Ontario Wetland Evaluation System

Total Page:16

File Type:pdf, Size:1020Kb

Ontario Wetland Evaluation System OntariO Wetland evaluatiOn SyStem Southern manual 3rd edition, version 3.2 2013 © Queen’s Printer for Ontario 2013 OWES Revision History: 1st edition – 1981 2nd edition – March 1984 3rd edition – March 1993 3rd edition, 1st revision, May 1994 3rd edition, 2nd revision, December 2002 Cette publication spécialisé n’est pas disponible qu’en anglais MNR #62803 ISBN 978-1-4606-0200-3 Print ISBN 978-1-4606-0201-0 PDF ISSN 1192-8484 Harold Lee (Southern Science and Information Section) provided valuable contributions to the new substrate sections of the manual and to developing the Wetland Systems Key. Adam Hogg (Inventory Monitoring and Assessment Section) updated the sections on wetland mapping. Don Sutherland, Mike Oldham, Mike McMurtry, Tanya Taylor (all Natural Heritage Information Centre) and Bill Crins (Ontario Parks) reviewed sections and/or undertook analyses. Rich AcknOWlEdgEmEntS Russell created the new black duck maps, and Brigitte Collins reviewed the update to this section (both Environment Canada, Canadian Wildlife Service), (northern manual only). Other contributors and reviewers include: Gary Allen (MNR Midhurst), John Boos (MNR Southern Region), Peter Davis (MNR Northwest Region), Ron Huizer (Beacon Environmental), Peter Uhlig (MNR Ontario Forest Research Institute), Steve Varga (MNR Aurora), Ron Black (MNR Parry Sound), Anne Yagi (MNR Guelph), Dave Richards (MNR Aylmer), Debrupa Ontario Wetland Evaluation System, 3rd edition Pathak, Martha Allen, and Elizabeth Wright (all (version 3.2): Biodiversity Policy Section), Dave Webster (Ontario This 2013 version of the Ontario Wetland Evaluation Parks), and Ken Hare (MMAH). System (OWES) builds upon the work and input that a range of public, private and academic contributors made We gratefully acknowledge the support provided by to the previous editions of the OWES manuals. These everyone noted above. revisions were undertaken by MNR’s Biodiversity Policy Section (Rebecca Zeran, Regina Varrin and Brian Potter) Wetland Evaluation System Update 2002 with significant contributions and input from MNR’s The 2002 revision to the Evaluation System for Wetlands Wetland Evaluation Technical Team (WETT) and of Ontario South of the Precambrian Shield, Third several others. Edition (1984; Revised March 1993; May 1994) was carried out by MNR’s Wetland Evaluation Technical MNR WETT Committee 2008: Team (WETT), with input from several sources. Brian Potter (Chair, Biodiversity Policy Section), Glen Hooper (Northwest Region), Jan McDonnell The WETT Committee acknowledged the input and (Bracebridge Area), Angus Norman (Southern Science advice provided by Don Sutherland (MNR), Al Harris and Information Section), Dave Richards and Erin (Northern Bioscience Consulting), Mike Oldham Sanders (Aylmer District), Shaun Thompson (Kemptville (MNR), Chris Risley (MNR), Ron Huizer (Jacques District) and Rebecca Zeran (Biodiversity Section). Whitford Consulting), and Brian Henshaw (Gartner Lee Consulting). Several others provided valuable assistance to the update of this version of the manual: MNR WETT Committee 2002: Brian Potter (Chair), Gary Allen, Peter Davis, Glen Hooper, Jan McDonnell, MNR’s Wetland Plant Working Group worked on Angus Norman, Dave Richards, Shaun Thompson, and revising and updating the wetland plant species and Tamara Gomer. indicator lists for the manual: Wasyl Bakowsky, Holly Bickerton, David Bradley, Sam Brinker, Bill Crins, Ron Drabick, Michael Oldham, Don Sutherland, and Steve Varga. Southern OWES 3.2 cover photo: Rebecca Zeran i Wetland Evaluation System Update 1994 Provincial Wetlands Working Group: Margaret The 1994 revision to the Evaluation System for Wetlands Mclaren (Co-Chair, MNR Toronto), Chris Davies (Co- of Ontario South of the Precambrian Shield, Second Chair, MNR Cochrane), Angus Norman (MNR Aurora), Edition (1994) was carried out by the southern Wetland Jan McDonnell (MNR Bracebridge), Glen Hooper Evaluation Review Committee and, subsequently, the (MNR Maple), Scott Jones (MNR Sault Ste. Marie), Provincial Wetlands Working Group, with input from Kerry Coleman (MNR Kemptville), Jill Entwistle (MNR many sources. The Second Edition incorporated the Thunder Bay), Ted Armstrong (MNR Thunder Bay). best knowledge base for Southern Ontario wetlands available at that time. However, there had been a great Southern Ontario Wetland Evaluation Review expansion of interest and scientific expertise regarding Committee: Valanne Glooschenko (Chair, MNR wetlands in the intervening years. This was accompanied Toronto), Brenda Axon (Halton Region Conservation by an accelerating need to apply the best tools available Authority), Mike Eckersley (MNR Cornwall), Gareth to conserve irreplaceable wetland habitat in Ontario’s Goodchild (MNR Toronto), Jack Imhof (MNR Toronto), landscape. John Riley (MNR Aurora), Owen Williams (MNR London), Angus Norman (MNR Aurora), Glen Hooper Regional and district wetland specialists identified many (MNR Maple), Kerry Coleman (MNR Kemptville), Jan of the core issues which were addressed in the revision. McDonnell (MNR Bracebridge). Particular attention had been paid to hydrological values of wetlands and a major effort to clarify instructions had been made. The Southern Wetland Evaluation Review Committee and the Provincial Wetland Working Group acknowledged support from Ms. Laurel Whistance- Smith, (Manager, Ecosystems Section) and Dr. J. McLean (Director, Wildlife Policy Branch). We also recognized contributions from Dr. N. Roulet (Geography Department, York University) and Dr. L. Logan (Ministry of Environment) for the update of the hydrological component. Mr. M. Cadman (University of Waterloo), Mr. P. Taylor (Carleton University), Dr. Ross James (Royal Ontario Museum) and Mr. Michael Bradstreet (Long Point Bird Observatory) provided information relative to the Ontario Rare Bird Breeding Program. Dr. Davy Morris (Lakehead University), Dr. D. Smith (Carleton University), and Dr. M Engstrom (Royal Ontario Museum), advised on provincially significant mammal species. Input from Regional Ecologists, Dr. Paul Prevett, Dr. William Crins, Mr. John Riley and Mr. Don Cuddy regarding regionally significant species was acknowledged. Many MNR staff participated in testing the new manual and provided helpful comments. Shayna Labelle-Beadman of the MNR Northeastern Science and Technology Unit drafted many of the figures. Particular thanks are extended to Dr. Ted Mosquin (Mosquin Bio-Information), for his patience in coordinating the Southern Wetland Evaluation Review Committee’s comments and concerns into the first drafts of the revised Southern OWES 3.2manual. The final manual could not have been produced without the assistance of Jann Atkinson and Ron Huizer of Atkinson and Huizer Biosurveys. ii tABlE OF cOntEntS Pitcher plant Photo: Rebecca Zeran INTRODUCTION TO THE EVALUATION SYSTEM ................................................................................................... 1 Rationale for Wetland Functions Included in the Evaluation………………………………................................ 4 Expertise Required to Apply this Evaluation System……………………………………… ................................. 5 How the Scoring System Works…………………………………………………………… .................................... 5 Approval of the Wetland Evaluation………………………………………………………. ................................... 6 DEFINITION OF WETLANDS AND WETLAND AREAS ............................................................................................ 7 THE WETLAND EVALUATION FILE .......................................................................................................................... 8 SOURCES OF INFORMATION ................................................................................................................................ 10 FIELD EVALUATION ................................................................................................................................................ 12 Preparation for Site Visits .............................................................................................................................. 12 timing of Field Visits ...................................................................................................................................... 14 Features to make note of in the Field .......................................................................................................... 15 Percentage of Open Water ........................................................................................................................... 15 WETLAND BOUNDARIES ........................................................................................................................................ 17 Vegetation ..................................................................................................................................................... 18 Substrate ........................................................................................................................................................ 20 Soils maps ...................................................................................................................................................... 21 Elevation mapping ......................................................................................................................................... 22 Additional guidelines for mapping transitional Areas ................................................................................. 23 Wetlands Bordering on Upland Forest .........................................................................................................
