTICi\'C SI,JB Pl C 5UB PBr *Ii\ /-n\lt: 'rtr1¡t lS rrFB"2l L T'i-IF.DUGH l-l'¿¡R5f Vü8,,: C{jNSUMPTtr üi',lr C SUB t,P C15 t*F.R*iCr I[1til FüÌi Lü5$*.! ' C15 .ANÐ PL,\¡lT 5ilC*.lrTI jlhlS rS SUB CP'B c15 Prì¡¡UtTrtr! TNCRfi,tSäD BY 62 JN üÂCH ZûùJü t-

t_, l.¡Rï Tiì f í:lUT r 19? i t5üCn Díi 15ûû I ï=1r 4 t15{I}=Ct3(ï}*1,ûó 15CIÐ1 ìdRITiri(ûUTr l5l-01) T rf,15{ I I 151û1 FflRl4AT l1 | 1f -TilT.¡,L PËnnUCTInf'l FüÍì ZCN* I rI lr r IS ' rF8"2)

C { C THi 5 PÅ.qT üF Tlli: PRlGir,å',41"1..: CALIULÅTI:iS 3Ïiil'1ê,SS VJtLUi:S c*-"-**'.-* r r10 C¿\LCUL,AïTNG THH TU-:",ôL illü¡qÄ5S VÅLlJËi FüP, åi:lì.IÅ,L CIilPtlNf:f'iTS! e 1e F*fì BNTF,I V¡ISCULå,È ÁI'ii} i\ÌI}ì\*VÀSCUL4'}" S PüC TI:S T I\ ÁLL Zi]hIirS f

I 18000 c,ALL Cnt4Pfr. s ( c18, BI nPl) !'iRiTIi{U{JT' 199.l 1800L Dn lB2O0 ï=lrB lB2Ðü i"l.tITij-{OUTr 18201} $Zû}lt I l'$îYPt I}'C181 i I IB20l FüR¡,14T{t rr,!¿ili\jli {rÁlrr TYP$ teÂ1rr nInf"!.e-55 fS rrF8"2} C Cl9 CITLCULÀTI1il,,i i-rF THi: ßIüíqÊ,SS t0RRtr{,Tltìí\,i FÀCT0p. FOrì U¡l14hiriSUii,[Ü SPÎ;¿¡¡15 tì19 USINIG TH.* UNC'lRRtCîF:Ìl Å.1{il Cti}.RËCfäD ZUNAL Pt?,ilütJCTIilþl DATA C,ALCUL.4,TlìD C19 Ë,¿rfìLIi*ílrIF:. Cg I]IVIDä:[) P,Y (4 ' c*-***** .: C. Np.rT*tnuTrl99ï 19000 iln ?-l)]A1 I=1rB Cle(T)=C8(11/C4lÍl 20001 l^lÍì,1Tt{llUT' 19101} r¡ZüN{ I } I )?CI9( I } 19101 Fll8t4lrï{¡ rrfZüSli,: r¡,ti1rt TYPF'$TYP{ te.ålrr C[ìP.R:*CTIUþl F$,CTNfr Ff-]R nTFltrË' Sl 1.{CI'i5 ïS a rF8"2l C', : CZT Cf]Ì.?.iTüTTTIiG A.rP.T,1,L B:ÛI"i¡\5S VÂLU*Si" FTJP ÐTH*R SPi:CT i],S c*****"* '' ì:r: C ..,,.,.,.,,,,.t. !.,tRITü{ilurr t9?} Atùtû Dn 2?úû1 Ï=IrB ' C21{ï}=Cleti}*ttS{I} 22Ð01,,^IRTTî{ilUir2ll0l} $Zilt{( ï } r$TYP( I }'C21{ I } 2IIi)1 tr¡Ri4,åT(r rrrZiJr'.,1i:1; ,rA1rr TYÐli trAl¡r BTfjl"lAs5 CüAllìFCTiin FCIì Ui\14'rrå5Ul; *ln SPitIiiS IS '¡F8"?-) t:23 Fl'tt1if'lô ,4i,:FIrtL. BIIM4TSS TnTALS FtÊ f;¿\CH nF THË FlluF. t'l¡¡ji5 t- 2t4 23000 fr,l 23t-ìCl f =I¡4 23ÐOI C23{ I ) =C2t{ 2't,I* t }+t_21( 2*i ) i¿+ ¿uor¡r,; srJBsur4Fl¡cr c*'-:*--- Bï!i\4ASS vALUTS (: 'i^iP.ïTj:(ilUTII99) 2/rûtA Dil 2/*ÐüI I=lr4 C24{I) = tCZ3{I} + SUBTBL(i}) 24Ðû1 WRITi; {;'lUTrZ41Ðl } I rC24{ tr } z+Ltl FnRf{.Â.T{r rerrüT.ð,L ùIOi'14-cs.'.,Fs-F. ¿ü¡Jr rrIle{ ¡5 t ,rl' :rul "F8.21 l?_5 CALCULAIII,IG THn ?/g RÀTIf rrtTÅt_ i!î:T pl.:1¡.1¡¡y pß, DUCTiilN r,?.5 DIVTCIIii} tsY Ti]TÀL F,:CI,lÈSS c---*'-:* Dü 25ûiJO I = L¡4 25CI00 C25{T} = Ct5{I)tC24tII 'dRï îf: { 0UT , 199 ) 0il 25C01 i = lr4 25001 i411ITE{OIJT, 25ta?) 1 rC25( J) 25ú02 F{,ri1¡.1,4T{r orf p/il iiÅTICJ Ttì Z8f!Ë rrIllr IrF8.2) a ¡5

