Formaldehyde, D4, MEK, and Styrene in Children's Products

Total Page:16

File Type:pdf, Size:1020Kb

Formaldehyde, D4, MEK, and Styrene in Children's Products Formaldehyde, D4, MEK, and Styrene in Children’s Products Sara Sekerak, Environmental Assessment Program Overview In 2016, the Washington State Department of Ecology (Ecology) began an assessment of the data reported in the Children’s Safe Products Act (CSPA) Manufacturer Reporting Database. Under CSPA (Chapter 70.240 Revised Code of Washington (RCW)), manufacturers of children’s products offered for sale in Washington State are restricted from using certain chemicals. They are also required to report to Ecology if a product contains any Chemicals of High Concern to Children (CHCC) (Chapter 173-334 Washington Administrative Code (WAC)). Using a study performed by Smith et al. (2016) to characterize, rank, and prioritize chemicals reported in children’s products based on chemical toxicity and the potential exposure pathways, Ecology identified four priority chemicals for this study: formaldehyde, octamethylcyclotetrasiloxane (D4), methyl ethyl ketone (MEK), and styrene. These chemicals ranked high in either chemical toxicity, exposure potential, number of manufacturer reports, or a combination of these criteria. Ecology frequently performs testing on CHCCs in children’s products to verify compliance, to further understand chemical usage and presence in products, and for making policy decisions. In 2016, Ecology purchased 137 children’s products and submitted 97 component samples to the laboratory Toys/Games 34 for analysis of one or more of the four priority chemicals. Figure 1 displays the types and distribution Beauty/Personal Care/Hygiene 33 of products purchased. Manufacturer-reported data and research on the use and application of these chemicals in product-manufacturing processes helped Clothing 18 guide product selection. Household/Office 16 Data gathered from this study were used to enhance Furniture/Furnishings our understanding of chemicals used in children’s products and assess compliance with CSPA. This Baby Care 16 report describes the presence and levels of four chemicals found in a select set of children's products. This report does not attempt to assess potential Arts/Crafts/Needlework 12 exposures or impacts to human health related to the tested products. Kitchen Merchandise 8 Complete laboratory results for this study can be 0 5 10 15 20 25 30 35 requested from the author / project manager, Numbers of Products Sara Sekerak. Figure 1. Types and Distribution of Purchased Products, listed by Global Product Classification (GPC) Segment. For More Information Ecology’s CSPA website: Children's Safe Products Act CSPA Manufacturer Reporting Database: https://fortress.wa.gov/ecy/cspareporting Rational for Reporting List of CHCCs (2011 Rule): https://fortress.wa.gov/ecy/publications/documents/1704023.pdf Publication No. 17-03-020 October 2017 An Assessment of CSPA Data Methods Product Collection and Processing, and Laboratory Sample Selection This study followed a Quality Assurance Project Plan (QAPP) and QAPP addendum (Sekerak, 2016a; Sekerak, 2016b). Ecology purchased 137 children's products and one product labeled as ‘KEEP OUT OF THE REACH OF CHILDREN’. This product was available for sale amongst other children’s products, on a low shelf, in a store selling predominately children's products. Most products were purchased from 16 Puget Sound retail stores, and a small set of products were purchased from four online retailers. The standard practice of purchasing from larger chain stores was used to represent products sold and available to customers across Washington State. It is assumed that statewide each chain store mostly receives the same distribution of products. Products purchased online are also assumed to be equally accessible by most state residents. The CSPA Manufacturer Reporting Database was used to focus on categories of products to purchase. Product universal product codes (UPCs) are not entered into the database; therefore, no specific products were targeted. Supplementary literature reviews of the use of formaldehyde, D4, MEK, and styrene in manufacturing processes were used to help with the selection of products and product components to be evaluated in this study. When available, product ingredient labels were used to prioritize testing based on listings of a target chemical, synonym, or a secondary chemical known to form or decompose to release one of the four study target chemicals. All personal care products and other products sold in sealed bottles or containers were sent to the laboratories in their original sealed bottles. Containers were opened just prior to analysis preparation. Component samples from solid material matrices (e.g., fabrics, plastics, bio-based materials) were hand-reduced or cryomilled