FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: © 1999 Marine Biological Association of the United Kingdom. This manuscript is an author version with the final publication available and may be cited as: Tyler, P.A., & Young, C. M. (1999). Reproduction and dispersal at vents and cold seeps. Journal of the Marine Biological Association of the United Kingdom, 79(2), 193-208. J. Mar. Biol. Ass. U.K. (1999), 79,193^208 Printed in the United Kingdom REVIEW Reproduction and dispersal at vents and cold seeps P.A. Tyler* and C.M. YoungO *School of Ocean and Earth Science, University of Southampton, SOC, Southampton, SO14 3ZH. ODivision of Marine Science, Harbor Branch Oceanographic Institution, 5600 US 1 N, Fort Pierce, FL 34946, USA Reproductive cycles are determined from samples taken at regular intervals over a period of time related to the assumed periodicity of the breeding cycle. Fiscal, ship time and sampling constraints have made this almost impossible at deep-sea vents and seeps, but there is an accumulating mass of data that cast light on these processes. It is becoming apparent that most reproductive processes are phylogeneti- cally conservative, even in extreme vent and seep habitats. Reproductive patterns of species occurring at vents and seeps are not dissimilar to those of species from the same phyla found in non-chemosynthetic environments. The demographic structure of most vent and seep animals is undescribed and the maximum ages and growth rates are not known. We know little about how the gametogenic cycle is initiated, though there is a growing body of data on the size at ¢rst reproduction. Gametogenic biology has been described from seasonal samples for only one organism from vent/seep environments. For other species, the pattern of gametogenesis has been described from serendipitous samples that allow determi- nation of reproductive e¡ort, but such samples reveal little about energy partitioning during the gametogenic process. Some notable adaptations have been described in mature gametes, including modi- ¢ed sperm. Spawning has been observed for a number of species both in situ and in vitro. Knowledge of the larvae of vent/seep organisms has been derived from laboratory fertilizations, from ¢eld collections over vent and seep areas and, for molluscs, from protoconch or prodissoconch size and shape. Larval dispersal has been perhaps the most intractable aspect of reproduction. Because the length of larval life is known for only a single seep organism and no vent organism, we cannot infer dispersal distance from a knowledge of current velocities. Modelling has been used to assess the maximum larval distance that allows e¡ective migration between vent sectors. An indirect approach has been to estimate gene £ow within, and between, vent sites using DNA sequencing and electrophoretic techniques. Although data are still equivocal, there are indications of considerable mixing among populations within and between vent sectors of the same ridge. Our knowledge of reproductive biology in vent and seep organisms remains fragmentary, but with molecular and biochemical techniques, emerging larval culture techniques, and increased sampling e¡ort, the pieces of the jigsaw will eventually form an overall picture. INTRODUCTION have also been described from cold seeps but the domi- nant cold seep taxa, such as vestimentiferans and mussels The discovery of hydrothermal vents along the Gala- from the Louisiana slope (Gulf of Mexico) remained pagos Rift some 20 years ago heralded one of the most undescribed more than ten years after ¢rst being observed expansive phases of research in the deep sea. In the inter- and collected (Gustafson et al., in press). vening period, hydrothermal vents have been discovered Since the initial discovery of chemosynthetic endosym- at a large number of locations along mid-ocean ridges bionts in the vestimentiferan tubeworm Riftia pachyptila and back arc basins (Figure 1). Because the bacteria, and (Cavanaugh et al., 1981), an avalanche of publications their symbiotic hosts, in these environments use chemical have described aspects of physiology for a variety of vent energy rather than sunlight as their primary energy and cold-seep species (see Childress & Fisher, 1992 for source, ecosystems driven by chemosynthesis have become review). At present, the autecology of many species is a focus of intense study (Tunnicli¡e et al., 1998). Subse- being unravelled, the ecology of vent communities is quently, these vent studies were supplemented by the being described (Tunnicli¡e, 1991; Van Dover, 1995; discovery of novel cold-seep faunas that share biological Gebruk et al., 1997; Tunnicli¡e et al.,1998), and the evolu- characteristics with hydrothermal vent faunas but at tionary history and fossil record of vent faunas are being ambient, rather than elevated, temperatures (Sibuet & interpreted (Tunnicli¡e, 1991; Tunnicli¡e & Fowler, 1996; Olu, 1998). Jollivet, 1996; Vrijenhoek, 1997). Life history biology, Studies of any new environment generally fall into however, has proved to be the least tractable of