C THIS P,Aii'T i"lF THii PÎìilGlìA¡4MËr DITüRMIN'åS THË,ôNtlUAL êCCUMULIìTION CF p;:ì,{T 1., t, {?7 CI"LCULATfN¡G THI AI'4TUi\IT ÚF cUÊnTNT iìilniÀL ,DRÊü!,jCTfüi! É,i)üí:r-\ ït p*ièT ô c,27 v,à5 ciJt_ Âi,, ¡.Nû IITJh]*VÅS TIJLÅP. SP{;C 1 i: S ïNl i:,ò,f-il üF TH:; FnUP Ztli\jL:S C (, ??üü0 C¡\LL ni:li'lPtl.-s I t,21 r pRil0 )

t29 CüRlìiÌtîIÍ\1G THtil Âl"1ill.j¡,lT åÐüil0 By V,ASCULAÍì 3 Fi-ìC Í trS FiJË, t"r'H{: lì UNlli:ASi.Jff.it (.29 SPÈCT{rS .1l.lD ÀLSO FfÈ" NÐtty L iTTL..Ê. (23?", lrÐfåþd.6¡Ð/d C 29000 Dü 290Ðl I=Ir4 29{lûL C?9{ I } =Cl9 { 2*I-1 )rt f.Z7 l2*I- I ) * L,2,3 C C3O TiJTAL Åî:fi]/1.1 TNPUT 8Y BNTH VÁ\SCULAfì ANÜ I..¡CN-VÅ,ScULAP. SPrrjcri:5

L 3û0OC D[i 300C1 tr=lr4 3G0û1 t30( T)=CZ9{ i }+CZ7{ Z*T ì r.Ctgt Z*I ) i..JF,ITi:{CUT? le9} 3?.CCC üíl 3100t l=ts4 31û01 3tl_01) T,C30{ T ) 3110l Ffì1ì14ÂT{r"RiTrì(3LJTp !¡tZüNi.:'rIlr' r A[p.I¡,L Cnt4pi]Nr¡.:i!T ACCU|".IULÀTIüi! lS ¡rFB"Z) \iG Ç'33 's'nnf SUBSIJRf-.åCfr PËCÐl.JCT TCI'J VÅLUXS Åf"iD LËÂCtlATii VêLUHS{ S SUÈ Cp¡Bl C33 Tr"l rHi': Àcf.Ljr¡1u1,&TTai',i rüfft¡g Fß,q g,*,cH cF îH¡ï Füup, zilì\':S