Recommended publications
  • Lowland Plants
    Draft Ontario’s Native Plant Catalogue June 9, 2020 Lowland Garden - water saturated soil for at least part of the year Often the more sun the more consistent moisture the plant requires, and vice versa. The second line of each Entry specifies by numbers the regions in which the plant is native: 1 - southwest Ontario from Windsor to Toronto and from Goderich to Niagara-on-the-Lake; includes London, Hamilton, Burlington, Oakville, Mississauga, Toronto. 2 - north of region 1 to region 3; includes Kitchener-Waterloo, Cambridge, Guelph, Barrie 3 - the Bruce Peninsula and around the south shore of Georgian Bay to/including Collingwood. 4 - regions York, Durham, and Northumberland. 5 - Prince Edward County and along the St. Lawrence River to the Québec border. 6 - from Lake Simcoe across to the Ottawa River; Kawartha Lakes, Peterborough, Ottawa. 7 - from Georgian Bay across to the Ottawa River, plus Manitoulin Island and up the coast of Georgian Bay to just past Sault Ste. Marie; Parry Sound,North Bay, Sudbury, Temagami. 8 - the far northeast; includes Cobalt, Timmins; Kapuskasing is on the western border. 9 - the far north central (north of Sault Ste. Marie); Hearst; Kapuskasing is on the east border. 10 - the far northwest; Rainy River, Lake of the Woods, Kenora, Thunder Bay, Lake Nipigon, Terrace Bay, Wawa. For the photos on website www.minnesotawildflowers.info, click on any photo to see all of them enlarged. For www.michiganflora.net, click on “All Images”. The complete catalogue with all Internet Links active (pointing to beautiful photographs) is available for free at www.frontyardrestoration.com.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • BMP #: Constructed Wetlands
    Structural BMP Criteria BMP #: Constructed Wetlands Constructed Wetlands are shallow marsh sys- tems planted with emergent vegetation that are designed to treat stormwater runoff. U.S. Fish and Wildlife Service, 2001 Key Design Elements Potential Applications z Adequate drainage area (usually 5 to 10 acres Residential Subdivision: YES minimum) Commercial: YES Ultra Urban: LIMITED Industrial: YES z Maintenance of permanent water surface Retrofit: YES Highway/Road: YES z Multiple vegetative growth zones through vary- ing depths Stormwater Functions z Robust and diverse vegetation Volume Reduction: Low z Relatively impermeable soils or engineered liner Recharge: Low Peak Rate Control: High z Sediment collection and removal Water Quality: High z Adjustable permanent pool and dewatering Pollutant Removal mechanism Total Suspended Solids: x Nutrients: x Metals: x Pathogens: x Pennsylvania Stormwater Management Manual 1 Section 5 - Structural BMPs Figure 1. Demonstration Constructed Wetlands in Arizona (http://ag.arizona.edu/AZWATER/arroyo/094wet.html) Description Constructed Wetlands are shallow marsh systems planted with emergent vegetation that are designed to treat stormwater runoff. While they are one of the best BMPs for pollutant removal, Constructed Wetlands (CWs) can also mitigate peak rates and even reduce runoff volume to a certain degree. They also can provide considerable aesthetic and wildlife benefits. CWs use a relatively large amount of space and require an adequate source of inflow to maintain the perma- nent water surface. Variations Constructed Wetlands can be designed as either an online or offline facilities. They can also be used effectively in series with other flow/sediment reducing BMPs that reduce the sediment load and equalize incoming flows to the CW.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bulletin / New York State Museum
    Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program LIBRARY JUL 2 3 1990 NEW YORK BOTANICAL GARDEN Contributions to a Flora of New York State VII Richard S. Mitchell, Editor Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 NEW YORK THE STATE OF LEARNING Digitized by the Internet Archive in 2017 with funding from IMLS LG-70-15-0138-15 https://archive.org/details/bulletinnewyorks4751 newy Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program Contributions to a Flora of New York State VII Richard S. Mitchell, Editor 1990 Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I. A., LL.B Muttontown R. Carlos Carballada, Vice Chancellor , B.S Rochester Willard A. Genrich, LL.B Buffalo Emlyn 1. Griffith, A. B., J.D Rome Jorge L. Batista, B. A., J.D Bronx Laura Bradley Chodos, B.A., M.A Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D Bayside J. Edward Meyer, B.A., LL.B Chappaqua Floyd S. Linton, A.B., M.A., M.P.A Miller Place Mimi Levin Lieber, B.A., M.A Manhattan Shirley C. Brown, B.A., M.A., Ph.D Albany Norma Gluck, B.A., M.S.W Manhattan James W.