biological three consecutive phases: composition, structure and processes, though widely recognized as being of funda- dynamics (Juniper & Tunnicli¡e, 1997). Although over mental importance to understand the establishment and 500 new species have been described from hydrothermal maintenance of vent and seep populations. Of the 500 vents, many more remain to be described. New species putative species described from vent and seep Journal of the Marine Biological Association of the United Kingdom (1999) 194 P.A.Tyler and C.M.Young Vent reproduction and dispersal Figure 1. Distribution of hydrothermal vents (*) and cold seeps (&) in the world ocean. Solid represents sites for which reproductive data are available. Redrawn from an INTERRIDGE base chart. environments, less than ten have been studied primarily larval development, dispersal, settlement and recruitment for their reproductive biology and we do not know the in vent and seep species. Growth is outwith the scope of complete life cycle of a single species of vent or seep this review but is a signi¢cant variable in the life history organism. The di¤culty of studying life history biology biology of an organism and will be referred to as, and stems from a need to examine temporal processes on when, necessary. We have elected to address reproduction scales of months to years in a three-dimensional environ- by examining aspects of the life cycle within speci¢c taxa. ment several orders of magnitude larger than the repro- This allows direct comparisons among related species. ductive propagule. Traditionally, macro- and mega-faunal organisms are sampled repeatedly over multiple years to determine the GAMETOGENESIS, SPAWNING, temporal variation in the various reproductive processes FERTILIZATION AND LARVAL (Giese & Pearse, 1974). Reproduction at vents and seeps DEVELOPMENT might be eminently tractable if we could assume that all Phylum Annelida: Class Polychaeta vent and seep organisms reproduced asynchronously so that at least some members of the population are repro- Polychaete annelids form a signi¢cant element of the ductive at any one time. However, this assumption is unli- vent fauna at most sites studied. They are less dominant kely, as non-vent deep sea organisms are known to have a at cold seeps, although some species found recently are variety of reproductive strategies including asynchronous new to science (Desbruye© res & Toulmond, 1998) and (continuous), synchronous (seasonal) and opportunistic others await description (C. Fisher, K. Eckelbarger, life histories (Gage & Tyler, 1991). From the limited data personal communication). available at present, it is apparent that the reproductive The dominant polychaete genus in the eastern and patterns of vent and seep organisms have strong phyloge- north-eastern Paci¢c is Paralvinella (Table 1). McHugh netic constraints (Van Dover et al., 1985), and that adap- (1989) has compared the reproductive biology of tations to vents and seeps are mainly in the nutritional P. pandorae and P. palmiformis from the Juan de Fuca Ridge and respiratory physiology of the organism. Although the (JdF). Sex ratios are even and gametogenesis is coelomic. general reproductive pattern may be conservative in vent The main gametogenic di¡erences between the two organisms, aspects of the life history must have evolved to species are the smaller egg size and lower fecundity in ensure that the reproductive propagule can ultimately P. pandorae. In addition, the spermatozoon of P. pandorae is locate and colonize the vent `needle' in the oceanic modi¢ed so that the tailpiece recurves at an acute angle `haystack'. from the mid-piece (McHugh, 1995). The modi¢ed sperm In this review the current state of knowledge of P. pandorae suggests that the spermatozoon has limited pertaining to the life histories of vent and seep organisms mobility and spermatozoa are transferred in bundles to are addressed. Our template is the generalized marine the female. Evidence from both the adult population invertebrate life cycle (Figure 2), which includes the structure and oocyte size/frequency data suggest that processes of gametogenesis, spawning and/or copulation, periodicity of reproduction is asynchronous in P. pandorae Journal of the Marine Biological Association of the United Kingdom (1999) Vent reproduction and dispersal P.A.Tyler and C.M.Young
Recommended publications
  • Vertical, Lateral and Temporal Structure in Larval Distributions at Hydrothermal Vents