C ,¿lRïTi:(lUTr 199) 33G0',] Ðû 34,101 I=l¡4 [33{ T ) =C3û { I } +_cilBp{ìü { I )+{ "0l*tt5(It) 3¿rt01 i,{F,TT'Ê {,JUTr l3lOl} T rC33{ f } 33101 FüRù1Af r,rTiìTirL {| TtìITIAt. if'SIi..üH.T DF PFAT .Á.CCI.JTI!..ILÊ.Ti'JD Å¡J¡JUÅ,LLYI Jl S *B Ir thl zoNtj rrTlyr Is r, FB,2 ) c C:}627 C,4LCiJL,*,T TNG THä ÀillI]UþIT NF THï S P*:AT fì.tll¡\IþllttG ,åFTf:Ir C3ó27 ilf'..I'ä YËr\t {Af SUB 1} :: 275 c**-:"-* t CÀ.L!_ CLlt"lFËlS | Ç.36?7 r pFiODC ) ': ílll 3{t291 I r =l 4 ..,¡.11i 3b29 L C36?-9( i l=C I9( 2*t-l lf,CV6?1{ Z*I-1}sl, 2:i Dl 3É)3i.lI I=Lt4 : 3ó301 C 3ó30{ I ) =C3629 { i ) + Cv6?7 ( Z*I }*Cl,$:t. {.r} C ...:l ...i RËÀD(i¡J'3ó2û2) SUBÐ*C '':,"' .' C S{JßD*CI I } = TÛT"41 Zi]¡.iAL I-JGT/UÀIIT .ARË3- ÜF SUßSUR,FACi: CÛMPÜi\f:h}TS ÄL}Di.iI C TÜ Pi:S.T,}4TNUS NNCCi'4PT]S TTT{JN !1lËiGiìT LfiS5 ÐVriR i]N* YfiAq I $ T TMi: 3 62ü 2 Fj--l fìM Irì' ( z*F B 2 ) i^ " ¡ C I]UT TIIIT J)AT/ì VALUIS FTR c**-**--',JRITING 'SUBDf,CT C {..,Rï TË ( tUî, l99l 3ó511 dÊ.ITË{ltrJTr 3ó55 1} SUÐ,DfC !rrV,{LIJËS 3rr551 FtRl'lAT{r FDR SUBnf;C ÍfJ ZÜilf:S l*4 Å.Fli: '?4F8.2) , c Dil 36331 i=lr4 3633]-t3ó33{I}=c3630{I}+sUß|jfiC(T}-{.i:l*c15tI}} lqRITL:(tUTil99' 37*ü0 ù0 37001 I=lr4 3?t101 '$,RITf {ilUTr37I01) I rC3ó33t I ) I 371il1 FÜF,UA,T{ ' ' I TI]TÅL T,Ifr.TGHT i]F ÅCCIJliuLAT*D PfiAT Iìi:MÅtr.\TI]Ç 4trT1iIì CNjI Y Í.lj.ARr.Â.t r SIjB lrIN ZCIl\,|il t¡Ilr t TS IrFg.Zl t C39 f,ALC{JLATlr'¡G SIJRFÂC{i ÂCCUIIlUL,ÀTTÛfil F.ÅTTilI t39 I.il" **¡4N,lT F',:11/åTllIÑG Å,FTËÌ?. ü1.'lË YtìÉ,5i LrI\lIilìiîD ßY Tþliî üRf $l i'iè,1 C.3ç ltjF:T PiìI MARY Pi^iIIDUCTTCN TCITÀL r.:*.-""** 38I01 Di.l 3BlO2 ï - L¡4 38102 C39tIl = Lì}633{I}/C15{f } J,.lF.TTF:{UUTr 199} 38t03 Dü 381ü4 [ = Ls/+ 38104 t..J.*.I Ti: (ûlJTr3BI05) I'C,39{ I I 381CI5 FIâHAT{' rrf ANi¡tJ"4L SIJRFÅC5 ÅCCUF4UI-ATICli¡ F.ATIi-l Iill Zlli[ ö,Ilnr ls I 'FeFg.Zl t G.* TT I 41ù0û ST{IP i:NÐ L

SUflj.ì.:llJTIhli: tÐl4PF,S {C4rCZ } ..:,iù Rä.AL*I+ C4{- r uB ,I ttCZlZ4l v L \ La I ,.Ë 4*ût C4 { 1l=t.211) +t2{ ? } C4l? ! =C2{3 C4 l3l =C2I 4 +C2 ( 5l +C2l 6l +CZ( Tl+CZ {I } C4{+ )=C2 (9 C4{51 =C? ( 1t }+t2t t1 +C2 ( 12) +C2{ l3 I +C2 { 14} l,+ I{'} =C2 { 15 } +C,2{ t6 +c2{ I7} C4{71=CZ ( t8 }+C2{ 19 +Ç?. | 2t ) +t2 { 21 1 +ç.21 22.} c4{8 =C2l23l +ç242^4 R ñTIJHN ì::l'lD 1iì \!f, l) I9?O GRnr¡JING St'å5üùl D.û îA Fi-lílM L14,A rli]T,{I i i{ THi: 216 l