    [Show full text]
  • Meadow Pond Final Report 1-28-10
    Comparison of Restoration Techniques to Reduce Dominance of Phragmites australis at Meadow Pond, Hampton New Hampshire FINAL REPORT January 28, 2010 David M. Burdick1,2 Christopher R. Peter1 Gregg E. Moore1,3 Geoff Wilson4 1 - Jackson Estuarine Laboratory, University of New Hampshire, Durham, NH 03824 2 – Natural Resources and the Environment, UNH 3 – Department of Biological Sciences, UNH 4 – Northeast Wetland Restoration, Berwick ME 03901 Submitted to: New Hampshire Coastal Program New Hampshire Department of Environmental Services 50 International Drive Pease Tradeport Portsmouth, NH 03801 UNH Burdick et al. 2010 Executive Summary The northern portion of Meadow Pond Marsh remained choked with an invasive exotic variety of Phragmites australis (common reed) in 2002, despite tidal restoration in 1995. Our project goal was to implement several construction techniques to reduce the dominance of Phragmites and then examine the ecological responses of the system (as a whole as well as each experimental treatment) to inform future restoration actions at Meadow Pond. The construction treatments were: creeks, creeks and pools, sediment excavation with a large pool including native marsh plantings. Creek construction increased tides at all treatments so that more tides flooded the marsh and the highest spring tides increased to 30 cm. Soil salinity increased at all treatment areas following restoration, but also increased at control areas, so greater soil salinity could not be attributed to the treatments. Decreases in Phragmites cover were not statistically significant, but treatment areas did show significant increases in native vegetation following restoration. Fish habitat was also increased by creek and pool construction and excavation, so that pool fish density increased from 1 to 40 m-2.
    [Show full text]
  • Proceedings of the Eleventh Muskeg Research Conference Macfarlane, I
    NRC Publications Archive Archives des publications du CNRC Proceedings of the Eleventh Muskeg Research Conference MacFarlane, I. C.; Butler, J. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/40001140 Technical Memorandum (National Research Council of Canada. Associate Committee on Geotechnical Research), 1966-05-01 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=05568728-162b-42ca-b690-d97b61f4f15c https://publications-cnrc.canada.ca/fra/voir/objet/?id=05568728-162b-42ca-b690-d97b61f4f15c Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected].
    [Show full text]
  • The Role of Protein O-Mannosyltransferase in The
    THE ROLE OF PROTEIN O-MANNOSYLTRANSFERASE IN THE DEVELOPMENT OF DROSOPHILA TORSION PHENOTYPES A Dissertation by RYAN ANDREW BAKER Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Vladislav Panin Committee Members, Gary Kunkel Lanying Zeng Paul Hardin Head of Department, Gregory Reinhart December 2016 Major Subject: Biochemistry Copyright 2016 Ryan Baker ABSTRACT Congenital muscular dystrophies (CMD’s) are serious diseases affecting muscle, brain, eye, and other tissues and often result in premature death of patients. These forms of muscular dystrophy are largely underlain by defects in the glycosylation of dystroglycan, and specifically by defects in the O-mannosylation pathway. The fruit fly Drosophila melanogaster is a good model system for studying many genetic diseases, including CMD’s, as they utilize many of the same molecular processes as mammals. They have homologues of mammalian Protein O-MannosylTransferase (POMT) 1 and 2 which have been shown to O-mannosylate dystroglycan. In this dissertation I studied the biological defects associated with POMT mutations primarily by using a live imaging approach in Drosophila. In Drosophila the most prominent defect associated with POMT mutations is a clockwise torsion of posterior abdominal segments relative to anterior segments. The mechanism by which this torsion arises was not previously known. Here I characterized the gross physiological mechanism by which torsion arises. I showed that it is present at the embryonic stage, that embryos undergo chiral rolling within their shells during peristaltic contractions, and that abnormal contraction patterning in POMT mutants leads to differential rolling that gives rise to torsion of the dorsal midline.