    MARINE ECOLOGY PROGRESS SERIES Vol. 293: 1–16, 2005 Published June 2 Mar Ecol Prog Ser Vertical, lateral and temporal structure in larval distributions at hydrothermal vents L. S. Mullineaux1,*, S. W. Mills1, A. K. Sweetman2, A. H. Beaudreau3, 4 5 A. Metaxas , H. L. Hunt 1Woods Hole Oceanographic Institution, MS 34, Woods Hole, Massachusetts 02543, USA 2Max-Planck-Institut für marine Mikrobiologie, Celsiusstraße 1, 28359 Bremen, Germany 3University of Washington, Box 355020, Seattle, Washington 98195, USA 4Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada 5University of New Brunswick, PO Box 5050, Saint John, New Brunswick E2L 4L5, Canada ABSTRACT: We examined larval abundance patterns near deep-sea hydrothermal vents along the East Pacific Rise to investigate how physical transport processes and larval behavior may interact to influence larval dispersal from, and supply to, vent populations. We characterized vertical and lateral distributions and temporal variation of larvae of vent species using high-volume pumps that recov- ered larvae in good condition (some still alive) and in high numbers (up to 450 individuals sample–1). Moorings supported pumps at heights of 1, 20, and 175 m above the seafloor, and were positioned directly above and at 10s to 100s of meters away from vent communities. Sampling was conducted on 4 cruises between November 1998 and May 2000. Larvae of 22 benthic species, including gastropods, a bivalve, polychaetes, and a crab, were identified unequivocally as vent species, and 15 additional species, or species-groups, comprised larvae of probable vent origin. For most taxa, abundances decreased significantly with increasing height above bottom. When vent sites within the confines of the axial valley were considered, larval abundances were significantly higher on-vent than off, sug- gesting that larvae may be retained within the valley.
    [Show full text]
  • Reproduction of Gastropods from Vents on the East Pacific Rise and the Mid-Atlantic Ridge
    JOBNAME: jsr 27#1 2008 PAGE: 1 OUTPUT: Friday March 14 03:55:15 2008 tsp/jsr/159953/27-1-19 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Shellfish Research, Vol. 27, No. 1, 107–118, 2008. provided by Woods Hole Open Access Server REPRODUCTION OF GASTROPODS FROM VENTS ON THE EAST PACIFIC RISE AND THE MID-ATLANTIC RIDGE PAUL A. TYLER,1* SOPHIE PENDLEBURY,1 SUSAN W. MILLS,2 LAUREN MULLINEAUX,2 KEVIN J. ECKELBARGER,3 MARIA BAKER1 AND CRAIG M. YOUNG4 1National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom; 2Biology Department Woods Hole Oceanographic Institution, Woods Hole Massachusetts 02543; 3Darling Marine Center, University of Maine, 193 Clark’s Cove Road. Walpole, Maine 04573; 4Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420 ABSTRACT The gametogenic biology is described for seven species of gastropod from hydrothermal vents in the East Pacific and from the Mid-Atlantic Ridge. Species of the limpet genus Lepetodrilus (Family Lepetodrilidae) had a maximum unfertilized oocyte size of <90 mm and there was no evidence of reproductive periodicity or spatial variation in reproductive pattern. Individuals showed early maturity with females undergoing gametogenesis at less than one third maximum body size. There was a power relationship between shell length and fecundity, with a maximum of ;1,800 oocytes being found in one individual, although individual fecundity was usually <1,000. Such an egg size might be indicative of planktotrophic larval development, but there was never any indication of shell growth in larvae from species in this genus.
    [Show full text]
  • Evolutionary Relationships Within the "Bathymodiolus" Childressi Group
    Cah. Biol. Mar. (2006) 47 : 403-407 Evolutionary relationships within the "Bathymodiolus" childressi group W. Jo JONES* and Robert C. VRIJENHOEK Monterey Bay Aquarium Research Institute, Moss Landing CA 95064, USA, *Corresponding Author: Phone: 831-775-1789, Fax: 831-775-1620, E-mail: [email protected] Abstract: Recent discoveries of deep-sea mussel species from reducing environments have revealed a much broader phylogenetic diversity than previously imagined. In this study, we utilize a commercially available DNA extraction kit to obtain high-quality DNA from two mussel shells collected eight years ago at the Edison Seamount near Papua New Guinea. We include these two species into a comprehensive phylogeny of all available deep-sea mussels. Our analysis of nuclear and mitochondrial DNA sequences supports previous conclusions that deep-sea mussels presently subsumed within the genus Bathymodiolus comprise a paraphyletic assemblage. This assemblage is composed of a monophyletic group that might properly be called Bathymodiolus and a distinctly parallel grouping that we refer to as the “Bathymodiolus” childressi clade. The “childressi” clade itself is diverse containing species from the western Pacific and Atlantic basins. Keywords: Bathymodiolus l Phylogeny l Childressi clade l Deep-sea l Mussel Introduction example, Gustafson et al. (1998) noted that “Bathymodiolus” childressi Gustafson et al. (their quotes), Many new species of mussels (Bivalvia: Mytilidae: a newly discovered species from the Gulf of Mexico, Bathymodiolinae) have been discovered during the past differed from other known Bathymodiolus for a number of two decades of deep ocean exploration. A number of genus morphological characters: multiple separation of posterior names are currently applied to members of this subfamily byssal retractors, single posterior byssal retractor scar, and (e.g., Adipicola, Bathymodiolus, Benthomodiolus, rectum that enters ventricle posterior to level of auricular Gigantidas, Idas, Myrina and Tamu), but diagnostic ostia.