i, PLPz FFP3 SP4 TS ['5 CilF.F ßT CM Píi{Ii) PärÜt ¿TTS LP1 118"7U Bó.3* L+315 1l- 8. /+O l3Ð' 5t 'J" 30 21.rt 26"2Û 1"0004186-Û0 C"00 l"gil 3"BO 22'BO 1"213 L34"56 22"¿+t 1 5. 0,f, 1+B0B 24'30 107'70 gl"L0 L*ì104 t07" 70 C.00 l"0C 0"00 0'Ç1,Ù 1"080 L85"20 15" 50 0" 20 g.2-a *I,40 L'?30 367'8CI 35"lc 23 "?-{: ,' 2+R15 34.9O 65 5Û 5J o 6ii t' Ûù {i-3'f, I 0 . 10 36.4Û I " ft53 231 "CÕ ' ¿+ß08 7ó.20 20"5C 14" ?ü 2+ß0 6 24" l{) ii" cCI LZ"Z{) r0.çc ro;âo 1.053 14û'50 2+Ð,lC' 29"tt 0.00 10'8Ð 10" 0c -2.$t 1.Û5] 5ó.30 39"9û 26 "2* 2+P,07 7"7Ô 0"00 3.30 1"50 C"9i,'1.053 21 "6A 8'SÛ Ò o Yi-! 2*4,05 7"10 Ð"Orf, Û.0t û' iJrJ 0.00 2.390 39"20 7' 10 7"ûD 15,5û 23"80 1.027 151.Ü0 37"BtJ 2b.44 3+Ê'0ó 42./rt 0" til 24"+A 35,6C 0" c0 I 8"2{} ll"?0 l"ß27 128'40 41"3Ô 3+B(lB 4ó.8Û "40 31 ,00 3+Bt9 15. 10 0''Jß 18"3'J 4.9t 12" lt L't21 35'50 33 '/+Û I.c27 53"+t 4L.6Û 25"50 r 2?"8C) CI.0û 13"8ü 8.50 2.ó0 : 3+S1û 4.qo I'027 44"3A 16"30 I0,50 3+807 L4.b0 0'OCI 7.80 3"ó0 ñ ñi'l i1"00 Û"o0 û"n0 Û'Û0 1"150 20"10 5'rrÐ 3*B0I 5"+t 35'0C 3{)" l-0 35 0 0Û Ð. c{) C,.rJ0 0.ß0 1.150 42,3A 3*BC3 " *t ' 7, 80 0"CÜ 0"ÜÛ 0"ûo t"0ü 1.150 5l'80 7"BC 3-låil5 7.80 54'6CI 45. üt ?û"3C rJ"00 2/:.2C ?7"9ü r02*9Û 1"156 452"10 r^ 4+ß06 999' 20 97.43 ÔY¿ IU ll7'60 ù"ÐD 1S.2Û 2L,60 ó1 " 7Û 2"L60 4+¡\14 s7 1Ð 75 4+ê12 81.gtj 0.ÐÛ 'J"10 34" ü0 c "cc) 1" 1" 56 43 " 50 " "1'J , 0.ó0 6"00 1.00 2,160 óó. q0 3. lÐ 2"3C : 4+Å13 3'?0 0"00 21" -flü 4+À1L ?.t,lfi Û"00 0"lf1 ?$,5Ð Û.00 1.15ó 23.20 27.3'.J ì 3ll" 8n 35 33"?û ,' 4*.åtl 35,90 o"ûÛ o.LìÛ O. ilC fl. flfi I " l30 "9* 4*Bß2 3-1"2û *3.Û() 0"Û0 0,00 *"ÕÛ r"l3Ü 38"6Û -31"20 24. üii 3Õ2,54 ÛF C" SUB P 1 * C SUB P5 F1lP, SP ÊC í LrS l+Bt5 IS SUI'I 52"8Û fltr c 5L'B Ð1 C 5U3 P 5 Füti SPi:CiirS }+BO8 TS 5rit4 trntr cpfcT¡-:q 107"7Û SUI"{ iìF C SUB Pl Û SI.JB P5 1-BO4 IS C 'Þ1 C Sljts P5 f:üll SPi:rC I["S 2+815 IS 5B'{0 5l.Jï;1 lr- SIJB 123"i¡ü 5utr1 ilF C 5Uß Pl c sl.J P5 Fü[4 5PliClü,! 2+808 IS p '* P5 FüFl SPI':rCff;.5 2-+tsOó IS 57"40 sur"t tF t suB I ç sljß 47"4t cLi¡¡ Ç,F C $UB P1 C SUB P5 FÜF. SP[CTLS 2+Blü rs 13" 4ü suM fiF C Sr..tB Pl c Suti P5 Fûi.: Sfii.iCTilS 2+BAl IS P1 * C SULì P5 F{lll SPriCIf:5 2-A05 IS 7,10 StJ!1 T]F C SUT 106"10 SUN ÜF C $tJB P]. * C STJB P5 F,lF. S'PäC IirS 3+8fl6 I5 pl sug ?5 FüR S PTC 1TìS 3+Bû8 IS ó8"10 .sut4 ütr c SuB c qÞFf cUM Ctr C ¡'UB PI - | SUB P5 trr'ìrì It::q 3+SC9 IS 5()"4fi P1 C SUB P5 FüR SPtiCIfS 3+81û IS 52"1',õ SU}1 ['ìF C SUB 30"90 5UI,1 üF T SUB P]. C SI.JB P5 FCrFq SPICÏ frS 3+807 is I 5"44 SUM llF C SUß Pl - C StJf:l P5 Fi,]Iì. SPÊÌC TfiS 3*801 S SUB PI C SUß P5 FiliI SPqCTËS 3-803 fS :i5"Û'! SUI,1 ÜF C 7"8Ô stil4 ü'tr c SlJg P r -. c SuB P5 .Ë Ts, s P'*cT rs 3*A05 1S P1 *. C SIJÚ P5 F0F. SPËCIÊ.S 4+S0ó IS 227"3Q SUþì CF C 51-.IB 219"10 5UI4 f:F C SUB Pl û SUB P5 FnR SÞr;CIfS 4+À14 IS SUB Pl * C SUB P5 FllR SPfif, 1i:S 4+Al2 IS l1ó"00 SUþI ÜF C I1"3CI ;ruÍvl nF C SLIB P1 * C SrJiJ P5 Fr,rF, SPilC TilS 4+À13 IS T 1[:5 IS 48.3Û 5LJT4 i]F SUT Pl St,B P5 FilR SPil(- 4+At1 C 35"9C SUIl GF C SUB P1. - C' 5UÊ, P5 FÛR SPf:C TfrS 4-.8t1 f5 suþl LIF c sl-",ß Pl c 5ìJF, P5 Füi:. sPrcI.Ë5 4*BC2 1S 31" ZCI