by product testing and laboratory standard operating procedures (SOPs; Wiseman et al., 2016; MEL, 2016). Laboratory Procedures ^ Table 1. Laboratory Methods . Ecology’s Manchester Environmental Laboratory (MEL) analyzed component samples of formaldehyde, MEK, and Analyte Preparation Analysis Analysis (CAS Number) Method Method Instrument styrene. A contract laboratory performed the analysis of D4. Table 1 outlines the preparation and analysis methods Formaldehyde EPA 8315AP EPA 8270DSIM GC/MS and instrumentation for all analyses. (50-00-0) For this study MEL developed a method for the extraction D4 ALS SOP ALS SOP and analysis of formaldehyde in consumer products based GC/MS (556-67-2) SVM-D4SO SVM-D4SO on EPA 8315A. The performance-based modifications to MEK the preparation technique included a reduction in sample EPA 5030B EPA 8260C GC/MS size and extraction fluids, as well as the addition of (78-93-3) surrogates to monitor extraction efficiency. Analysis was Styrene EPA 5030B EPA 8260C GC/MS performed by gas chromatography/mass spectrometry (100-42-5) (GC/MS; EPA 8270DSIM) as an alternative to high- ^Method names are specific to the lab that performed the analysis. performance liquid chromatography—ultraviolet/visible GC/MS: gas chromatography/mass spectrometry spectroscopy (HPLC-UV/Vis). The D4 analysis was performed following a sediments and Biosolids GC/MS method modified for testing consumer products. MEK and styrene were analyzed using established product testing methods, based on EPA Method 8260C. All MEL data were reviewed and verified as prescribed in MEL’s Lab Users Manual– Tenth Edition (Ecology, 2016). The MEL Quality Assurance coordinator validated the D4 contract lab data following EPA’s National Functional Guidelines for Superfund Organics Methods Data Review (EPA, 2014). Discussions of the data quality for all datasets were summarized in written case narratives prepared by MEL. These case narratives are available upon request. 2 An Assessment of CSPA Data Data Quality and Usability Quality control (QC) tests and measurement quality objectives (MQOs) are outlined in the study plan (Sekerak, 2015). With few exceptions, the results met acceptance criteria for all analyses. There are no limitations on the use of the data as reported. Qualifiers were assigned to some data within this study: “J” indicating that the associated result is an estimate. “U” indicating that the analyte was not detected at the quantitation limit. “UJ” signifying that the quantitation limit is an estimate. “NJ” where the analyte was tentatively identified in the sample but the result value reported is an estimate. Method blanks (MBs), laboratory control samples (LCSs), LCS duplicates, duplicates (DUPs), matrix spikes (MSs), and MS duplicates were analyzed with each batch of samples. No analytes were detected above the method reporting limits (RLs) in the MBs associated with each sample batch. Due to the persistent presence of low background levels of formaldehyde, the reporting limit was raised to 10 parts per million (ppm) for the first batch of samples analyzed. In subsequent batches, procedure modifications were successful in reducing contamination and a reporting limit of 5 ppm was obtained. For D4, a reporting limit of 0.026 ppm was achieved by the contract laboratory. The contract laboratory originally reported data below the RL and flagged these results as estimates. “J” flagged data below the reporting limit were changed by the project manager to 0.026 ppm “U”, indicating that the analyte was not detected at or above the quantitation limit. This change does not affect the quality of the data reported. A range of actual reporting limits are displayed in Table 2. All LCS and LCS duplicates were extracted and analyzed as appropriate and met acceptance criteria. Matrix spikes for one sample exhibited poor recovery of the concentration of added formaldehyde; the source sample was qualified as an estimate. All other precision and bias criteria were met. Table 2. Summary Statistics of Priority Chemicals in For D4, one duplicate sample was reported slightly Children’s Products. above the range of the calibration curve and was qualified as an estimate. The source sample was analyzed within the calibration curve and not Analyte Formaldehyde D4 MEK Styrene qualified as a result of the qualification assigned to the duplicate. Number 84 43 60 60 (n) As the method requires, all surrogates and internal standards were performed as specified. Four formal- RL* 4.19 - 20.1 0.026 0.77 - 43.1 0.77 - 43.1 dehyde samples were reported as estimates due to (ppm) low surrogate recoveries (<50%). This was due to severe matrix interferences. Two additional formal- (ppm)* 31 22 0 9 dehyde QC samples (MB and DUP) also had low surrogate recoveries. All results associated with this % > RL 37% 51% 0% 15% MB and the source sample