    [Show full text]
  • A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
    ^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more
    [Show full text]
  • (Southern Ocean) Hydrothermal Vents: What More Can We Learn from an Ellipse?
    Vol. 542: 13–24, 2016 MARINE ECOLOGY PROGRESS SERIES Published January 19 doi: 10.3354/meps11571 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Isotopic niche variability in macroconsumers of the East Scotia Ridge (Southern Ocean) hydrothermal vents: What more can we learn from an ellipse? W. D. K. Reid1,*, C. J. Sweeting2, B. D. Wigham3, R. A. R. McGill4, N. V. C. Polunin5 1Ridley Building, School of Biology, Newcastle University, Newcastle, NE1 7RU, UK 2Marine Management Organisation, Lancaster House, Hampshire Court, Newcastle upon Tyne, NE4 7YH, UK 3Dove Marine Laboratory, School of Marine Science & Technology, Newcastle University, Cullercoats, NE30 4PZ, UK 4NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK 5Ridley Building, School of Marine Science & Technology, Newcastle University, Newcastle, NE1 7RU, UK ABSTRACT: Aspects of between-individual trophic niche width can be explored through the iso- topic niche concept. In many cases isotopic variability can be influenced by the scale of sampling and biological characteristics including body size or sex. Sample size-corrected (SEAc) and Bayesian (SEAb) standard ellipse areas and generalised least squares (GLS) models were used to explore the spatial variability of δ13C and δ15N in Kiwa tyleri (decapod), Gigantopelta chessoia (peltospirid gastropod) and Vulcanolepas scotiaensis (stalked barnacle) collected from 3 hydrothermal vent field sites (E2, E9N and E9S) on the East Scotia Ridge (ESR), Southern Ocean. SEAb only revealed spatial differences in isotopic niche area in male K. tyleri. However, the parameters used to draw the SEAc, eccentricity (E) and angle of the major SEAc axis to the x-axis (θ), indicated spatial differences in the relationships between δ13C and δ15N in all 3 species.
    [Show full text]
  • Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
    Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter.
    [Show full text]
  • Crustacea: Decapoda) Can Penetrate the Abyss: a New Species of Lebbeus from the Sea of Okhotsk, Representing the Deepest Record of the Family
    European Journal of Taxonomy 604: 1–35 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.604 www.europeanjournaloftaxonomy.eu 2020 · Marin I. This work is licensed under a Creative Commons Attribution Licence (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:7F2F71AA-4282-477C-9D6A-4C5FB417259D Thoridae (Crustacea: Decapoda) can penetrate the Abyss: a new species of Lebbeus from the Sea of Okhotsk, representing the deepest record of the family Ivan MARIN A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia. Email: [email protected], [email protected] urn:lsid:zoobank.org:author:B26ADAA5-5DBE-42B3-9784-3BC362540034 Abstract. Lebbeus sokhobio sp. nov. is described from abyssal depths (3303−3366 m) in the Kuril Basin of the Sea of Okhotsk. The related congeners are deep-water dwellers with a very distant distribution and very similar morphology. The new species is separated by minor morphological features, such as the armature of the rostrum and telson, meral spinulation of ambulatory pereiopods and the shape of the pleonal pleurae. This species is the deepest dwelling representative of the genus Lebbeus and the family Thoridae. A list of records of caridean shrimps recorded from abyssal depths below 3000 m is given. Keywords. Diversity, Caridea, barcoding, SokhoBio 2015, NW Pacifi c. Marin I. 2020. Thoridae (Crustacea: Decapoda) can penetrate the Abyss: a new species of Lebbeus from the Sea of Okhotsk, representing the deepest record of the family. European Journal of Taxonomy 604: 1–35. https://doi.org/10.5852/ejt.2020.604 Introduction The fauna of benthic caridean shrimps (Crustacea: Decapoda: Caridea) living at depths of more than 3000 m is poorly known due to the technical diffi culties of sampling.