ZCfii: l TVPf + PR í]Û UC T T'f,N 355 " 3û '' ZfiN.Ë 1 TYPL: - PP"TDUCT ITI\ t\ lü7.?f Iû|'.1Ë 2 TYPH + Pft.tIDUC T T CÌ\ì 1J 299.60 TYPÐ PRfiNUCT Ï ÛN ì\ 7.1û ãûltä 2 TC /"û¡i[ 3 TYPI-: + Pq.nDUcr Jii¡i 3û8 " 2Û z nNñ 3 ti\ÞF: Pî,'_'ìDUCÏInî\ 48 TI "20 ZnNi:4 TYPÉ + PF!DDì.JCT ] ÜN JJ 622.4C ZINF 4 T YÞf¡ PqODUCr ï..1N .t,> 67 .1CI

T S 3úå 51 /.ilùti;i t Typ!rì +pË:,lDIJCî TtNì f,,üt{iì}r:CTilLì Frilr. {-li',þ1i¿ &SURf;i} SPlîC 1Ë:S ' -l-YPl"'*PRüUUtTIüi\l ZfìrlÌir 1 C¡liìräiCTlD Fi-rP Uij¡4i:A.SURÍ":D SPICIiS jS 1L6.3? Z-ülrli: 2 TYP¡i, +PRlDUaTIr,ìÞ; IL]filìl:CTirD FüÊ Ui\t4t:Ê,SURiïD SPrr:CI[5 IS 325,g,2 2L7 .-pË:.oDiJcrIlN ,.ii:,q:i, z. rvtË cüRr.rîcrïD Ff;iì uNM[¡\suRËD sp[cIi;s Is ró"97 . ¿n¡{f; 3 TYPt: +p?,il}UCTIfiN CnfiRi":{:ii:U Fü:|ì Ut\iNl¡î.r1SU1ì.üÐ 5PËCIËS fS 3Iô.5? ¿{:I{S] 3 TVPt; -PA.il*UCTTilì''i CilRi,CCi*? FÜF, UNMTÉ\5URÊ:D SPËC Ii:S TS 55 "43 ¡-*l'li: 4 TYp!: +PIììiilUCTTf i,ì CÐllRí:CIl.D FûÊ U\F4f,S"SUfi.Ël: SpËC InS TS 950.35 Ziìi\s 4 rYPi' ,.PrìilDUCTII\i Cìllil:CTi.D FçP-, UNÀak¡\SURIÐ Sp:ËCï65 ïS 75.82