    [Show full text]
  • Can Peatland Landscapes in Indonesia Be Drained Sustainably? an Assessment of the ‘Eko-Hidro’ Water Management Approach
    Peatland Brief Can Peatland Landscapes in Indonesia be Drained Sustainably? An Assessment of the ‘eko-hidro’ Water Management Approach Peatland Brief Can Peatland Landscapes in Indonesia be Drained Sustainably? An Assessment of the ‘eko-hidro’ Water Management Approach July, 2016 Under the projects Indonesia Peatland Support Project (IPSP) funded by CLUA Sustainable Peatland for People and Climate (SPPC) funded by Norad To be cited as: Wetlands International, Tropenbos International, 2016. Can Peatland Landscapes in Indonesia be Drained Sustainably? An Assessment of the ‘Eko-Hidro’ Water Management Approach. Wetlands International Report. Table of Contents Table of Contents ........................................................................................................................... iii List of Tables .................................................................................................................................... iv List of Figure ..................................................................................................................................... iv Summary ........................................................................................................................................... iii 1. Introduction ............................................................................................................................. 1 2. The ‘eko-hidro’ peatland management approach and the Kampar HCV Assessment .............................................................................................................................
    [Show full text]
  • Genetic Modification of Wetland Grasses for Phytoremediation
    Genetic Modification of Wetland Grasses for Phytoremediation Miha´ly Czako´ a, Xianzhong Fengb, Yuke Heb, Dali Lianga, and La´szlo´ Ma´rtona,* a Department of Biological Sciences, University of South Carolina, 700 Sumter St, Columbia, SC 29208, USA. Fax: 803-777-4002. E-mail: [email protected] b National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People’s Republic of China * Author for correspondence and reprint requests Z. Naturforsch. 60c, 285Ð291 (2005) Wetland grasses and grass-like monocots are very important natural remediators of pollu- tants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for ge- netic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomer- curial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. Key words: Cell Culture, Mercury, Phytoremediation, Spartina alterniflora Introduction carry out industrial processes such as phytoreme- “Phytoremediation is the use of plants to par- diation, such grass-like plants are important.
    [Show full text]
  • Annual Report 2019
    Newcomer Tour of Norfolk County Student Start Up Program participants Tourism & Economic Development Annual Report 2019 Table of Contents Executive Summary ........................................................................................................ 3 Business Incentives & Supports ...................................................................................... 5 Investment Attraction ..................................................................................................... 11 Collaborative Projects ................................................................................................... 14 Marketing & Promotion .................................................................................................. 20 Strategy, Measurement & Success ............................................................................... 31 Performance Measurement ........................................................................................... 32 Advisory Boards ............................................................................................................ 33 Appendix ....................................................................................................................... 35 Staff Team ..................................................................................................................... 40 Prepared by: Norfolk County Tourism & Economic Development Department 185 Robinson Street, Suite 200 Simcoe ON N3Y 5L6 Phone: 519-426-9497 Email: [email protected] www.norfolkbusiness.ca
    [Show full text]
  • 2019 Election: Seat Clusters June to September Survey Results
    2019 Election: Seat Clusters June to September Survey Results August 2019 2 Overview In Canada, we count seats, not vote. Just like in American Presidential elections, you can win the popular vote and lose the election. In fact, that happened to Justin Trudeau’s father in 1979. The general way analysts address that is to look at seats by region. However, seats in the same region can move differently. This release tries to get closer to reality in the seat-by-seat contest. Our analysis combines two projects: • An analysis of federal election districts (which we call “seats”) that groups them into 14 clusters based on which parties are most competitive in those seats. Given the shifting dynamics of Canada’s party system, we have relied on only the results of the past two elections. However, to assess where the parties stand in these 14 seat clusters, we need a lot of data. • A merge of the most recent three national surveys that include federal votes, creating a unweighted total of 7,555 respondents and a weighted total of 4,900. In each of our surveys, we collect postal codes. That allows us to create a riding variable for almost all our respondents and to group their responses by the riding they are in. The deck below shows the output from the analysis. The key finding is that, with the NDP in the doldrums, the Liberals are in a strong position coming into the race. Not only have they cemented their hold on last elections core seats, they may be able to gain seats to offsets the losses they will likely experience in the Toronto and Vancouver suburbs and Atlantic Canada.
    [Show full text]