Recommended publications
  • Diazolidinyl Urea (Germall® II)
    the art and science of smart patch testingTM AP87: Diazolidinyl urea (Germall® II) Patient Information Your patch test result indicates that you have a contact allergy to diazolidinyl urea. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching, and fluid-filled blisters. Where is diazolidinyl urea found? Diazolidinyl urea is found in cosmetics, skin care products, shampoos, bubble baths, baby wipes, and household detergents. It is used as a preservative and acts as a formaldehyde releaser. How can you avoid contact with diazolidinyl urea? Avoid products that list any of the following names in the ingredients: Diazolidinyl urea N-(Hydroxymethyl)-N-(1,3- EINECS 278-928-2 dihydroxymethyl-2,5-dioxo-4- Germall 11 imidazolidinyl)- Imidazolidinyl urea 11 N'-(hydroxymethyl) urea N-(1,3-Bis(hydroxymethyl)-2,5- N-(Hydroxymethyl)-N-(1,3- dioxo-4-imidazolidinyl)-N,N'- dihydroxymethyl-2,5-dioxo-4- bis(hydroxymethyl)urea imidazolidinyl)- N'-(hydroxymethyl)urea What are some products that may contain diazolidinyl urea? Body Washes: Herbal Essence Body Wash (Dry Skin and Normal) Herbal Essence Fruit Fusions Moisturizing Body Wash Vitabath Bath & Shower Gelee Moisturizing Bath Gel, Original Spring Green Vitabath Bath & Shower Gelee, Moisturizing Bath Gel, Plus for Dry Skin Vitabath Bath & Shower Gelee Moisturizing Bath/Shower Gel, Plus Dry Skin Cleansers: pHisoderm Antibacterial Skin Cleanser Cosmetics:
    [Show full text]
  • University of Groningen Formaldehyde-Releasers In
    University of Groningen Formaldehyde-releasers in cosmetics de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter- Jan Published in: CONTACT DERMATITIS IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): de Groot, A. C., White, I. R., Flyvholm, M-A., Lensen, G., & Coenraads, P-J. (2010). Formaldehyde- releasers in cosmetics: relationship to formaldehyde contact allergy Part 1. Characterization, frequency and relevance of sensitization, and frequency of use in cosmetics. CONTACT DERMATITIS, 62(1), 18-31. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Safety Assessment of Imidazolidinyl Urea As Used in Cosmetics
    Safety Assessment of Imidazolidinyl Urea as Used in Cosmetics Status: Re-Review for Panel Review Release Date: May 10, 2019 Panel Meeting Date: June 6-7, 2019 The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Christina L. Burnett, Senior Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Christina Burnett, Senior Scientific Writer/Analyst Date: May 10, 2019 Subject: Re-Review of the Safety Assessment of Imidazolidinyl Urea Imidazolidinyl Urea was one of the first ingredients reviewed by the CIR Expert Panel, and the final safety assessment was published in 1980 with the conclusion “safe when incorporated in cosmetic products in amounts similar to those presently marketed” (imurea062019origrep). In 2001, after considering new studies and updated use data, the Panel determined to not re-open the safety assessment (imurea062019RR1sum). The minutes from the Panel deliberations of that re-review are included (imurea062019min_RR1). Minutes from the deliberations of the original review are unavailable.
    [Show full text]
  • By Lifeworks Integrative Health Ingredients You
    OUR SKIN CARE INGREDIENT "NO" LIST INGREDIENTS YOU SHOULD AVOID BY LIFEWORKS INTEGRATIVE HEALTH THE PROBLEM WITH SKIN CARE... While many individuals rave about the benefits of their skin care products, they often have no idea how the products affect their body . Advertising such as social media images, video ads, commercials, magazines, and product packaging make big claims about how their product will help improve your image, but ignore your health. Whether it is the foundation that will perfectly blend to cover up any blemish, all-day lip color, hair products that will make it through a full night out, or moisturizer that will leave your skin flawless, reduce wrinkles, and slow down aging, these giant claims can come at a big cost to your health. While the claims skin care products make all sound amazing, the lies hidden within the $134.5 billion skin care industry are manipulative and widely accepted as a normal part of doing business. But, all these lies, cover ups, and exaggerations have a huge negative impact on your health. The last time the FDA updated regulations for the skincare industry was 1938 in the Food, Drug, and Cosmetics Act. In that act, just 11 chemicals were banned from or restricted for use in beauty and personal care products in the United States. In contrast, Canada and Europe have banned 800 and 1,500 chemicals in all skin care products, respectively. Since the Food, Drug, and Cosmetics Act, research has shown that some seemingly “safe” chemicals may lead to complaints such as acne, clogged pores, headaches, skin & eye irritations, and rashes.