    [Show full text]
  • Food Sources, Behaviour, and Distribution of Hydrothermal Vent Shrimps at the Mid-Atlantic Ridge „ A.V
    J. Mar. Biol. Ass. U.K. E2000), 80, 485^499 Printed in the United Kingdom Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge A.V. Gebruk*O, E.C. Southward*, H. KennedyP and A.J. Southward* *Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. OP.P. Shirshov Institute of Oceanology, Russian P Academy of Sciences, Nakhimovsky pr. 36, Moscow, 117851, Russia. School of Ocean Sciences, University of Wales^Bangor, Menai Bridge, Anglesey, LL59 5EY. Corresponding author, e-mail: [email protected] Five species of bresilioid shrimp were investigated at seven hydrothermal sites on the Mid-Atlantic Ridge: Menez Gwen, Lucky Strike, Rainbow, Broken Spur, TAG, Snake Pit and Logatchev. Samples were prepared for analysis of stable isotopes, elemental composition and lipids. Shrimp behaviour was observed from the submersible `Alvin'and in the laboratory aboard RV `Atlantis'.The distribution and zonation of the shrimp species was recorded. Juvenile shrimp of all species arrive at the vents carrying reserves of photo- synthetic origin, built-up in the pelagic larval stages. These reserves are used while the shrimp metamorphose to the adult form and, in Rimicaris exoculata and Chorocaris chacei, while they develop epibiotic bacteria supporting structures, the modi¢ed mouthparts and the inside of the carapace. The main food of adult R. exoculata is ¢lamentous bacteria that grow on these structures. The intermediate sizes of C. chacei also feed on such bacteria, but the ¢nal stage gets some food by scavenging or predation. Mirocaris species scavenge diverse sources; they are not trophically dependent on either R.
    [Show full text]
  • Abigail Jean Fusaro
    SPATIAL AND TEMPORAL POPULATION GENETICS AT DEEP-SEA HYDROTHERMAL VENTS ALONG THE EAST PACIFIC RISE AND GALÁPAGOS RIFT by Abigail Jean Fusaro B.S., University of Rhode Island, 2002 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION September 2008 © 2008 Abigail J. Fusaro All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution July 7, 2008 Certified by Timothy M. Shank Thesis Supervisor Accepted by Edward F. DeLong Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 2 Spatial and Temporal Population Genetics at Deep-Sea Hydrothermal Vents Along the East Pacific Rise and Galápagos Rift by Abigail Jean Fusaro Submitted to the Department of Biology on July 7, 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Ecological processes at deep-sea hydrothermal vents on fast-spreading mid-ocean ridges are punctuated by frequent physical disturbance. Larval dispersal among disjunct vent sites facilitates the persistence of sessile invertebrate species in these geologically and chemically dynamic habitats despite local extinction events. Regional population extension and rapid recolonization by the siboglinid tubeworm Riftia pachyptila have been well documented along the East Pacific Rise and the Galápagos Rift.
    [Show full text]
  • Neolepetopsidae, a New Docoglossate Limpet Family from Hydrothermal Vents and Its Relevance to Patellogastropod Evolution
    J. ZooL, Lond. (1990) 222, 485-528 Neolepetopsidae, a new docoglossate limpet family from hydrothermal vents and its relevance to patellogastropod evolution JAMES H. MCLEAN Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA {Accepted 21 May 1989) (With 12 plates and 1 figure in the text) Six new species of limpets from hydrothermal vents at spreading centres, hydrothermal vents on seamounts, or cold sulphide seeps are described in three new genera in the new family Neolepetopsidae. Anatomy is detailed separately by V. Fretter (1990). The family is considered to be a living descendant of the Palaeozoic-Mesozoic family Lepetopsidae (proposed herein), based on Lepetopsis Whitfield, 1882. Both families are placed in the new superfamily Lepetopsacea, new suborder Lepetopsina, order Patellogastropoda. New genera and species are: Neolepetopsis, type species N. gordensis, from the Gorda Ridge, and three additional species: N. densata, from an active sulphide chimney near 12° N on the East Pacific Rise, N. verruca from a sulphide chimney near 21 ° N on the East Pacific Rise, and N. occulta from hydrothermal vents on the caldera floor of Green Seamount near 21° N; Eulepetopsis, type species E. vitrea, from hydrothermal vents at the Galapagos Rift and the East Pacific Rise near 21°, 13° and 11° N; Paralepetopsis, type species P. floridensis, from cool, hypersaline, sulphide seeps at the base of the continental slope off the west coast of Florida. Inclusion in Patellogastropoda is indicated by plesiomorphic characters: symmetrical shell lacking coiled phase, no epipodium in adult, single dorsally arched jaw, docoglossate dentition with a licker below the tip of the radula, both left and right kidney, and gonad discharging through right kidney.