pÍìllfjuCTiüN9'UU I f UiI FilR ¿\ËR L¿rL 4S2" B6_ ZilNlf: f IS ;ii:ì:Ìì:il ,¡:iiË f .41 PP.illlUçTlilN FûA ZûNi: 2 I5 342i'78 ,lfi't{rl.L PRilDUf,-TTili\ Füil Z.ll'l!;i 3 IS 3?1.ç5 A*:.Ë:,i.åL PRûlluCl TùL¡ FÐt ZCN,* + I S 1Cr2ó. tt B

5LJß5t-iRFACr; PË.{:jDUCTIilí'i { Züítli.:5 t*41 ïS 1Bó.90 593.50 l4ól.lû 512"5û SUfSUR'ËACi: ßitl,1åSS {ZÐNi:S .l-4} iS 228ü"AA ló44.00 195ó"û0 13t4.úC

,,$.8Ë I¿\L À.l'Jtì SUBSUF.Fåti pË.ilÐUCTSiltl?C SUS Pl ç SUB PBr Ii.l Zfi\lã 1 IS 6ó9.?6: .,å,ËËTAL ,4NID SUBSUR.FÅCI Pü.*LIIJCTTÜT'JrC SUB PT * C SUB PB¡ T\J ZilÈ..jl;: 2 TS 936.28.. Å,fF.IÅ,1 gltlt) SUßSURFAC;; PF.OiIUCTIUN'C SUB PI C SUB pBr IhJ ZÐhiiî 3I5 1833.05 Jltll I;l'L AÞ{i:) SUBSUp.FÅC',{ PFtDUCT liifl'C SUB Pl * C SUB PB r TN ZC¡1ìi /+ I S 1538,ö8

T(iTÅ L Pp.ûÐ UtT T llill FrJR Z rlþllr L I S 709, 95 TtlTÅL PF,nLlUtTï*Nl Fíl'q. Z-í:l'lts 2 I S 99?-"4b , pRüDUûT Tl"rT.AL Ïfi\l FilR Z ni\'Jf: 3 I S 1943.03 : TCTT.A,L PFT]DLJCTTÛXI Fû]? ZflrtlF: 4 1S 1631"t0 l

'.' ,i züNF 1 TVpfi + 3IIMÅS5 IS 432t "56 Ifl\![ I Typli * ßï.fl¡.rA.çs IS 185"20 Zil$l1T 2 TYPlir + BIüþlÂSS IS 829"2.{) ¿ü¡,lit- 2 TYPÐ * Ðitù!.ÀsS 15 39.2t zf\iF 3 TYPiÌ + BIi-:rþ1,¿\SS IS +12"6O ¿{.ihl 3 TYpf-: Bf ill"lASS T S LL4"2A Ztjf'.i1¡r 4 TYÐË + BïÐl4l.rSS IS 1583"90 I*È\f: 4 TYPH * ßI ilfi¡\SS TS 77"4il

¿*l'.Ifr 1 TYpL + C1fË,Ë.nCT I ilfj FÅt.TüF. f-.lF flTH#Fl. SPfr0 l;iS iS l"û3 Zl[]r-: ?" TYpl:: C'l,qRi:.C Tf lhj i:¡,CTilfì Fi]Ê {,jTHi; R S PËC ï i:iS ï S 1"Cg ZûNf: 2 TYp[: + Ci]F.R:CTlll\ì F,À.CTülì. F0Fi ûIHfìF, SPIC:i::S IS 1.û9 /-üþjT:: 2 TYPt:: CilRRiCTTlil\l FACTûil Ëüiì CTFrîR SPËC1fiS I5 2"31) ZSNfi 3 TYPÐ + C.nRfi..i:tTIt)¡] F/1.t,ïr:]hì FCû ûTiìi:R 5PËCI,ÊS IS 1"113 ZUr\,lF:3 TYPIi -'CfRA.ü[Tï{]Fì F¡r\CTfl.î^ FDË, CïlifrR SP[CIË;$ TS 1"15 7-iltJ* ¿+ TYPii + tilfißl;CTlilN F,4CTC!:ì F.,tF" nTHilF. SPbCIËS TS 1"53 7-Ch;T 4 TYPfr - Cillì.ill:CTTllhj FACiìf,iì FtF. tTHfR SPËCTfiS IS 1"13