    [Show full text]
  • Topical Therapeutic Corneal and Scleral Tissue Cross-Linking Solutions: in Vitro Formaldehyde Release Studies Using Cosmetic Preservatives
    Bioscience Reports (2019) 39 BSR20182392 https://doi.org/10.1042/BSR20182392 Research Article Topical therapeutic corneal and scleral tissue cross-linking solutions: in vitro formaldehyde release studies using cosmetic preservatives Anna Takaoka, Kerry Cao, Eric M. Oste, Takayuki Nagasaki and David C. Paik Downloaded from http://portlandpress.com/bioscirep/article-pdf/39/5/BSR20182392/848135/bsr-2018-2392.pdf by guest on 29 September 2021 Department of Ophthalmology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, U.S.A Correspondence: David C. Paik ([email protected]) Our recent tissue cross-linking studies using formaldehyde releasers (FARs) suggest that corneal and scleral tissue strengthening may be possible without using ultraviolet irradia- tion or epithelial removal, two requirements for the photochemical method in widespread clinical use. Thus, the present study was carried out in order to better understand these po- tential therapeutic solutions by studying the effects of concentration, pH, buffer, time, and tissue reactivity on formaldehyde release of these FARs. Three FARs, sodium hydroxymethyl glycinate (SMG), DMDM, and diazolidinyl urea (DAU) were studied using a chromotropic acid colorimetric FA assay. The effects of concentration, pH, and buffer were studied as well as the addition of corneal and scleral tissues. The main determinant of release was found to be dilution factor (concentration) in which maximal release was noted at the lowest concentra- tions studied (submillimolar). In time dependent studies, after 60 min, FA levels decreased by 38% for SMG, 30% for DMDM, and 19% for DAU with corneal tissue added; and by 40% for SMG, 40% for DMDM, and 15% for DAU with scleral tissue added.
    [Show full text]
  • T.R.U.E. TEST Reference Manual
    Now FDA-approved for use on patients as young as 6 years old! Reference Manual truetest.com 800.878.3837 l © 1988 -2018 SmartPractice • All rights reserved. SmartPractice, T.R.U.E. TEST and associated logos are registered trademarks of SmartHealth, Inc. This manual is furnished with T.R.U.E. TEST® (Allergen Patch Test) purchased by a licensed medical professional, and may be used or copied as needed in accordance with patient care. In all other cases, this manual may not be duplicated or reproduced in any printed or digital media for distribution or sale without the written consent of the publisher SmartPractice. TT69010P 82310_0118 © 2018 SmartPractice • All rights reserved. SmartPractice, T.R.U.E. TEST and associated logos are registered trademarks of SmartHealth, Inc. Table of Contents Physician Manual Disclaimer........................................................................................................................................................v T.R.U.E. TEST (Allergen Patch Test) Shipping and Handling .....................................................................................................vi Introduction Contact Dermatitis is Common and Costly ................................................................................................................................1.1 Allergic or Irritant Contact Dermatitis? .......................................................................................................................................1.1 Why Patch Test? ............................................................................................................................................................................1.2
    [Show full text]
  • Formaldehyde and Formaldehyde Releasers
    INVESTIGATION REPORT FORMALDEHYDE AND FORMALDEHYDE RELEASERS SUBSTANCE NAME: Formaldehyde IUPAC NAME: Methanal EC NUMBER: 200-001-8 CAS NUMBER: 50-00-0 SUBSTANCE NAME(S): - IUPAC NAME(S): - EC NUMBER(S): - CAS NUMBER(S):- CONTACT DETAILS OF THE DOSSIER SUBMITTER: EUROPEAN CHEMICALS AGENCY Annankatu 18, P.O. Box 400, 00121 Helsinki, Finland tel: +358-9-686180 www.echa.europa DATE: 15 March 2017 CONTENTS INVESTIGATION REPORT – FORMALDEHYDE AND FORMALDEHYDE RELEASERS ................ 1 1. Summary.............................................................................................................. 1 2. Report .................................................................................................................. 2 2.1. Background ........................................................................................................ 2 3. Approach .............................................................................................................. 4 3.1. Task 1: Co-operation with FR and NL ..................................................................... 4 3.2. Task 2: Formaldehyde releasers ........................................................................... 4 4. Results of investigation ........................................................................................... 6 4.1. Formaldehyde..................................................................................................... 6 4.2. Information on formaldehyde releasing substances and their uses ............................ 6 4.2.1.