    [Show full text]
  • Decapoda: Caridea: Alvinocarididae) from Cold Seeps in the Congo Basin
    J. Mar. Biol. Ass. U.K. (2006), 86, 1347^1356 doi: 10.1017/S0025315406014378 Printed in the United Kingdom Reproductive biology of Alvinocaris muricola (Decapoda: Caridea: Alvinocarididae) from cold seeps in the Congo Basin P O Eva Ramirez-Llodra* and Michel Segonzac *Institut de Cie' ncies del Mar, CMIMA-CSIC, Psg. Mar|¤tim de la Barceloneta 37-49, 08003 Barcelona, Spain. O Ifremer, Centre de Brest, Laboratoire Environnement Profond-Centob, BP 70, 29280 Plouzane¤Cedex, France. P Corresponding author, e-mail: [email protected] The caridean shrimp Alvinocaris muricola has been observed forming high density populations over mussel beds on the giant pockmark cold seep site Regab in the Gulf of Guinea at 3150 m depth. Samples were collected using the ROV Victor 6000, a beam trawl and a TV grab from two sites. The specimens were sexed and measured for population structure analysis. In one sample the sex ratio was 1:1, but the other sample had a sex ratio signi¢cantly biased towards females. The maximum size of females is larger than males. A sub-sample was used for gametogenesis and fecundity analysis. The oogenesis and spermatogen- esis of A. muricola is characteristic of caridean shrimps. The oogonia proliferate from the germinal epithelium and develop into previtellogenic oocytes that migrate to the growth zone. Vitellogenesis starts at 80^100 mm oocyte size and the developing oocytes are surrounded by a monolayer of accessory cells. The maximum oocyte size was 515 mm. There was no evidence of synchrony in oocyte development, with all oocyte stages present in all ovaries analysed.
    [Show full text]
  • Reproductive Biology of Three Caridean Shrimp, Rimicaris Exoculata, Chorocaris Chacei and Mirocaris Fortunata Caridea: Decapoda), from Hydrothermal Vents
    J. Mar. Biol. Ass. U.K. 2000), 80,473^484 Printed in the United Kingdom Reproductive biology of three caridean shrimp, Rimicaris exoculata, Chorocaris chacei and Mirocaris fortunata Caridea: Decapoda), from hydrothermal vents Eva Ramirez Llodra*, Paul A. Tyler and Jonathan T.P. Copley School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton, SO14 3ZH. *Corresponding author, e-mail: [email protected] The caridean shrimp Rimicaris exoculata, Chorocaris chacei and Mirocaris fortunata, together with bathy- modiolid mussels, dominate the vent fauna along the Mid-Atlantic Ridge. Vent shrimp show the characteristic reproductive patterns of caridean decapods. The gonads are paired organs overlying the digestive gland under the carapace. In the ovaries, the oogonia 20^30 mm diameter) proliferate in the germinal epithelium at the periphery of the gonad, developing into previtellogenic oocytes. The previ- tellogenic oocytes grow to 70^100 mm before undergoing vitellogenesis. The maximum size for mature oocytes ranged between 200 and 500 mm depending on the species and the sample. The oocyte size^ frequency data show no evidence of synchrony in oogenesis at population level for any of the species studied. Mirocaris fortunata is the only species where gravid females are commonly collected. The brood is carried on the pleopods, and the number of eggs per female ranges from 25 to 503, with a mean egg length of 0.79 Æ0.14 mm. There is a positive correlation between fecundity and body size, characteristic of crustaceans. One ovigerous C. chacei and two R.exoculata have been studied.
    [Show full text]