7-nNfl 1 TYPF + tTrli4rf SS CCIiRüCT1{D F0ll UÍtjMÐ:ÂStJREn SPi;:CILS IS 4457 "3?- zflfrtf; I TYPF: BIfi,À4,fi5S CCIiR|;CTfü Fr¡¡? Uf{MrÅ5UIlíj0 SpÉCIlîS TS 20ü"t2

' ¿.nNi ? TYPi: + BTOi4ASS Cflp"P.íîCîËü FCíR Uhil"lij¡\SuFitrD SPr;:tTËS T 90t. ?6 , /-üF11": 2 TYPSj ST,lr4.4St CnRF.iitT¡jD Ftii u¡\1t4{:Å,SUnç* SpflCllS TS e3.óe : Zûl'!fi 3 TYPi: + LllÐ|'{.s.SS Cn}:tP,iîCTäi f-Cl.:, UNMi;.ÀSUfì.ÊD SP'ljCIfS TS 4?-3.74 /ilhiË 3 TYPir, tsIÐr'l.ASS CCfì,ÊFCTFü FüF. Ur'úfqfÅ5URäD SPf,:CI5S fS 131.33 /-ni\ji 4 TYPî + BIfll'1ÅSS CtlRP.ïCTü:D F01ì UNi4tuÅ.SUiìIj.ll SPiltlÊS lS ?-{+20.04 TÛI..J$ì 4 TYPå1 BI{],!1¡,SS C[I8i}.iìü]-ilü FÜI;I UAJMi::ASURND SPSCT[:5 IS 87"4ó

,T*T,å,L B10tr1ÅSS FCF. ¿ni!Ë r T5 6937,33 :t,: ilT*åL Ê I ÛMÀS5 FflR Z|JN ii 2 T S 2639 .44 Tt¡TÅL Bi0llÅSS Ftfì. /-nNf:3 .tS 251I"07 TtiiAL Bf Cí{Á,-sS FÐp, Z{ìi\l 4 T 5 3Bl l o 5Ð.,:r,r:.,,.rr,ì:..- P/B IiÁTI[ i¡,1 Z:jN* I IS 0.10 Þ|t,'ì:\-I1¡ Ii"l ZtJl.l; 2 T.S 0.38 P/B R¡,TIf-,) IN Zü\li 3 I5 0'77 .,.,,,r,,,ri p/ß ftÂTi,: If,J 1_í-ìNË 4 IS t"4?

,] f *NT:i I .Åili4. IÂL Cil!1Pfif.l,Ëi{T ACCUi'lULê,T ICI'l i .5 295" 36 ¡_*¡'trï 2 ¡.Ë:fÀTAL tilf"!Plhtia'\.tT Àccut4uL,åT tchl i5 243"frv Zí}XJË 3 þ,{:þ.IAL CÜMP{]IJT¡\T Å,CCUi'4ULATlCi.I iS 27A.68 7-l)t4ta 4 t\fr t.f þ^L Cû14P*Ni;í!T /trtCUivltJLÅT I ljN ÏS ó01"09