    [Show full text]
  • What's Going on “Hair?”: Product Toxicity and Chemical Exposure from Hair Styling Products Used by Black, Female Hairdres
    OCCIDENTAL COLLEGE Department of Urban & Environmental Policy What’s going on “hair?”: Product Toxicity and Chemical Exposure from Hair Styling Products used by Black, Female Hairdressers in Dorchester, Massachusetts This is a thesis submitted in partial fulfillment of the Requirements for the Bachelors of Arts Degree in Urban & Environmental Policy at Occidental College Author Antoniqua Roberson-Dancy Supervisor Professor Bhavna Shamasunder Los Angeles, California Roberson-Dancy 1 TABLE OF CONTENTS 1. Abstract……………………………………………………………………………………………..……3 2. Introduction……………………………………………………………………………………………....4 3. Background…………………………………………………………………………………………..…..8 3.1 Black Women for Wellness (BWW) 3.2 Community Profile: Dorchester, MA 4. Literature Review………………………………………………………………………………...……..11 4.1 Synthetic Compound Exposure: Health Effects on the Human Body 4.2 Occupational Chemical Exposure of Hairdressers 4.3 Natural Hair Movement Influence on Hair Product Usage within the Black Community 5. Methodology………………………………………………………………………………………..…..21 5.1 The Subjects 5.2 The Process 5.3 Ethics of Study 5.4 Follow-up 6. Findings…………………………………………………………………………………………………24 6.1 Product Analysis 6.2 Surveys 6.3 Salon Services 7. Recommendations………………………………………………………………………………………32 7.1 Personal 7.2 Future Projects 8. Conclusion……………………………………………………………………………………………...35 9. References………………………………………………………………………………………………36 10. Appendix………………………………………………………………………………………………39 Roberson-Dancy 2 Roberson-Dancy 3 1. ABSTRACT The purpose of this study is to analyze the
    [Show full text]
  • Imidazolidinyl Urea
    Imidazolidinyl urea 39236-46-9 OVERVIEW This material was prepared for the National Cancer Institute (NCI) for consideration by the Chemical Selection Working Group (CSWG) by Technical Resources International, Inc. under contract no. N02-07007. Imidazolidinyl urea came to the attention of the NCI Division of Cancer Biology (DCB) as the result of a class study on formaldehyde releasers. Used in combination with parabens, imidazolidinyl urea is one of the most widely used preservative systems in the world and is commonly found in cosmetics. Based on a lack of information in the available literature on the carcinogenicity and genetic toxicology, DCB forwarded imidazolidinyl urea to the NCI Short-Term Toxicity Program (STTP) for mutagenicity testing. Based on the results from the STTP, further toxicity testing of imidazolidinyl urea may be warranted. INPUT FROM GOVERNMENT AGENCIES/INDUSTRY Dr. John Walker, Executive Director of the TSCA Interagency Testing Committee (ITC), provided information on the production volumes for this chemical. Dr. Harold Seifried of the NCI provided mutagenicity data from the STTP. NOMINATION OF IMIDAZOLIDINYL UREA TO THE NTP Based on a review of available relevant literature and the recommendations of the Chemical Selection Working Group (CSWG) held on December 17, 2003, NCI nominates this chemical for testing by the National Toxicology Program (NTP) and forwards the following information: • The attached Summary of Data for Chemical Selection • Copies of references cited in the Summary of Data for Chemical Selection • CSWG recommendations to: (1) Evaluate the chemical for genetic toxicology in greater depth than the existing data, (2) Evaluate the disposition of the chemical in rodents, specifically for dermal absorption, (3) Expand the review of the information to include an evaluation of possible break- down products, especially diazolidinyl urea and formaldehyde.
    [Show full text]
  • Cosmetic Ingredients Cosmetic Company Highlights
    ® Cosmetic ingredients Cosmetic Company highlights » 40 years of production experience » EU manufacture based in Italy » Complete series of allantoin derivatives » Wide range of cosmetic preservatives » Family-owned company » Worldwide distribution network » Commitment to customer care » Microbiological service and challenge tests offered Allantoin + Allantoin EP/USP PrESErvativE SySTEmS WITh IPbC AllANTOIN DErIvativES PrESErvativE SySTEmS WITh OrgANIC ACIDS COSmETIC PrESErvativES mUlTIFUNCTIONAl SySTEmS WITh ANTImICrObIAl PrOPErTIES PrESErvativE SySTEmS mICrObIOlOgICAl SErvICE PrESErvativE SySTEmS WITh PArAbENS hAIr CArE PrODUCTS lIST Company profile Founded in 1973, Akema Fine Chemicals is a Akema due to decades of experience We are committed to providing a continual manufacturer of specialty chemicals for the has become a leading manufacturer of support for our customers ranging from cosmetic and pharmaceutical industry. Imidazolidinyl Urea and Diazolidinyl Urea. assistance with marketing to technical The company has focused on two main Over the years the company has widened its services. product lines: range of preservatives to include new mild and The challenge tests which are offered to » Allantoin and allantoin derivatives alternative preserving systems. customers play an important role in the » Cosmetic preservatives. selection of preservatives and in determining Now Akema offers the cosmetic industry a the appropriate level of use. For more than 40 years Akema has comprehensive range of preservative systems, successfully supplied both small and large able to meet the challenging needs of the At present Akema is recognized as an cosmetic and pharmaceutical companies, modern cosmetic market. accredited manufacturer of cosmetic building up a strong reputation as a reliable ingredients with a long history and an manufacturer of high-quality Allantoin.
    [Show full text]
  • Identification and Quantification of Dm Dm Hydantoin in Selected Shampoos
    Available online at www.derpharmachemica.com ISSN 0975-413X Der Pharma Chemica, 2020, 12(6): 31-35 CODEN (USA): PCHHAX (http://www.derpharmachemica.com/archive.html) Identification And Quantification of Dm Dm Hydantoin In Selected Shampoos Anusree V, Shebina P Rasheed*, Basil Mohammed K.P, Thasleena V.P, Parvathy S.L, Muhammed Khais Department of Pharmaceutical Chemistry, Al Shifa College of Pharmacy, Perinthalmanna, Kerala *Corresponding author: Shebina P Rasheed, Department of Chemistry, Al Shifa College of Pharmacy, Perinthalmanna, Kerala, E-mail: [email protected] ABSTRACT DM DM hydantoin is a formaldehyde releaser, used in cosmetic products at concentrations up to 1.0%. It is found in products like shampoos, hair conditioners, hair gels, Rite Aid Liquid Lubricant, and skin care products. The present study is an attempt to develop a rapid but simple spectrophotometric method in the UV/ visible mode for the identification and quantification of DM DM hydantoin in cosmetic products like shampoos to aid regulatory agencies confirm manufacture’s substantiation claims. Here, we use different brands of shampoos are selected and comparative study is made using the developed spectrophotometric method using ethanol solvent. By comparing the 4 samples (A, B, C, D) of shampoos with a selected standard shampoo, the concentration and percentage content of the different samples were calculated. The quantified amount (mg/ml) of DM DM Hydantoin were 1.7 ± 0.0124, 0.541 ± 0.0011, 1.956 ± 0.0132, 0.245 ± 0.00045, 0.3810 ± 0.00071 in standard and samples A, B, C, D respectively. The percentage content is low in sample C and high in sample B while comparing with the standard sample.
    [Show full text]
  • Survey and Health Assessment of Preservatives in Toys
    Survey and health assessment of preservatives in toys Corrected version Survey of chemical substances in consum- er products No. 124 October 2016 Publisher: The Danish Environmental Protection Agency Editor: Pia Brunn Poulsen, FORCE Technology Rasmus Nielsen, FORCE Technology ISBN: 978-87-93529-22-9 Corrections of “Survey of chemical substances in consumer products no. 124”, 2014 are to be found on page 45. See footnote no. 10. Corrections of “Survey of chemical substances in consumer products no. 124”, 2016 are made on page 47, where this text is deleted: BIT is a so-called formaldehyde releaser, which means that the substance can release formaldehyde. Formaldehyde is classified as carcinogenic in category 2 and is allergenic. When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. Sources must be acknowledged. Contents Foreword .................................................................................................................. 6 Conclusion and Summary .........................................................................................
    [Show full text]