TNT¿L T}JTT T Å. L hI;: çiìT 'lF Pi:,ô,T ¿ìCtUf4lJLAïi:* åNNLJALLY A SUB TT Tþ,J z{:Nb. T5 489 ' I "36 îtTÉ,1. rr'iïî *,t- ïd lì: çHT {].F PTiAT ÅCÇIJi'1ULÉ.,TñD Åf\¡IiII".'ÅLLYg ¡1 5UB I r TI,,j zur.iÐ 2 T.S 846.+5 1[]TAL IIUTT å. L 1¡41:: GHT )F Pliå,T +,CrlUl4ULÁTFiD ¡x.NþlU.ALLY, S, 5UB î.¡ thl 7-ti4ry. 3 TS L75L"2L TITåL 1-IJÏ'T AL þJil GHT l,-'ìF P:AT ACCU¡4UL¡liTlltr ,{hlNl.JALLY å SUB IN ZÜNIT IS 1,L29 ' Ir + "gA l:,::.',::.:.'; VÉl-r.J':S Ëflii SUBD#': fl'l ZüNË:S 1*4 Ap^t: l35,lA 464.LA L234"6A 394,LA ':::,!.::::,1..t,-a. ':;'i!:i TtrTÉL 1',ifrTGHT tF þ,ç.CU;AÐLî\T'{:l} PT:i\T Iì.í;iM$f i\.lIlJG AFTf:F.. üNf: Y1;ARråN 5UB T rli,! Zil\t; I ts 3+4, !3 îilTÅ.L 1.1': T fJ'-i'l fiF ÀCCU¡4tJLÅ.Tf D PTttT F{*14Ì).I NT N{; iÀFTãlì fifii: Y'î'ttïâ,, gt SUil I r TFI ZilNfri 2 TS , 637.94 lnTéL L-tF ACCUI4ULÊ,TfjìÐ Pf,åT |ití'4./rIÍ\tING |JFTr*F. -"lLil Y.ç,4.ArAt .tUB lrIN ZOIVü 3 ì.5 L427 "46 1"il1'At. Wf"'f¡IIGHT IGHT ilF ,lCCUi.1tJLÅTiit' PiìAT f1Í:,¡qf'.INTNG AFTfifì llhll, Yfl¡FirÅ, SUB T çïf'l TtlNki 4 TS 842,9L

P,h]I,JU¡\I- SUTJ-FAÇï ÂCÇIJi."lUL¡liT1 íJ¡J I. I).TT,Û T N ZI]N{:: r IS o "48 ItltiNUÉ,1 SUriFAtï .åCCU!lULilT Iaihl Ti trlîû If'J Zûhj1": 2 15 D"64 ,r,ltþ1u.4 L åu?,r ftdli ,4flc ui'4uLÁT I ûþJ n AT I {l I f\ z ûhirr ,l i5 Q |.CIt]"1 .¿i "72 Ålt[]u;1L sur:iv !¿cI" Àcc!.Jì4tJL/tTI ff'J RATI Ll I IS a "52

t\) H 219 c. Glossary

AccumulaËíon: íncome of dry matter resulting from net prímary producËion mínus the amount losË through decompositíon.

Biomass: the weight of all living materíal pre- senË ín a uníÈ area at a gíven time.

Bog: a peat.-covered or peat-filled area uríth vegeËation characterized by erícaceous shrubs and mosses, mostly Sphagnun spp. (Heinselman, 1963, p. 373; Catpenter' 1956, p. 46; Dansereau and Segadas-Vianna, L952, p. 490).

DecomposíËíon: Ëhe separaËíon or resolutíon (as of a subsËance) into consËiËuenË parts or elemenËs or into símpler compounds. (Ìüebsterrs Third New International Dictionary, L967, P. 587)

Fen: European term applied to grass, sedge, or reed-covered peat.lands, ofËen with some shrub cover and sometimes a scanty tree layer. trÙater table at surface mosË of time. trùaËers and PeaËs noË very acid. (Heínselman, 1963, P. 373)

Laggz a marginal fen. (Sjors, 1948, P. 286)

Muskeg: a large expanse of Sphagnum peatland bearing sËunted black spruce and tam- arack. (Heinselman, 1963, P. 374) See also RiËchj.e (1956, P. 547)

PeaÈ: peat ítse1f is sinply an accumulation of plant remains in varyÍng stages of alËeration by chemical, physical and nÍcrobial processes. (Heinselman, 1963, p. 329)

Peatland: all classes of Peat-covered 1and. (Heinselman, 1963, p. 374) 220

Prímary the weíght of new organic materíal production: created by photosynthesis, or the energy which Èhis represenÈs. It ís Ëhe increase observed in Ëhe biomass of green planËs over a period of Ëíme plus any losses (e.g., excretion, res- píration, damage, deaÈh, or growing). Gross production is Ëhe observed change in bíomass plus all losses, whíle net production excludes Ëhe loss through respiration (lüestlake, L966, p. 316).

Semidecíduous: refers to planËs which retaín Ëheir leaves unÈí1 the next seasonts leaves have developed, as opposed to plants on which Ëhe leaves persist for many years. overlaps with the term ttever- green". (Lems, 7956, p. 199)